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Abstract: To date, there is a growing interest for challenging applications of time-lapse electrical
resistivity tomography (TL-ERT) in Earth sciences. Tomographic algorithms for resistivity data
inversion and innovative technologies for sensor networks have rapidly transformed the TL-ERT
method in a powerful tool for the geophysical time-lapse imaging. In this paper, we focus our
attention on the application of this method in landslide monitoring. Firstly, an overview of recent
methodological advances in TL-ERT data processing and inversion is presented. In a second step, a
critical analysis of the main results obtained in different field experiments and lab-scale simulations
are discussed. The TL-ERT appears to be a robust and cost-effective method for mapping the water-
saturated zones, and for the identification of the groundwater preferential pathways in landslide
bodies. Furthermore, it can make a valuable contribution to following time-dependent changes
in top-soil moisture, and the spatio-temporal dynamics of wetting fronts during extreme rainfall
events. The critical review emphasizes the limits and the advantages of this geophysical method and
discloses a way to identify future research activities to improve the use of the TL-ERT method in
landslide monitoring.

Keywords: time-lapse geophysical imaging; electrical resistivity tomography; landslides

1. Introduction

Electrical resistivity tomography (ERT) is a robust and well-consolidated method for
near-surface geophysics, with a wide spectrum of applications in the geological, engineering
and environmental sciences. This geoelectrical method provides 2D and 3D resistivity
images of the subsurface; the basic principle is Ohm’s law and the experimental data are
the voltage signals produced by the direct electrical currents (f = 0 Hz) injected into the
subsoil and filtered by the artificial noise. Technological advances (i.e., multi-channel
arrays, innovative sensors) and novel tomographic algorithms for data inversion have
rapidly transformed ERT in one of the most popular geophysical methods. Furthermore,
the extreme variability of the resistivity parameter (different order of magnitude, from
1–10 Ohm·m of clayey materials to 105 Ohm·m of granite rocks) makes it possible to use
the ERT method in many geological environments [1–4].

The ERT method can also be applied to study the time-dependent changes of the
resistivity pattern of the subsoil: we used the analysis of 2D and 3D static resistivity
images of the subsurface to the process the time-series of resistivity images (time-lapse
approach or 4D tomography). The first laboratory and experimental works on time-lapse
electrical resistivity tomography (TL-ERT or 4D-ERT) method date back to the period
1995–2005, when they were mainly devoted to monitor the injection of salt water in soil
and aquifers [5–8]. The results of these controlled experiments stimulated the study of the
complex relationship between resistivity values and hydraulic parameters.

Since these pioneering activities and seminal papers, the attention of the scientific
community to the TL-ERT method has increased considerably, with exponential behavior
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in the yearly number of articles published in top-leading journals. In the last 20 years, more
than 200 papers have been published on ISI journals (Figure 1).

Figure 1. Yearly variations of the number of ISI articles concerning the topic “time-lapse ERT”
spanning the period 2001–2020 (Source data: WoS database).

The TL-ERT method found an impressive number of applications crossing different dis-
ciplines, from hydrogeology [9–12] to agriculture [13–16], from engineering geology [17–20]
to geohazards [21–24], from CO2 storage [25] to the study of the effects of the climate
changes on soil and near subsurface [26–29].

Here, we focus our attention on the application of the TL-ERT method for landslide
monitoring. In the last years, climate change and the occurrence of frequent extreme
meteorological events have contributed to the triggering of landslide phenomena, with
considerable effects on the economic and social life of the affected areas [30–32]. Indeed, the
number of cases in which these phenomena involved strategic infrastructures (e.g., bridges,
railways, highways) as well as civil housing and commercial activities [33–35], sometime
causing fatalities [36,37], has considerably grown.

Taking this into account, the need to develop early warning systems allowing officials
to monitor the variation of specific subsoil parameters responsible for triggering landslides
has become more pressing [38–40]. Alongside the more classic monitoring systems, based
on the use of purely geotechnical sensors, such as inclinometers, piezometers, etc., innova-
tive systems based on indirect measures such as geophysical ones [41] have begun to be
experimented with. Geophysical methods allow the measure of physical parameters, whose
variation often depends on the variation of parameters directly related to the triggering of
landslides (for example the water content, the porosity of the rock, etc.). The ERT method
can be considered one of the most widely applied geophysical methods in the study of
landslides. Many examples of 2D and 3D ERT applications (Figure 2) for the geometric
characterization of the landslide body, the identification of the sliding surface, and the
localization of areas with higher water content, are reported in the literature [42–44].

Recent technological improvements, which have allowed acquisition time to speed
up in order to obtain many measurements and develop innovative algorithms for data
inversion, have made it possible to test the ERT method and monitor landslides.

Indeed, considering the dependence of the electrical resistivity on the water content
and the role that the latter plays in the triggering of landslides, repeated resistivity mea-
surements over time along defined profiles (TL-ERT) can be carried out with the aim of
monitoring, for example, the water content variations in the first subsoil levels and to try to
define triggering thresholds.
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Figure 2. (Left) Geological map of the Montaguto earth-flow (Campania region, southern Italy) with
the location of direct and indirect investigations. Red lines: ERT profiles. Green line: water drainage
structures. Green dot: borehole. Blue triangle: piezometers. (Right) Fence diagram showing the
locations of the 2D ERT (ERT 3–ERT 13) within a 3D space (after [44]).

Compared to other fields of application, the use of the TL-ERT in landslide monitoring
can be considered recent. The geological complexity of the investigated phenomenon
still requires additional experimentations and the development of petrophysical laws that
allow quantitative correlation between the electrical resistivity values and the hydrologic
parameters directly involved in the triggering of landslides.

In this paper, a selected list of papers extracted by the WOS database for the period 2010
up to now, concerning the TL-ERT method and its application for landslide monitoring,
have been considered. The main goals of this work are: (i) to perform an overview of the
recent methodological advances in TL-ERT data processing and inversion; (ii) to identify the
limits and the advantages of this method when it is applied in monitoring hydrogeological
phenomena; (iii) to perform a critical analysis with the identification of future directions
for the research activity on this topic.

The work has been organized as follows. In the first step, the basic principles and the
algorithms for data inversion of the TL-ERT method are briefly summarized. In a second
step, a systematic overview of the main results obtained with this method in a selected list
of field-scale experiments for landslide monitoring is carried out. Finally, some gaps and
future methodological and technological trends are identified and discussed.

2. The TL-ERT Method: Data Processing and Inversion
2.1. Basic Principles

The TL-ERT method is based on the analysis of a dataset of 2D or 3D resistivity images
obtained at different time intervals: it combines 2 or 3 spatial dimensions with a temporal
dimension (4D ERT). The TL-ERT or 4D ERT method adopts multi-electrode arrays and the
data acquisition procedures already used for the classical 2D and 3D ERT surveys, but the
acquisition is generally controlled by a remote system, and it is repeated over time. The
main experimental errors associated with the TL-ERT measurements are connected to the
presence of man-made electrical noises, galvanic contact changes, electrode corrosion, and
low signal-to-noise ratio in voltage signals (well-known sources of errors in 1D, 2D and
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3D ERT measurements). The stacking techniques and algorithms for spectral analysis are
generally used for extracting the weak voltage signals generated by the current injection
into the subsurface, also in the condition of low signal-to-noise ratio [1,4,42]. However, it
is necessary to consider other time-related errors connected to temperature and galvanic
changes, such as rain precipitation and variations of electrode spacings due to surface
ground movements [45].

As it concerns the interpretation and the inversion of the 4D ERT experimental
data, the simpler and more common approach is based on the analysis of the differ-
ences between the resistivity images independently inverted during the acquisition phase
(independent approach). However, the time-lapse of the resistivity images can easily produce
an amplification of the inversion artifacts [46].

Another largely applied method is the difference inversion of the ERT data [47]. The
Occam algorithm was modified to allow the inversion of the differences between the
background or reference resistivity images and the other 3D resistivity images obtained
at a different time. The resistivity obtained by the inversion of background data serves as
a priori model in the difference inversion. The method allows a rapid convergence of the
inversion process and reduces the errors due the field array configurations.

A ratio inversion was proposed by Daily 1992 [48], in which the inversion is performed
using the ratio between two successive ERT measurements multiplied with a resistiv-
ity value representing a homogenous subsurface model. An alternative approach is the
cascaded inversion: this method uses the inversion result of the initial dataset as the starting
and reference model for the inversion of the subsequent datasets [49].

Another critical error affecting the interpretation of the TL-ERT data is the assumption
of the time-invariant (static) subsurface model during the acquisition phase. This hypothesis
is realistic for slow phenomena, but in field experiments we could observe rapid changes of
the subsurface model (i.e., the migration of a fluid in a fractured material). To overcome this
problem, Kim et al. (2009) [50] introduced a subsurface resistivity model that is continuously
changed over the time, the model is completely defined in the space-time domains, and the
inversion algorithm considers all data available (Full 4D TL-ERT data inversion). To reduce
the computing time and to stabilize the inversion procedure, some regularization criteria
are generally introduced.

2.2. Novel Algorithms for Data Processing and Inversion

After these seminal works, the TL-ERT method has found an impressive and large
spectrum of applications, and many authors have proposed new methods for TL-ERT
data analysis and inversion [4]. In past years, the number of papers on this topic has
constantly grown. Here, an overview of selected papers published during the last ten years
is presented.

Doetsch et al., 2010 [51], proposed a structural joint inversion using cross-gradient
constraints of the time-lapse GPR and ERT data. They analyzed synthetic and experimental
data collected during a water injection experiment. The structure is imposed when the
updates of the model, with respect to the background, is in the same or opposite directions.
Synthetic and experimental tests confirmed the capacity of the structural joint inversion to
better describe the plumes geometry, with respect to the single individual inversion.

Herckenrath et al., 2011 [52] investigated the possibility to calibrate the hydrogeophys-
ical inversion with the time domain electromagnetic (TDEM) and ERT data. A geophysical
model was simultaneously inverted with a groundwater model by coupling the groundwa-
ter and geophysical parameters. Jardani et al., 2013 [53] used a stochastic joint inversion of
resistivity and self-potential data integrated with in-situ measurements of hydrogeological
parameters. The main results of the inversion revealed that incorporating the self-potential
data improves the estimate of hydraulic conductivity.

Camporese et al., 2015 [54] analyzed the performance of coupled and uncoupled inver-
sion approaches in the reconstruction of heterogeneous saturated hydraulic conductivity
patterns. The comparison was carried out in the framework of a model inversion based
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on the ensemble Kalman filter. The results highlighted some advantages of the coupled
approach, but it requires massive computational resources.

The joint inversion of geophysical data and the coupled inversion of hydrogeophysical
data are extremely complex issues and challenging scientific problems, for this reason, there
are not many papers about the joint inversion of the TL-ERT data with other geophysical
measurements. Furthermore, there is a growing interest in the studies on hydrogeophysical
and petrophysical relationships.

Many works are focused on improving and modifying the full 4D inversion algorithm
based on the regularization in space and time [50]. Hayley et al., 2011 [55], introduced
the concept of simultaneous inversion. They proposed two different approaches: in the
first one, the inversion of two consecutive ERT datasets was performed under a single
optimization procedure and constraints, to ensure that the changes from one time to another
were smooth; in the second method, the inversions were performed simultaneously and
constraints of smoothness and closeness to a reference model were applied to the difference
image produced.

Karaoluis et al., 2011 [56] modified the method for the full 4D inversion based on
the regularization in space and time. They introduced the concept of the 4D active time-
constrained (4D-ATC) inversion. The main feature of the modified algorithm is that it
allows the time regularization to vary between different time steps depending on the degree
of spatial resistivity changes occurring among different monitoring stages. As a result, the
4D-ATC algorithm uses all the benefits of the 4D algorithm, but also introduces increased
flexibility in terms of temporal regularization, which can help in focusing on the dynamic
resistivity changes. In a successive work, Karaoluis et al., 2014 [57], proposed an inversion
scheme based on distributed and non-uniform parameters, considering the time-related
noise and the reduction of the sensitivity in ERT measurements as purely random.

Other improvements were based on the concept of the adaptive approach and the use
of minimum gradient in TL-ERT data inversion. Wilkinson et al., 2015 [58] proposed, for
the first time, an adaptive survey technique for geoelectrical monitoring. A static algorithm
was modified for increasing the resolution within target zones; during the time-dependent
period from the image analysis, the zones were interested by the resistivity changes, and
the resolution within these zones in the successive ERT acquisition increased. Nguyen et al.,
2016 [59] introduced the concept of the minimum gradient support (MGS) in the TL-ERT
data inversion. This parameter was selected using the value of the TL-ERT data root mean
square misfit and the first iteration of the inversion procedure.

Some recent works are mainly devoted to the development of innovative algorithms
for considering and removing the influence of artifacts and errors in the TL-ERT inver-
sion procedure.

Liu et al., 2017 [60] approached the problems related to the propagation of the false
anomalies in the initial model and their propagation in the successive TL-ERT inversions,
and the assumption of the uniform sensitivity to resistivity variations. They introduced
a temporal gradient to enhance the vertical and/or horizontal variation of the model
parameters, and normalized the observations before inversion.

Lesparre et al., 2017 [61] analyzed the problems related to the quantification of the
errors in the TL-ERT data inversion. Their approach was based on the analysis of the
differences between normal and reciprocal measurements (i.e., swapping of the energizing
and measuring electrodes) acquired at different time. They extended the concept of the
static error formed by a linear combination of the systematic and random components [7],
the results emphasized the necessity to better evaluate the errors in the time-lapse resistivity
monitoring independently by the algorithm inversion.

Tso et al., 2017 [62] organized an overview of the main methodologies for removing
and minimizing the influence of the experimental errors in the ERT inversion algorithms.
They extended the standard error model based on the linearity with the transfer resistance
introducing a grouping variable based on the electrode number used for the experimental
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measurements. This new linear mixed model (LME) was tested using lab and field data,
improving the quality of the ERT images.

Other works focus their attention on errors due to the presence of an irregular surface
topography in the area interested by the field measurements [17], and the acquisition
schemes with electrodes installed in the boreholes [63].

Furthermore, there are some studies based on the use of the classical Kalman Filter,
Bayesian Markov chain, Monte Carlo simulation and clustering procedures for the TL-
ERT data analysis and inversion. Notwithstanding these methods are largely applied in
geophysics, there is a limited number of applications on the time-dependent geoelectrical
monitoring. Saibaba et al., 2014 [64], introduced the Kalman filtering approach to analyze
the TL-ERT data. This model is useful in practical applications in which data is acquired at
a rapid rate, and when changes in subsequent states are small and can be approximated by
a random process.

Oware et al., 2019 [65] developed a novel method for the TL-ERT data inversion using
a Bayesian Markov chain Monte Carlo (McMC) technique. The approach was based on
the parametrization of the Bayesain inversion model in terms of the optimal bases, which
allows a sparse representation of the desired features leading to dimensionality reduction
and Monte Carlo simulations tuned to the physics of the targeted process. The method
was tested during a heat-tracer experiment. Delforge et al., 2021 [66] proposed the time
clustering method as a tool for the post-inversion of the TL-ERT data. The authors tested
three different algorithms (K-means, hierarchical agglomerative clustering, and Gaussian
Mixture Model) on raw ERT data analyzing the role of the spatial constraints and evaluating
the robustness of the method.

Recently, there has been growing attention on the development of open sources
software and codes, and the use of parallel computing to reduce the time required for
geophysical data inversion. As it concerns the TL-ERT data, Johnson et al., 2017 [67]
used open-source codes to simulate spatio-temporal changes of subsurface resistivity.
The module PFLOTRAN-E4D operating in parallel modality was applied to reconstruct
the bulk electrical conductivity from a subsurface flow and transport simulation code.
At each step of the iterative process, a tomographic image is simulated using the bulk
electrical conductivity model. This multi-physics approach appears of great interest for the
availability of open-source codes.

Rucker et al., 2017 [68] introduced an open-source framework for the inversion of a
hydro-geophysical dataset. A pyGIMLi (Python Library for Inversion and Modelling in
Geophysics) was implemented for solving the minimization problem with a Gauss–Newton
algorithm for any forward operator. The method was used for incorporating hydrological
and petrophysical constraints in the ERT data inversion. Blanchy et al., 2020 [69] introduced
the open-source code RESIPy for the inversion of resistivity and induced polarization data.
The code can also be used for the analysis of TL-ERT data. It is formed by three different
layers: (i) the first one is composed of inversion codes R2, R3t and CR2 and a software to
generate triangular meshes; (ii) the second layer is composed of Python API, containing
processing routines for filtering and error modeling; (iii) the last is composed of routines
for graphical application mainly devoted to data visualization.

Liu et al., 2020 [70] proposed a method for the fast inversion of the 4D ERT data that
considers the problems related to the rapid changes in the resistivity subsurface model.
Generally, the ERT inversion is time consuming, and during the period necessary for the
data inversion a resistivity change in the subsurface could occur. The algorithm subdivided
an entire data set into a multiple subset of data, that were dynamically substituted in the
equations for data inversion. In this process, the regularization coefficients are adjusted;
furthermore, a GPU parallel algorithm is used for the TL-ERT data inversion.

Finally, in Table 1 we summarize the different methods adopted for TL-ERT data
inversion. At each class is associated a list of the selected works previously discussed. Of
course, the list is not exhaustive, and does not include all of the published papers.
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Table 1. Simplified classification of the different approaches and methods adopted in the TL-ERT data
processing and inversion. The scheme is based on the analysis of a selected list of papers published
in the last ten years.

Main Classes of the Methods for the TL-ERT Data
Analysis and Inversion List of the Papers

Joint-inversion with other geophysical data and
hydro-geophysical data.

Doetsch et al., 2010
Herckenrath et al., 2013

Jardani et al., 2013
Camporese et al., 2015

Full 4D inversion, time and space active constraints, space
and time regularization, algorithms based on the adaptive

approaches and minimum gradients.

Hailey et al., 2011
Karaoulis et al., 2011
Karaoulis et al., 2014
Wilkinson et al., 2015
Nguyen et al., 2016

Methods for minimizing the errors and the artifacts.

Liu et al., 2017
Lesparre et al., 2017

Tso et al., 2017
Bievre et al., 2018
Perri et al., 2020

Clustering, Bayesian and other statistical approaches.
Saibaba et al., 2014
Oware et al., 2019

Delforge et al., 2021

Open-source codes and HPC techniques.

Johnson et al., 2017
Rucker et al., 2017
Blanchy et al., 2020

Liu et al., 2020

3. Landslide Monitoring

Landslide investigation is one of the more consolidated applications of the ERT method.
The main contributions of the static 2D and 3D ERT (Figure 2) tomographic methods regard
the delineation of the geometry of the landslide bodies and the identification of high
water content areas [42,44,71]. As it concerns the landslide monitoring, the TL-ERT method
represents an optimal tool to investigate the triggering factors of mass-movements related
to water infiltration, and soil moisture’s temporal and spatial changes. In fact, the time
series of the resistivity images are strongly influenced by the time-dependent changes of
water content in soil and subsoil.

Lebourg et al., 2010 [72] performed a field experiment at the Vence landslide (France),
considered as a translational landslide, including 1.2 × 106 m3 of material. They measured
rainfall precipitation for three months, including water level and resistivity values, and
investigated the possible correlations between these parameters. The study was carried out
using raw data (apparent resistivity values) without any inversion, the results pointed out
the strong negative correlations between the rainfall events and the resistivity correlation
factor, and between the piezometric elevation and the resistivity average.

Travelletti et al., 2012 [73] carried out another field experiment at the Laval landslide
(France). Starting from a non-saturated condition near the surface, the TL-ERT measure-
ments were performed during water infiltration within clay-shale material. They observed
a reduction of resistivity values (18%) with an asymptotic value in correspondence to
steady state flow conditions. The inversion of the TL-ERT data was carried using different
methods [2,49], and the results highlighted possible preferential flows near the landslide
toe in the steady stationary flow (Figure 3). Other field experiments planned for landslide
investigations in Taiwan and Italy are reported in Lee et al., 2012, Luongo et al., 2012, and
Quagliarini et al., 2017 [74–76].
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Figure 3. (A) Laval landslide (ORE Draix, South French Alps) with location of the ERT line and of the
equipment used for the rain experiment. (B) Cross section of the landslide. (C) Resistivity changes
during the rain experiment (after [73]).

Gunn et al., 2013 [77] investigated the complex geological environment of the Whitby
Mudstone Formation, one of the highest landslide densities in the United Kingdom. They
studied the landslide phenomena at Hollin Hill in North Yorkshire that includes shallow,
retrogressive rotational, and translation movements. A permanent station able to perform
time-lapse ERT observations was installed for monitoring the soil moisture pattern near
the surface: the results allowed the authors to study the role of hydrogeological processes
in triggering earth flows.

Gance et al., 2016 [78] installed a permanent 4D-ERT system at the Super-Sauze clayey
landslide (France). They performed a statistical analysis to investigate possible relationships
between the rainfall characteristics, the soil hydrological observations and the soil electrical
resistivity response (Figure 4). The results highlighted the influence of the temperature in
ERT measurements due to the heat exchange between the groundwater, the vadose zone
water and the rainwater that hides the variations of resistivity due to variations in the soil
water content. Another quite similar experiment was carried out in a landslide area in
southwestern China, to map the pathways of rainwater infiltration in the slipping zones
(Xu et al., 2016) [79].

Palis et al., 2017 [80] applying electrical resistivity tomography (daily acquisition),
rainfall records (since 2006) and boreholes monitoring groundwater level (since 2009),
carried out a 9.5-year multiparametric survey on the “Vence” (France) landslide. The aim
of the survey was to understand fluid circulations within the unstable slope. ERT data
were analyzed by using an automated clustering analysis enabled to isolate the ERT section
into three groups of apparent resistivity values (Figure 5). The comparison between the
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variations of these cluster behaviors in time with the variations of groundwater levels on
site, allowed the authors to locate distinct hydrogeological units. The authors showed that
the qualitative information on the variability of the slope hydrogeological behavior could
help improve the conversion of resistivity data into hydrologic quantities.

Figure 4. The map above (a) shows the location of the investigations carried out on the Super-Sauze
landslide (Southeast France). The slope is characterized by non-fissured unit (b) and areas affected
by a high fissure density (c,d). The dashed blue line (e) indicates the position of the GEOMON 4D
system. The images (f,g) illustrate the soil cooling effect due to the rainwater. The percentage change
in soil electrical resistivity after a small rainfall event could be due to the difference between rain and
initial soil temperature (after [78]).

Figure 5. The map at the top reports the location of the survey carried out on the Vence landslide
(south-eastern France), a simplified geological cross section (a) obtained along the sliding direction
and the layout of the field survey carried out in the area. (b) Legend. The images below show (c) the
variations of the daily median values of the three clusters of apparent resistivity measurements iden-
tified for the slope in the period 2006–2016, and (d) the accumulated rainfall index and groundwater
level obtained by direct measurements in C6 and C20 for the same period (after [80]).

Zieher et al., 2017 [81] performed a spray irrigation experiment in a selected Alpine
zone interested by shallow landslides. A sequence of 2D ERT images were obtained during
the irrigation period. Furthermore, they installed a grid of time-domain reflectometry
sensors at different depths for measuring water content, and used a linear diffusion model
for simulating the time-dependent variations of the pore pressure. The results allowed them
to detect the negative resistivity changes associated with the vertical progressing water.
Unfortunately, the measurements and the model were not able to investigate the small-scale
variations in pore pressure that may facilitate the triggering of shallow landslides.

Hojat et al., 2019 [82] carried out a laboratory-scale experiment to simulate the rainfall
triggering of shallow landslides. They used the TL-ERT and time-domain reflectometry
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methods to monitor water infiltration and to evaluate the volumetric water content. After a
calibration of the Archie’s equation, the ERT images were transformed in water saturated
maps. The results of the controlled experiment highlighted that the landslide body becomes
unstable at zones where the water saturation exceeds 45%, and the instability phenomena
could occur at the boundaries between areas with different water saturations.

Ivanov et al., 2020 [83] approached the study of shallow landslides in a mountain
landscape mainly triggered by rainfall extreme events. They designed and implemented a
landslide simulator, and a dataset of 20 land mass failures induced by water infiltration
were described and analyzed. Both hydrogeological and TL-ERT measurements were
performed. The time series of the ERT images were used for mapping the waterfront time-
dependent changes during three different rainfall simulations: (i) temporal increase in the
rainfall intensity; (ii) constant rainfall intensity and (iii) two sequences for rainfall events.
The results of downscaled experiments confirmed that the rainfall intensity, the hydraulic
conductivity and the soil moisture gradient controlled the stability, while rainfall intensity
and duration were the main predictors of the shallow soil slips. Furthermore, their results
could be useful for implementing procedures for the validation of the rainfall thresholds.

Boyd et al., 2021 [84] investigated one of the more critical problems that generally
occur in the ERT monitoring of shallow landslides. It is common to observe low changes
in the geometry of the electrode array due to ground movements. In a field experiment
carried out at Hollin Hill site (UK), the variations of the distances between the electrodes
were detected with topographic methods (UAV surveys and global position measurements)
and considered in the TL-ERT inversion (Figure 6).

Figure 6. (a) The baseline inverted image of the Hollin Hill landslide (southern Howardian Hills,
UK) measured in May 2016; (b) surface resistivity in relation to a hill-shaded relief map from a UAV
survey in May 2016. The six images on the right (c–h) report an overview of elevation and electrode
coordinate changes at Hollin Hill, as captured by terrestrial LiDAR (after [84]).
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4. Discussion

This review helps to highlight the strengths and weaknesses of the TL-ERT method in
the study of landslide areas, by considering both the technological aspects of instrumenta-
tion and data acquisition, and the phase of data analysis and processing.

As shown by the papers analyzed in the previous section, the main and robust con-
tributions of the TL-ERT method in the study of landslides concern the monitoring of
rainwater infiltration in the shallow subsurface, and the estimation of the spatial and
temporal changes in soil moisture and water content in the top soils and shallow layers
of the unstable slope, respectively. In many cases, authors tried to define significant corre-
lations between rainfall, soil hydrological characteristics, and resistivity values [72,78,80].
The quantitative analysis of such correlations has always represented a challenge for the
scientific community. Very often, the TL-ERT measurements have been integrated and
compared with meteorological and hydrological data and, sometimes, with TDR mea-
surements or other geophysical data [81,82]. The comparison and integration of data
coming from different techniques allow the overcoming of some specific limitations of
each single method. The results of the integration highlight the capability of TL-ERT to
give quantitative information about the water content and to map a preferential pathway
for water infiltration. This capability makes the TL-ERT method useful in the future for
better evaluating the water saturation effects in the estimation of the rainfall thresholds in
landslide early-warning systems.

The analyzed papers also confirmed that it is not possible to generalize the results
obtained for every geological and geomorphological context. In order to make the landslide
monitoring effective by applying the TL-ERT method, an appropriate and correct geological
model must be adopted. As reported by other authors, the petrophysical models used to
transform resistivity values in hydrological parameters are site-specific [81,85], and cannot
be used to define resistivity thresholds applicable for the activation of landslides in any
geological environment. The main evolution of the petrophysical relationships reported
in the literature has regarded the change of the number of phases to be considered in the
model [86]. Indeed, unlike what is claimed by the petrophysics, the rock formations are
unconsolidated, and not composed of a continuous solid phase, but of different phases. So,
starting from the one phase (pore water) model proposed by Archie’s Law [87], to interpret
the electrical properties acquired in different sedimentary contexts, multi-phase models
have been considered [88].

Despite the attention paid by the scientific community, the numerous developed
petrophysical relationships are still difficult to apply in the study of landslide areas. Often,
they require calibration with other parameters (i.e., soil temperature, porosity, water content,
etc.) that are not always available or measurable, requiring laboratory analysis for their
definition. For this reason, authors working in landslide areas often prefer to consider the
raw data and carry out a statistical analysis of them.

All the discussed applications were carried out almost exclusively in rural areas, i.e.,
in areas where the logistical conditions for data acquisition were favorable, and in which
the quality of the data was generally high due to the absence of environmental noise
sources. Working in rural areas offers some advantages, such as easier positioning of
the instrumentation and planning of continuous acquisition over time (the electrodes can
be embedded in the ground for long periods without creating problems for the normal
activities of a community). The absence of buried objects and underground utilities, that
could affect the flow of current in the subsoil, and the good electrode/terrain coupling
mean that the acquired data are not very noisy, and do not require high filtering actions.
Despite these, many authors, to avoid the appearance of the artifacts in the final image,
prefer to analyse the apparent resistivity data, instead of applying inversion algorithms.

As described in paragraph two, in the last ten years an impressive number of papers
concerning novel algorithms for resistivity data processing and inversion have been pub-
lished. However, there are a limited number of cases in which these algorithms have been
applied to analyze the TL-ERT data measured in field-experiments carried out for studying
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landslides. Probably, the use of these mathematical methods is quite complicated when
applied to experimental data characterized by large variability in spatial and temporal
domains, and affected by a high-level of anthropic noise. The TL-ERT data inversion
must also consider the effect of the temperature in the first layers of the subsoil and, in
active landslides, the effect of the electrode’s movement. Corrective formulas have been
introduced for both critical issues [78,84].

A gap between the quality of the algorithms that are currently available for the TL-ERT
data inversion and the methods routinely applied in the interpretation of the experimental
resistivity data is quite evident. The use of advanced methods for data processing and
inversion will disclose the possibility to apply the TL-ERT method in the monitoring of
landslides occurred in urban areas and complex geological slopes.

Except for a few studies [80,85], all the acquisitions were carried out along 2D longi-
tudinal profiles. This still represents a limitation of the method, as the investigated object
has a 3D structure. Unfortunately, making 3D acquisitions is not easy and requires the
use of manageable instruments. Other reviews [4,42] have already highlighted this aspect,
referring, as a possible solution, to the use of separate current injections and voltage mea-
suring systems, but also to the experimentation of technologies that minimize the number
of cables (smart sensors and web-based services for wireless sensor networks). Considering
the difficulties that characterize 3D acquisition in landslide areas, it is well understood that
these difficulties increase if we want to realize a 3D time-lapse ERT.

Other weaknesses identified by the critical analysis of the works presented in the
previous paragraph concern the TL-ERT’s difficulty in investigating deep subsoil layers
in landslide bodies. The ERT method can investigate shallow (0–20 m) and deep layers
(>50 m) in landslide bodies, but there are no experimental tests in which the time-lapse
monitoring systems have been able to obtain information about the resistivity patterns in
deep environments. Generally, the amplitude of the time-dependent changes of resistivity
values are higher in shallow layers, and strongly decrease in deep environments; however,
the possibility to detect weak perturbations in the resistivity patterns of deep environments
(50–100 m) could be very interesting and challenging. In the future, the design of TL-ERT
monitoring systems to obtain a time series of 3D resistivity images with an investigation
range of 0–100 m could open new research opportunities.

5. Conclusions

Two very significant aspects emerge from the analysis of the papers published in
the period 2010–2020 on the theoretical developments and related applications of the TL-
ERT method. The first concerns the enormous development of innovative methodologies
for the processing and interpretation of data acquired with the TL-ERT method, while
the second resides in the wide and growing spectrum of applications of this method in
landslide monitoring.

The TL-ERT method appears particularly suitable for studying the variations, both
in the spatial and temporal domain, of water content in the most superficial layers of
the soil in landslide bodies. It can also provide a useful contribution to the identification
of preferential ways for the infiltration of fluids. In the future, this activity could make
a significant contribution in early warning systems for landslides induced by extreme
weather events by also applying the TL-ERT method to evaluate the water saturation effects
in the estimation of the rainfall thresholds.

However, it will be necessary to investigate the complex relationships between re-
sistivity and hydrogeological parameters. From the analysis of the results obtained, the
use of innovative mathematical and statistical methods in interpreting the experimental
results still appears to be limited. This aspect is fundamental in making the insertion of
this method more robust in advanced and widespread monitoring systems. Finally, the
TL-ERT method should also be applied for deeper geophysical investigations.
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