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Abstract: We introduce a novel n-stage vaccination model and corresponding system of differential
equations that stratify a population according to their vaccination status. The model is an extension
of the classical SIR-type models commonly used for time-course simulations of infectious disease
spread and allows for the mitigation effects of vaccination to be uncoupled from other factors, such
as changes in social behavior and the prevalence of virus variants. We fit the model to the Virginia
Department of Health data on new COVID-19 cases, hospitalizations, and deaths broken down by
vaccination status. The model suggests that, from 23 January through 11 September, fully vaccinated
individuals were 89.8% less likely to become infected with COVID-19 and that the B.1.617.2 (Delta)
variant is 2.08 times more transmissible than previously circulating strains of COVID-19. We project
the model trajectories into the future to predict the impact of booster shots.
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1. Introduction

In December 2019, a novel and highly-contagious coronavirus SARS-CoV-2 was iden-
tified in Wuhan, China. The associated disease, COVID-19, causes fever, muscles aches,
fatigue, and shortness of breath and has been associated with a significant mortality rate,
especially among older and immunocompromised individuals [1]. In the early stages of
the pandemic, mitigation measures focused on non-pharmaceutical interventions includ-
ing travel/border restrictions, social distancing/masking campaigns, work-from-home
orders, school closures, and lockdowns. After the Emergency Use Authorization of effec-
tive vaccines in the United States at the end of 2020 (Pfizer-BioNTech 11 December 2020;
Moderna, 18 December 2020; Johnson & Johnson, 27 February 2021), the response focused
on vaccination drives and awareness campaigns. While these efforts have averted the
worst-case forecast scenarios, COVID-19 continues to spread widely due in part to the more
transmissible B.1.617.2 (Delta) variant, which became the dominant COVID-19 strain in the
United States in July 2021 [2].

Mathematical modeling has played a vital role in public policy decision-making since
the beginning of the pandemic. SIR-type compartmental models [3] have been used to
estimate key epidemiological parameters of infectious disease spread, such as the transmis-
sion rate and basic reproduction number [4–6]; to evaluate the pathways of spread, such
as spread through asymptomatic carriers [7,8]; and to forecast disease dynamics under a
variety of non-pharmaceutical intervention strategies, such as lockdowns, contact tracing,
and face masking campaigns [9–14]. More recent research has focused on aspects of phar-
maceutical interventions, such as comparing COVID-19 vaccination strategies (e.g., which
segment of society to vaccinate first) and post-vaccination re-opening scenarios [15–18].
While these and other studies incorporate vaccination into their modeling frameworks,
time-course differential equation models have not been widely used to assess the real-
world efficacy of vaccination itself. Rather, studies on vaccine efficacy have been limited to
controlled clinical trials [19–21] and analysis of data aggregates [22–24].
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In this paper, we introduce a novel n-stage vaccination model that partitions a popu-
lation according to their vaccination status. This model allows us to concisely assess and
forecast the spread of an infectious disease as the vaccination level of a population changes.
We fit the model to COVID-19 incidence data from the Virginia Department of Health
(VDH) [25] and vaccination uptake data from Our World in Data [26] to estimate (a) the
real-world efficacy of vaccination in preventing COVID-19 infections, hospitalizations, and
deaths, and (b) the transmissibility of the B.1.617.2 (Delta) variant relative to previously
dominant strains. We also conduct a parameter sensitivity analysis and present forecasts of
what the spread of COVID-19 could look like through 31 December 2021 given different
vaccination coverage levels and with the incorporation of a booster shot.

2. Materials and Methods
2.1. n-Stage Vaccination Model

We introduce the following n-stage vaccination model, where within each vaccina-
tion class i = 0, . . . , n, there are susceptible individuals (Si), infectious individuals (Ii),
hospitalized individuals (Hi), removed individuals (Ri), and deceased individuals (Di):

ith Vaccination Class

(i− 1)st class
Susceptible

(Si)
(i + 1)st class

Infectious
(Ii)

Removed
(Ri)

Hospitalized
(Hi)

Deceased
(Di)

V′i (t) V′i+1(t)

β(t)
N (1−αi)

hi
γi

δiγi

(1)

Note that i = 0 corresponds to unvaccinated individuals and that the removed classes
Ri may include those who have recovered from illness but also those who have been
removed by other means, such as self-isolation or quarantine. Individuals are transferred
from the (i− 1)st vaccination class to the ith vaccination class through the ith dose vacci-
nation uptake rate curve V′i (t), which is the derivative of the cumulative ith dose uptake
curve Vi(t). To account for there only being a finite number of vaccination classes, we
set V′0(t) = 0, and V′n+1(t) = 0. That is, we do not include an incoming edge to the
0th vaccination class or an outgoing edge from the nth vaccination class. We allow for a
time-dependent baseline transmission rate for unvaccinated individuals, β(t), so that the
transmission rate may vary, for instance, by changes in public health policies or changes in
prevalence of COVID-19 variants.

To model COVID-19 spread in the United States, we use the two-stage and three-stage
vaccination models: (i) i = 0 for individuals who have not received any vaccine shots
(unvaccinated); (ii) i = 1 for individuals who have received one shot of either the Pfizer or
Moderna vaccine (partially vaccinated); (iii) i = 2 for individuals who have received two
shots of either the Pfizer or Moderna vaccine, or one shot of the Johnson & Johnson vaccine
(fully vaccinated); and (iv) i = 3 for individuals who are fully vaccinated and received a
booster shot.

The model (1) makes several assumptions: (a) there is no latency period (i.e., suscep-
tible individuals become infectious immediately upon becoming infected); (b) both the
vaccine and infection provide long-lasting immunity (i.e., there is no waning immunity
or reinfection); (c) only hospitalized individuals may die; and (d) previously infected
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individuals will not vaccinate. We note that COVID-19 has a mean latency period of
3–7 days [27,28], that studies suggest there is decreased immunity 6 months after becoming
fully vaccinated [29–31], that an estimated 10–15% of COVID-19 deaths in the United States
occur outside of the hospital [32], and that the CDC recommends vaccination for individu-
als who have previously been infected with COVID-19. We chose not to incorporate these
effects for model simplicity; however, an extension of the n-stage vaccination model (1)
which incorporates waning immunity and reinfection will be the focus of future work.

2.2. Governing System of Differential Equations

Corresponding to (1), we introduce the following governing system of ordinary differ-
ential equations for i = 0, . . . , n:

dSi
dt

= − β(t)
N

(1− αi)Si

n

∑
j=0

Ij +
dVi
dt
− dVi+1

dt
,

dIi
dt

=
β(t)
N

(1− αi)Si

n

∑
j=0

Ij − (γi + hi)Ii,

dHi
dt

= hi Ii − (γi + δi)Hi,

dRi
dt

= γi(Ii + Hi),

dDi
dt

= δi Hi,

(2)

To accommodate time-dependent changes in social behavior, public health policies,
and the prevelance of SARS-CoV-2 variants, we allow the unvaccinated transmission rate
function β(t) to take the following piecewise-constant form:

β(t) =
{

β j,
j− 1

m
L ≤ t <

j
m

L, j = 1, . . . , m (3)

where L is the number of days in the simulation period and m is the number of intervals.
That is, we divide the interval of consideration into m parts of equal length and allow each
interval to have its own baseline transmission rate for unvaccinated individuals, β j.

To model the vaccination uptake curve Vi(t) and corresponding uptake rate curve dVi
dt ,

we use the four-parameter Richards’ curve [33]:

Vi(t) =
Mi(

1 + aie−ri(t−τi)
) 1

ai

,
dVi
dt

=
Mirie−ri(t−τi)(

1 + aie−ri(t−τi)
) 1+ai

ai

. (4)

Explanations and units for parameters for the system of differential Equation (2) with
vaccination uptake rate (4) can be found in Table 1. Numerical simulation are carried out
with the fourth-order Runge–Kutta method with a fixed step size of h = 0.1 (in days).

2.3. Basic and Effective Reproduction Number

The basic reproduction number (R0) of an infectious disease is the expected number
of secondary infections produced by a single infectious person entering a fully susceptible
population, assuming minimal public health interventions [34]. The effective reproduc-
tion number (Rt) additionally takes into account mitigating factors such as public health
interventions, natural immunity through infection, and vaccination. These values are
considered key epidemiological parameters since R0 > 1 (Rt > 1) suggests that a disease
has the capacity to spread in the population while R0 < 1 (Rt < 1) suggests that it will die
out. We compute the basic and effective reproduction number of the n-stage vaccination
model (2) using the next generation method [35,36].
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Table 1. Parameters and rate functions for the n-stage vaccination model (1) and corresponding
system of ordinary differential Equation (2) with the ith vaccination dose uptake curve Vi(t) (4).

Parameter Units Interpretation

N people Population size (total)
Ni people Population size (ith class)

Vi(t) people Vaccination uptake curve (ith class)
ri days−1 Vaccination uptake rate (ith class)
Mi people Maximum vaccination total (ith class)

Mi/N none Maximum vaccination proportion (ith class)
τi days Vaccination time shift (ith class)
ai none Vaccination shape parameter (ith class)

β(t) days−1 Baseline transmission rate for unvaccinated
αi none Reduction from baseline transmission rate (ith class)
γi days−1 Removal rate (ith class)
hi days−1 Hospitalization rate (ith class)
δi days−1 Death rate (ith class)

hi/(hi + γi) none Proportion infected to hospitalized (ith class)
δi/(δi + γi) none Proportion hospitalized to deceased (ith class)

To compute the basic reproduction number, we use the disease free equilibrium
S∗0 = N − V1(0), S∗n = Vn(0), S∗i = Vi(0)− Vi+1(0), for i = 1, . . . , n− 1, and I∗i = 0 for
i = 0, . . . , n, where Vi(0) is the number of people who have received the ith shot by the
initial time. This gives the following:

R0 =
β(0)

N

(
N −V1(0)

γ0 + h0
+

(1− αn)Vn(0)
γn + hn

+
n−1

∑
i=1

(1− αi)(Vi(0)−Vi+1(0))
γi + hi

)
. (5)

Note that this number assumes no vaccination beyond the initial time and does not
account for natural immunity obtained by previous COVID-19 infections. To account for
these mitigating effects, we also compute the effective reproduction number:

Rt =
β(t)
N

(
S0(t)

γ0 + h0
+

n

∑
i=1

(1− αi)Si(t)
γi + hi

)
. (6)

In general, Rt (6) is more challenging to compute since it requires time-course simula-
tions of Si(t), i = 0, . . . , n, whereas R0 (5) only requires the initial conditions. Note that the
outbreak containment condition Rt < 1 is explicitly dependent on the effectiveness of the
vaccine shots (i.e., αi), the recovery rates (i.e., γi), and the hospitalization rates (i.e., hi). The
condition is also implicitly dependent on the number of individuals who have received
each dose of the vaccine (i.e., Vi(t)) as these functions affect Si(t) through (2).

2.4. Data Fitting Techniques

We fit the n-stage vaccination model (2) with the vaccination uptake curve (4) to data
in two steps. We first fit the vaccination uptake curve Vi(t) (4) to daily vaccination uptake
data by minimizing the sum of squared error. We then incorporate these parameters into
the vaccination uptake curve dVi

dt in the system of differential Equation (2) and minimize a
customized error function. For both steps, we utilize a nonlinear least squares fitter written
in Python. We now describe the customized error function for fitting to (2).

We let i ∈ {0, 1, 2} indicate the number of vaccine shots (i = 0 unvaccinated, i = 1
partially vaccinated, and i = 2 fully vaccinated), j ∈ {I, H, D} indicate the type of individ-
ual (infected, hospitalized, or deceased), and k = 1, . . . , T denote the time point (in weeks).
We let x = [xi,j,k] denote the cumulative number of COVID-19 cases in vaccination class i
of type j and in week k, and y = [yi,j,k] denote the weekly increase in that class from the
previous week (i.e., yi,j,k = xi,j,k − xi,j,k−1). We define θ to be the set of all parameters to be
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fit and x̂(t; θ) = [xi,j(t; θ)] to denote the model simulation of (2) for the cumulative cases in
vaccination class i of type j and for parameter set θ. We utilize the following normalized
error function, which incorporates both the weekly cumulative and rate numbers:

E(x, x̂(t; θ)) =
T

∑
k=1

∑
i∈{0,1,2}

j∈{I,H,D}


(

xi,j,k − x̂i,j(tk; θ)
)2

µj
+

(
yi,j,k − x̂′i,j(tk; θ)

)2

νj

 (7)

where µj and νj, j ∈ {I, H, D}, are the normalization factors

µj =
T

∑
k=1

i∈{0,1,2}

x2
i,j,k and νj =

T

∑
k=1

i∈{0,1,2}

y2
i,j,k. (8)

Note that the normalizations (8) in the error function (7) equalize the weight of the
cumulative and weekly rate of increase in infections, hospitalizations, and deaths. For
initial conditions, we take

N0(0) = N −V1(0), N1(0) = V1(0)−V2(0), N2(0) = V2(0). (9)

We set our initial susceptible classes according to the following:

Si(0) = Ni(0)− Ii(0)− Hi(0)− Ri(0)− Di(0), i = 0, 1, 2. (10)

We assume that there are no initial recoveries or deaths of partially or fully vaccinated
individuals, so that D1(0) = D2(0) = R1(0) = R2(0) = 0. We allow R0(0) to be fit into
the data to account for the possibility that the best fitting model is one in which there is a
different number of overall COVID cases than has been officially reported.

2.5. Parameter Sensitivity Analysis

A local sensitivity analysis is a derivative-based approach that is a key tool in exploring
parameter identifiability, i.e., whether it is possible to infer a set of parameters from a
given data set [37]. Let y(t, θ) be the output variable at time t with vector of parameters
θ = (θ1, θ2, ..., θk) from a model with k parameters; then, the normalized sensitivity function
of y with respect to parameter θi is

si(t) =
θi

y(t; θ)

∂y(t; θ)

∂θi
. (11)

That is, the normalized sensitivity function is the derivative of the output with respect
to a specific parameter that has been normalized based on the parameter. The normalized
sensitivity functions allow us to determine which parameters when changed by the same
percentage result in similar changes in the output variable. Parameters that yield similar
changes in the output variable show that those parameters are correlated and will be
hard to identify from the data. For the two-stage vaccination model (1), we expect many
parameters to be correlated. A sensitivity analysis, however, helps us understand which
parameters have the greatest and least influence on an output variable.

3. Results
3.1. Fitting Two-Stage Vaccination Model to Virginia Data

We fit the vaccination uptake curve Vi(t) (4) to the cumulative vaccination data from
the Commonwealth of Virginia [26] using the methods described in Section 2.4. We used
data points starting on 23 January and ending on 2 October and used linear interpolation
to fill in missing data. The best fitting parameters and curves V1(t) and V2(t) are shown in
Figure 1.
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Figure 1. On the left, we indicate the best fit parameters for the generalized logistic curve or Richards’
curve (4) to Virginia Department of Health data [25] on vaccination uptake starting with t = 0
corresponding to 23 January 2021. The values M1/N and M2/N correspond to the saturation
proportions for the first and second doses, respectively (i.e., the number of willing/able vaccine
recipients). We use the population denominator N = 8,535,519 corresponding to the population of
Virginia. On the right, we display the model fit (solid) to the observed data (circles).

We then incorporated these parameters into the vaccination uptake curve (4) and
used the methods outlined in Section 2.4 to fit the two-stage vaccination model (2) to
the time-course data set VDH-COVID-19-PublicUseDataset-Cases-by-Vaccination-Status
(report date 8 October 2021 [25]). This data set is publicly available through the VDH Data
Portal and breaks down new weekly COVID-19 infections, hospitalizations, and deaths by
vaccination status (unvaccinated, partially vaccinated, and fully vaccinated). We used data
from 23 January through 11 September 2021. We used the piecewise-constant transmission
rate function β(t) (3) with L = 238 and m = 8 so that L/m = 29.75. This allows the
transmission rate to change on a roughly monthly basis. The fit initial conditions and
parameters can be found in Table 2. Plots are displayed in Figure 2.

Table 2. Best fitting initial conditions (left) and parameters (right) for the two-stage vaccination model
(1) and corresponding system of differential Equation (2) with piece-wise constant transmission
function β(t) (3), and vaccination uptake curve Vi(t) (4) with parameters from Figure 1.

Initial Conditions Parameters

Parameter Value Source Parameter Value Source

N 8, 535, 519 [25] β1 0.152777 fitted
N0 8, 136, 306 assumed (9) β2 0.199888 fitted
N1 289, 839 assumed (9) β3 0.250908 fitted
N2 109, 375 assumed (9) β4 0.240565 fitted

S0(0) 7, 695, 938 assumed (10) β5 0.238368 fitted
I0(0) 19, 557 fitted β6 0.464551 fitted
R0(0) 411, 709 fitted β7 0.538527 fitted
H0(0) 823 fitted β8 0.453217 fitted
D0(0) 8279 assumed α1 0.559980 fitted
S1(0) 281, 970 assumed (10) α2 0.898494 fitted
I1(0) 7642 fitted h0 0.005768 fitted
H1(0) 227 fitted h1 0.002875 fitted
R1(0) 0 assumed h2 0.003598 fitted
D1(0) 0 assumed γ0 0.176093 fitted
S2(0) 108, 839 assumed (10) γ1 0.081428 fitted
I2(0) 536 fitted γ2 0.096318 fitted
H2(0) 0 fitted δ0 0.085761 fitted
R2(0) 0 assumed δ1 0.048616 fitted
D2(0) 0 assumed δ2 0.065626 fitted

Figure 1. On the left, we indicate the best fit parameters for the generalized logistic curve or Richards’
curve (4) to Virginia Department of Health data [25] on vaccination uptake starting with t = 0
corresponding to 23 January 2021. The values M1/N and M2/N correspond to the saturation
proportions for the first and second doses, respectively (i.e., the number of willing/able vaccine
recipients). We use the population denominator N = 8,535,519 corresponding to the population of
Virginia. On the right, we display the model fit (solid) to the observed data (circles).

We then incorporated these parameters into the vaccination uptake curve (4) and
used the methods outlined in Section 2.4 to fit the two-stage vaccination model (2) to
the time-course data set VDH-COVID-19-PublicUseDataset-Cases-by-Vaccination-Status
(report date 8 October 2021 [25]). This data set is publicly available through the VDH Data
Portal and breaks down new weekly COVID-19 infections, hospitalizations, and deaths by
vaccination status (unvaccinated, partially vaccinated, and fully vaccinated). We used data
from 23 January through 11 September 2021. We used the piecewise-constant transmission
rate function β(t) (3) with L = 238 and m = 8 so that L/m = 29.75. This allows the
transmission rate to change on a roughly monthly basis. The fit initial conditions and
parameters can be found in Table 2. Plots are displayed in Figure 2.

Table 2. Best fitting initial conditions (left) and parameters (right) for the two-stage vaccination
model (1) and corresponding system of differential Equation (2) with piece-wise constant transmis-
sion function β(t) (3), and vaccination uptake curve Vi(t) (4) with parameters from Figure 1.

Initial Conditions Parameters

Parameter Value Source Parameter Value Source

N 8,535,519 [25] β1 0.152777 fitted
N0 8,136,306 assumed (9) β2 0.199888 fitted
N1 289,839 assumed (9) β3 0.250908 fitted
N2 109,375 assumed (9) β4 0.240565 fitted

S0(0) 7,695,938 assumed (10) β5 0.238368 fitted
I0(0) 19,557 fitted β6 0.464551 fitted
R0(0) 411,709 fitted β7 0.538527 fitted
H0(0) 823 fitted β8 0.453217 fitted
D0(0) 8279 assumed α1 0.559980 fitted
S1(0) 281,970 assumed (10) α2 0.898494 fitted
I1(0) 7642 fitted h0 0.005768 fitted
H1(0) 227 fitted h1 0.002875 fitted
R1(0) 0 assumed h2 0.003598 fitted
D1(0) 0 assumed γ0 0.176093 fitted
S2(0) 108,839 assumed (10) γ1 0.081428 fitted
I2(0) 536 fitted γ2 0.096318 fitted
H2(0) 0 fitted δ0 0.085761 fitted
R2(0) 0 assumed δ1 0.048616 fitted
D2(0) 0 assumed δ2 0.065626 fitted
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Figure 2. Plots of VDH data and the parameter-fit two-stage vaccination model (2) with piecewise-
constant transmission rate β(t) (3) and vaccination curves Vi(t) (4) with the parameters from Figure 1
and Table 2. On the left, we track the time-course breakdown of the new cases, hospitalizations, and
deaths by vaccination status. Individual statuses are represented as bands (vertical distance between
open circles for data and solid regions for model). On the right, we track the cumulative observed
and model-predicted cases, hospitalizations, and deaths over time.

3.2. Efficacy of Vaccination

The fit parameter values α1 and α2 in Table 2 suggest that, over the period of study,
partially vaccinated individuals are 56.0% less likely to catch COVID-19 while fully vacci-
nated individuals are 89.8% less likely to catch COVID-19. We can furthermore estimate
that, relative to unvaccinated individuals, partially vaccinated individuals are 52.7% less
likely to be hospitalized with COVID-19 and 46.0% less like to die from COVID-19, and
fully vaccinated people are 88.5% less like to be hospitalized with COVID-19 and 85.7%
less likely to die from COVID-19. The reduction in the proportion of people who become
hospitalized or deceased relative to the unvaccinated population can be calculated by the
following formulas:
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
Reduction in
chance to be
hospitalized

 = 1− (1− αi)

 hi
hi+γi

h0
h0+γ0




Reduction in
chance to be

deceased

 = 1− (1− αi)

 hi
hi+γi

h0
h0+γ0

 δi
δi+γi

δ0
δ0+γ0


We note that the proportion of breakthrough cases is expected to rise with a rise in

the proportion of the population that is vaccinated; however, the model still supports
the notion that, over the period of study, the pandemic was largely a pandemic of the
unvaccinated. During the final week of our study from 5 to 11 September, for example, the
model predicts that 78.0% of new cases were unvaccinated individuals despite only 33.6%
of the population of Virginia (around 2,800,000 people) being unvaccinated.

While this analysis strongly supports the efficacy of vaccination at preventing COVID-
19 infections, it does not support the hypothesis that vaccinated individuals benefit from
additional protections against severe illness. Rather, the data suggest that the likelihood of
an individual who has contracted COVID-19 becoming hospitalized or deceased does not
depend significantly on vaccination status. This is contrary to several recent studies [23,24].
We caution that it would be premature to draw conclusions since the two-stage vaccination
model and vaccination uptake curves Vi(t) do not account for the heterogeneous impacts
of COVID-19. We note in particular that a higher proportion of older individuals are
vaccinated than younger individuals and that age is correlated with more breakthrough
cases and more severe COVID-19 outcomes [1,22].

3.3. Transmissibility of Delta Variant

The two-stage vaccination model (1) predicts that the baseline transmission rate of
COVID-19 for unvaccinated individuals, β(t), rose significantly from June to August 2021
(see Table 3). This coincides with the emergence in the United States of the Delta variant,
which became the dominant strain on the week ending July 3 and made up 98.9% of cases
by the week ending 11 September [2]. Although we cannot tell how much of this increase
is due solely to the Delta variant, we can compute that the average transmission rate from
23 January through 20 June 2021 was β = 0.214 while the average transmission rate from
21 June through 18 September 2021 was β = 0.445. The time frame in which Delta became
the dominant strain of COVID-19 therefore corresponds to a 2.08 times real-world increase
in the baseline transmissibility of COVID-19 in Virginia.

Table 3. Vaccination level, effective transmission rate, and the effective reproduction number for the
spread of COVID-19 in Virginia over the period 23 January through 18 September 2021.

Interval Dates % Part Vax % Full Vax β(t) Rt

1 1/23–2/21 4.4% 0.5% 0.153 0.786
2 2/22–3/23 14.0% 6.1% 0.200 0.978
3 3/24–4/22 26.7% 14.7% 0.251 1.106
4 4/23–5/21 44.3% 29.1% 0.241 0.906
5 5/22–6/20 53.2% 42.7% 0.238 0.762
6 6/21–7/20 58.2% 50.3% 0.464 1.312
7 7/21–8/19 60.7% 53.7% 0.539 1.404
8 8/20–9/18 64.2% 56.1% 0.453 1.119

3.4. Effect of Waning Immunity and Delta Variant on Vaccine Efficacy

Recent studies have suggested that the COVID-19 immunity conferred by vaccination
wanes over time [29–31] and that the Delta variant may be more likely to produce break-
through cases [38]. To test for these effects in the VDH data, we introduce the following
piecewise-constant vaccination efficacy rates α1(t) and α2(t) to the two-stage vaccination
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model (2) with piecewise-constant transmission rate β(t) (3) and vaccination uptake curves
Vi(t) (4):

αi(t) =
{

αi,j,
j− 1

4
L ≤ t <

j
4

L, j = 1, . . . , 4 (12)

where L is the number of days the simulation period. That is, we divide the interval of
consideration into four parts of equal length, each with a constant rate reduction of partial or
fully vaccinated individuals becoming infected with COVID-19. For the simulation period
of January 23 through September 18, 2021, this corresponds to L = 238 and L/4 = 59.5 so
that the transmission reduction rates is allowed to change roughly every second month.

In order to establish population-level waning immunity in the model (2) with time-
dependent α1(t) and α2(t) (12), we expect to see αi,1 > αi,2 > αi,3 > αi,4. We also expect
that the fit would be significantly better than the one obtained with the model (2) and
the parameter values in Table 2. In fact, we do not observe any significant trend in the
best-fitting αi,j values (α1,1 = 0.363, α1,2 = 0.518, α1,3 = 0.583 α1,4 = 0.750, α2,1 = 1.00,
α2,2 = 0.879, α2,3 = 0.880, α2,4 = 0.908). We also do not observe a significant reduction in the
error function (7). Our analysis consequently does not support including waning immunity
or changes in the efficacy of the vaccines against the Delta variant at the population
level. We caution, however, against drawing the conclusion that waning immunity is
not occurring since the model (2) is only able to estimate vaccine efficacy values at the
population rather than individual level.

3.5. Parameter Sensitivity Analysis

Figure 3 shows the sensitivity results for the cumulative number of cases of COVID-19
in Virginia and the effective reproduction number (6) with respect to the vaccine parameters
(M1, M2, α1, and α2) and recovery parameters (γ0, γ1, and γ2). We interpret the graph for
Rt in Figure 3 to mean that the perturbation of γ0 exhibits its greatest influence over Rt
early in the simulation, with an initial expected decrease of .9% if γ0 is increased by 1%.
We find that cumulative cases and the effective reproduction number are highly sensitive
to the efficacy of the second vaccination shot α2. Specifically, the model suggests that a
1% increase in α2 results in a 1% decrease in the cumulative cases (roughly 6500 cases)
around the beginning of August. Similarly, we see that a 1% increase in α2 decreases
Rt by 1.7% around the beginning of August. The results also suggest that the recovery
rate of the unvaccinated individuals, γ0, is highly influential. In particular, around the
beginning of August, a 1% increase in γ0 would result in a 2.3% decrease in cumulative
cases. The nontrivial impact of vaccination parameters and recovery parameters on Rt
strongly suggests the impact of changing susceptible populations as vaccination programs
are rolled out in the simulation.

3.6. Modeling with Different Vaccine Coverage Levels

The sensitivity analysis depicted in Figure 3 suggests that the cumulative cases and
effective reproduction number (Rt) are highly dependent on the number of individuals
who become vaccinated (M1 and M2). To further explore this, we increase/decrease the
vaccination levels in the model (2) with parameters given in Table 2 in order to (a) pre-
dict what the spread of COVID-19 would have been during period 23 January through
18 September 2021 and (b) forecast the spread of COVID-19 through 31 December 2021. For
the purpose of forecasting COVID-19 spread after 18 September, we use the transmission
value of the final interval (β(t) = β8 = 0.453).

The results of simulations with values of M1 and M2 chosen between 10% more and
10% less of the overall Virginia population are contained in Figure 4. The model predicts a
5 times increase in new cases from 18 September through 31 December if 10% less of the
population had been vaccinated. The model also predicts that the Delta surge experienced
in August and September 2021 could have been largely avoided if an additional 10% of the
population had been vaccinated.



Appl. Sci. 2022, 12, 1723 10 of 15

Figure 3. Sensitivity analysis using Equation (11) on the cumulative cases of COVID-19 in Virginia
(left column) and Rt (the effective reproduction number, right column) with respect to vaccination
parameters (M1, M2, α1, and α2) and recovery rates (γ0, γ1, and γ2). Note the negative impact of the
parameters on the cumulative cases, but a non-trivial impact on the effective reproduction number as
population sizes change in each vaccination stage through time. Further notice the small influence
that M1 has on both outputs, until later in the simulation.
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Figure 4. Simulations of the two-stage vaccination model (1) with parameters from Table 2 and
differing values of overall vaccine uptake (M1 and M2). The transmission rate during the period
September 18 through 31 December 2021 is assumed to be that of the final fit period (i.e., β(t) = β8 =

0.453). In the bottom right, forecast values through 31 December 2021 are shown for cumulative cases
(C), hospitalizations (H), and deaths (D) given current vaccination uptake, 10% more vaccination,
and 10% less vaccination.

Figure 4. Simulations of the two-stage vaccination model (1) with parameters from Table 2 and differ-
ing values of overall vaccine uptake (M1 and M2). The transmission rate during the period September
18 through 31 December 2021 is assumed to be that of the final fit period (i.e., β(t) = β8 = 0.453). On
the left, forecast values through 31 December 2021 are shown for cumulative cases, hospitalizations,
and deaths given current vaccination uptake, 10% more vaccination, and 10% less vaccination.
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3.7. Modeling with Booster Shots

The sensitivity analysis depicted in Figure 3 also suggests that the cumulative cases
and effective reproduction number (Rt) are highly dependent on the reduction from base-
line transmission rate parameters for the two vaccination classes (α1 and α2). To further
investigate the effect that a reduction in transmission due to vaccination may have on the
spread of COVID-19, we extend from the two-stage to the three-stage vaccination model (2)
where j = 3 corresponds to fully vaccinated individuals who have received the booster
shot. We use the parameters from Table 2 for j ∈ {0, 1, 2} and set h3 = h2, γ3 = γ2, and
δ3 = δ2. That is, we assume the effects of contracting COVID-19 are similar for somebody
with the booster shot as somebody who is fully vaccinated. We estimate a reduction in
baseline transmission rate resulting from a booster shot of α3 ≥ 0.95 [39,40]. We assume
that the booster shot uptake curve is similar to the second vaccine dose, delayed 210 days,
and that the proportional decrease in people obtaining the booster is similar to that of the
first to second shot (i.e., a3 = a3, r3 = r2, τ3 = τ2 + 210, M3−M2

M2
= M2−M1

M1
). For the purpose

of forecasting COVID-19 spread past September 18, we use the transmission value of the
final interval (β(t) = β8 = 0.453).

In Figure 5, we show forecast simulations for the period 23 January through
31 December 2021 incorporating booster shots, a hypothetical booster uptake schedule,
and the utilized parameter values. The booster shot uptake curve V3(t) predicts that 40.9%
of the population will receive booster shots by 31 December 2021. The model predicts a
19.7–34.3% reduction in new COVID-19 cases from 18 September to 31 December 2021
depending on the efficacy of the booster shot in reducing transmission from baseline
(α3 = 0.95− 1.00). It is notable that, over the same period, there is a 17.6–31.0% reduction in
new cases in unvaccinated individuals and a 14.4–25.2% reduction in new cases for partially
vaccinated individuals. This strongly supports the notion that the protection offered by
the booster shot, or vaccination in general, is not restricted to the individual receiving the
shot; rather, it is distributed across the population and even across individuals of different
vaccination statuses.

4. Discussion

Our analysis suggests that, from 23 January through 11 September 2021, in Vir-
ginia, partially vaccinated individuals were 56.0%/52.7%/46.0% less likely to become
infected/hospitalized/deceased due to COVID-19 than unvaccinated individuals, while
fully vaccinated individuals were 89.8%/88.5%/85.7% less likely to become infected/
hospitalized/deceased due to COVID-19 than unvaccinated individuals (see Table 2 and
Figure 2). This strongly supports the efficacy of vaccination in combating the spread and
severe outcomes of COVID-19. The model furthermore suggests COVID-19 was 2.08 times
more transmissible during the time frame during which the B.1.617.2 (Delta) variant became
the dominant strain in Virginia (see Table 3). We did not detect any changes in the vaccine
efficacy levels during the time frame during which Delta became dominant in Virginia.
This suggests that it is the raw increase in transmissibility of the Delta variant that was the
primary driver behind the increase in COVID-19 cases from June to August 2021, rather
than a decrease in vaccine efficacy.

We forecast the spread under a variety of different vaccination uptakes levels (see
Figure 4) and potential booster shot schedules (see Figure 5). This analysis suggests a
five times increase in new cases from 18 September through 31 December 2021, if 10% less
of the population had opted to become vaccinated. Our analysis furthermore suggests that
a booster shot in the 95–100% efficacy range could reduce the number of new cases between
18 September and 31 December 2021 by 19.7–34.3%, and that this reduction is distributed
across vaccination statuses (see Figure 5). These results reinforce the continued push for
vaccination as an essential and effective means of containing the spread of COVID-19. It
also emphasizes that the benefits of vaccination are distributed across the entire population
and not merely restricted to those who are vaccinated.
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Initial conditions

Parameter Value

N3(0) 0
S3(0) 0
I3(0) 0
R3(0) 0
H3(0) 0
D3(0) 0

Vaccination Curve
Parameters

Parameter Value

r3 0.025480
M3 4506067
τ3 290.95739
a3 0.338896

Dynamical Model
Parameters

Parameter Value

α3 0.90− 1.00
h3 0.003598
γ3 0.096318
δ3 0.065626

Figure 5. Simulations of the three-stage vaccination model (2) with j = 3 corresponding to individuals
who have received a booster shot. The parameters for the booster shot uptake curve V3(t) are shown,
and the parameters for the vaccination uptake curves Vj(t), j = {0, 1, 2}, are from Table 2. The
reductions in the baseline transmission parameter for the booster shot are α3 = 0.95 (low booster)
and α3 = 1.00 (high booster) [39,40], and the model runs from 23 January through 31 December 2021.

We note that there are several limitations of our study. Although we did not find evi-
dence that vaccination provides additional protection against severe COVID-19 outcomes
such as hospitalization and death, we caution that we did not consider age-stratified differ-
ences in vaccination coverage levels, vaccine efficacy, and severe COVID-19 outcomes. In
particular, we note that older populations are at higher risk for severe COVID-19 outcomes
but also have higher vaccination uptake levels. We also did not incorporate waning vaccine
immunity. Although we did not find evidence for decreased vaccine effectiveness over time
in our study, we note that our model only considers population-level average immunity and
cannot control for when an individual received their first or second vaccination. We also
note that, while the vaccination uptake curves Vi(t) (4) fit the data well on the chosen time
intervals, they do not account for the age-dependent differences in availability of vaccines.
The predicted total number of people who will become vaccinated are consequently likely
to be below the true value.

5. Conclusions

We introduced a novel n-stage vaccination model (1) that stratifies a population ac-
cording to their vaccination status. By controlling for a population’s vaccination uptake
level, the model is able to effectively estimate the real-world efficacy of vaccination against
infections, hospitalizations, and deaths and is able to generate detailed dynamical predic-
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tions of infectious disease spread under a variety of public health and vaccination uptake
scenarios. These features will inform epidemiological research and policy in the years
to come as new SARS-CoV-2 variants, such as B.1.617.2 (Delta) and B.1.1.529 (Omicron),
emerge and as COVID-19 becomes endemic in the global population. Future work will
focus on adapting the n-stage vaccination model into a delay-differential equation model
that will incorporate waning vaccine immunity, fitting the n-stage vaccination model to
data from a wider variety of jurisdictions and assessing the real-world efficacy of the
booster shot as more data become available.
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