Next Article in Journal
Metabolic Syndrome and Its Components among Taxi Drivers in the City of Tshwane, South Africa
Next Article in Special Issue
Beneficial Effects of Caffeic Acid Phenethyl Ester on Wound Healing in a Diabetic Mouse: Role of VEGF and NO
Previous Article in Journal
Bridge Natural Frequencies, Numerical Solution versus Experiment
Previous Article in Special Issue
Microwave- and Ultrasound-Assisted Extraction of Cucurbita pepo Seeds: A Comparison Study of Antioxidant Activity, Phenolic Profile, and In-Vitro Cells Effects
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds

by
Zhanna M. Okhlopkova
1,
Mayya P. Razgonova
2,3,*,
Konstantin S. Pikula
4,5,
Alexander M. Zakharenko
6,7,
Wojciech Piekoszewski
8,
Yuri A. Manakov
7,
Sezai Ercisli
9 and
Kirill S. Golokhvast
4,6,7
1
Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
2
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
3
Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
4
Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
5
Federal Research Center, the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
6
Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
7
Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia
8
Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 3, 30-387 Krakow, Poland
9
Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey
*
Author to whom correspondence should be addressed.
Submission received: 5 January 2022 / Revised: 30 January 2022 / Accepted: 3 February 2022 / Published: 8 February 2022
(This article belongs to the Special Issue Advances in Natural Bioactive Compounds and Biological Effects)

Abstract

:
Dracocephalum palmatum S. and Dracocephalum ruyschiana L. contain a large number of target analytes, which are biologically active compounds. High performance liquid chromatography (HPLC) in combination with an ion trap (tandem mass spectrometry) was used to identify target analytes in extracts of D. palmatum S. and D. ruyschiana L. originating from Yakutia. The results of initial studies revealed the presence of 114 compounds, of which 92 were identified for the first time in the genus Dracocephalum. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 sceletium alkaloids, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. It was shown that extracts of D. palmatum are richer in the spectrum of polyphenolic compounds compared with extracts of D. ruyschiana, according to a study of the presence of these compounds in extracts, based on the results of mass spectrometric studies.

1. Introduction

The genus Dracocephalum L. (family Lamiaceae) is represented on the territory of the Republic of Sakha (Yakutia) by five species—Dracocephalum jacutense Peschkova, D. nutans L., D. palmatum Stephan, D. ruyschiana L., and D. stellerianum Hiltebr [1]. These are perennial herbaceous plants, differing in both origin and habitat and belonging to the divisions of vegetation cover. The ranges of Dracocephalum are unequal, from extremely small (endemic D. jacutense Peschkova) to extensive Eurasian (D. nutans L., D. ruyschiana L.). The two species of D. palmatum Stephan and D. stellerianum Hiltebr are widespread in the Asian territory [2]. Dracocephalum palmatum Steph. ex Willd. is found in the northeastern regions of Yakutia. It grows on dry stony, gravelly slopes, rocks, stony tundra, and mountain steppes. It is a perennial evergreen plant with creeping shoots and a very dense turf, which forms beneath [3]. Dracocephalum palmatum forms continuous “carpet” populations on dry stony mountain slopes under the conditions of the Pole of Cold Oymyakon (N 63°13′32.0″ E 142°53′56.2″) (Figure 1).
A total of 23 compounds (phenylpropanoids, coumarins, flavonoids, and triterpenes) were isolated from a crude alcoholic extract of the aerial parts of Dracocephalum palmatum in studies by Olennikov et al. (2013) [4]. A research by Kim et al. (2020) aimed to evaluate the tumor suppressive effect of D. palmatum extract in diffuse large B cell lymphoma (DLBCL) and its underlying mechanism. The effect of D. palmatum extracts on several DLBCL cell lines significantly reduced cell viability and increased apoptosis and, at the same time, did not affect the survival of normal cells in vitro and in vivo. These studies indicate that the cytotoxic effect may be specific to cancer cells [5]. Lee et al. (2020) studied the anticancer potential of dried leaves of D. palmatum Stephan using human prostate cancer PC-3 cells. The results showed that the use of D. palmatum extract induces apoptosis and has intracellular ROS (reactive oxygen species)—independent antitumor effects on prostate cancer cells associated with increased expression of superoxide dismutase (SOD2) [6].
The habitat of Dracocephalum ruyschiana L. extends far to the north; its growth was noted in the Lena and Vilyui river basins, in grass, larch, birch, and mixed forests and meadow steppes. This species has erect stems 20–55 cm high, sparsely shortly pubescent at the nodes and in the upper part, with shortened vegetative shoots in the leaf axils. Dracocephalum ruyschiana forms continuous “carpet” populations in the Amga River valley in the conditions of Central Yakutia (N 60°31′09.0″ E 131°26′26.7″) (Figure 2). Kakasy et al. (2006) identified the composition of D. ruyschiana L. extracts using HPLC and GC–MS with particular emphasis on their flavonoids, aliphatic, aromatic carboxylic acids, and sugars. GC–MS analysis identified and quantified as the main components monosaccharides, sugar alcohols, disaccharides, and trisaccharides, 33 components in total [7].
A review by Zeng et al. (2010) is devoted to the study of the chemical compositions of plants of the genus Dracocephalum L. Since the 1970s, 246 compounds, including terpenoids, steroids, flavonoids, alkaloids, lignans, phenols, and coumarins, have been identified from the genus Dracocephalum. As can be seen, terpenoids are the dominant constituents within the genus Dracocephalum [8].
Five new flavone tetraglycosides, 5 new benzyl alcohol glycosides, and 19 known compounds were isolated from the extract of the aerial parts of D. ruyschiana. D. ruyschiana L. (Lamiaceae) is a traditional medicinal plant in Mongolia [9].
In this work, we used an HPLC–MS/MS–ion trap to carry out a phytochemical study involving a detailed metabolomic and comparative analysis of D. palmatum and D. ruyschiana extracts. Aboveground, phytomass of D. palmatum was collected during expedition work on the territory of the Pole of Cold Oymyakon during the period of seed ripening (from 15 to 25 July 2019). Phytomass of D. ruyschiana was collected on the territory of the river Amga, Yakutia, in June 2019.

2. Results

Extracts of D. palmatum S. and D. ruyschiana L. were analyzed by an HPLC–MS/MS ion trap to better interpret the diversity of available phytochemicals. All of them have a rich bioactive composition. The structural identification of each compound was carried out on the basis of their accurate mass and MS/MS fragmentation by HPLC–ESI–ion trap–MS/MS. A total of 114 compounds were successfully characterized in extracts of D. palmatum and D. ruyschiana based on their accurate MS and fragment ions by searching online databases and the reported literature.
All the identified compounds along with molecular formulas, MS/MS data, and their comparative profile for two varieties of Dracocephalum are summarized in Table A1 (Appendix A). These are flavones: apigenin 8-C-pentoside-6-C-hexoside, nevadensin, apigenin 7-O-glucuronide, chrysin 6-C-glucoside chrysin glucuronide, and acacetin 7-O-glucoside; flavanols: dihydrokaempferol, dihydroquercetin, astragalin, kaempferol 3-O-rutinoside, and ampelopsin; flavan-3-ols: catechin, gallocatechin, and flavanone fustin; phenolic acids: methylgallic acid, hydroxy methoxy dimethylbenzoic acid, ellagic acid, caffeoylshikimic acid, prolithospermic acid, salvianolic acid G, and 3,4-O-dicaffeoylquinic acid; stilbenes: pinosylvin and resveratrol; anthocyanins: pelargonidin-3-O-glucoside, peonidin O-pentoside, cyanidin 3-(6″-malonylglucoside), and cyanidin 3-(acetyl)hexose; lignans: hinokinin and dimethyl-secoisolariciresinol; carotenoids: β-apo-12′carotenal, apocarotenal, 5,8-epoxy-α-carotene, cryptoxanthin, and violaxanthin; and so forth.

3. Discussion

A total of 114 compounds were identified in extracts of D. palmatum and D. ruyschiana, and 92 compounds were identified for the first time in the genus Dracocephalum. New identified metabolites belonged to 17 classes, including 16 phenolic acids and their conjugates, 18 flavones, 5 flavonols, 2 flavan-3-ols, 1 flavanone, 2 stilbenes, 10 anthocyanins, 1 condensed tannin, 2 lignans, 6 carotenoids, 3 oxylipins, 2 amino acids, 3 sceletium alkaloids, 3 carboxylic acids, 8 fatty acids, 1 sterol, and 3 terpenes, along with 6 miscellaneous compounds. Metabolomic screening of polyphenols by D. palmatum and D. ruyschiana included flavones, flavonols, flavan-3-ols, flavanones, anthocyanins, condensed tannins, lignans, stilbenes, and phenolic acids.

3.1. Flavones

3.1.1. Trihydroxyflavones

The flavones apigenin (compound 2) and diosmetin (compound 7) have already been characterized as a component of Andean blueberry [10], Lonicera japonicum [11], Mexican lupine species [12], Cirsium japonicum [13], Mentha [14], and Dracocephalum moldavica [15]. The flavone apigenin was found in extracts of D. palmatum and D. ruyschiana. The flavone diosmetin was found in extracts of D. palmatum. The CID spectrum in positive ion modes of diosmetin from extracts of D. palmatum is shown in Figure 3.
The [M + H]+ ion produced one fragment ion at m/z 286 (Figure 3). The fragment ion with m/z 286 yields a daughter ion at m/z 258. It was identified in the bibliography in extracts of Andean blueberry [10], Lonicera japonicum [11], Mexican lupine species [12], Cirsium japonicum [13], Mentha [14], and Dracocephalum moldavica [15].

3.1.2. Tetrahydroxyflavones

The flavone luteolin (compound 5) has already been characterized as a component of Eucalyptus [16], and Triticum aestivum [17]. The flavone luteolin was found in extracts of D. palmatum and D. ruyschiana. The CID spectrum in positive ion modes of luteolin from extracts of D. palmatum is shown in Figure 4.
The [M + H]+ ion produced two fragment ions at m/z 152 and m/z 237 (Figure 4). It was identified in the bibliography in extracts of Eucalyptus [16], and Triticum aestivum [17].

3.1.3. Dimethoxyflavones

The flavones negletein (compound 3) and acacetin (compound 4) have already been characterized as a component of Wissadula periplocifolia [18], and Actinocarya tibetica [19]. Flavone acacetin was found in extracts of D. palmatum and D. ruyschiana. The CID spectrum in positive ion modes of negletein from extracts of D. palmatum is shown in Figure 5.
The [M + H]+ ion produced one fragment ion at m/z 270 (Figure 5). The fragment ion with m/z 270 yields a daughter ion at m/z 241. The fragment ion with m/z 241 yields daughter ions at m/z 187. It was identified in the bibliography in extracts of Wissadula periplocifolia [18], and Actinocarya tibetica [19].

3.1.4. Trimethoxyflavone

The flavones salvigenin (compound 8) and nevadensin (compound 9) have already been characterized as components of Ocimum [20]. The trimethoxyflavones salvigenin and nevadensin were found in an extract of D. palmatum.

3.1.5. Isoflavones

The isoflavones apigenin 7-O-β-D-(6″-O-malonyl)-glucoside (compound 23) and 2′-hydroxygenistein O-glucoside malonylated (compound 25) have already been characterized as a component of, Mexican lupine species [12], and Zostera marina [21]. Both isoflavones were found in extracts of D. palmatum.

3.1.6. Flavone Glucoside

The flavones apigenin 5-O-glucoside (compound 13), apigenin 7-O-glucoside (compound 14), acacetin 7-O-glucoside (compound 16), acacetin 8-O-glucoside (compound 17), luteolin 7-O-glucoside (compound 18), and diosmetin 7-O-β-glucoside (compound 21) have already been characterized as a component of rice [22], Oxalis corniculata [23], Mentha [24], pear [25], and Passiflora incarnata [26]. The flavones apigenin 7-O-glucoside (compound 14) and acacetin 7-O-glucoside (compound 16) were found in an extract of D. palmatum and D. ruyschiana.
The flavones apigenin 5-O-glucoside (compound 13), acacetin 8-C-glucoside (compound 17), and luteolin 7-O-glucoside (compound 18) were found in an extract of D. palmatum. The CID spectrum in positive ion modes of acacetin 7-O-glucoside from D. palmatum is shown in Figure 6.
The [M + H]+ ion produced three fragment ions at m/z 285, m/z 430, and m/z 149 (Figure 6). The fragment ion with m/z 285 yields a daughter ion at m/z 269. The fragment ion with m/z 269 yields daughter ions at m/z 242. It was identified in the bibliography in extracts from Bougainvillea [27].

3.1.7. Flavone Glucuronide

The flavone chrysin glucuronide (compound 12) has already been characterized as a component of F. pottsii [28]. The flavone apigenin 7-O-glucuronide (compound 15) has already been characterized as a component of peppermint [29] and Newbouldia laevis [30]. The flavone luteolin 7-O-β-D-glucuronide (compound 20) has already been characterized as a component of Mentha [31], rat plasma [32], and Thymus vulgaris [33]. All flavone glucuronides were found in an extract of D. ruyschiana.

3.2. Flavonols

3.2.1. Trihydroxyflavones

The flavonols astragalin (compound 35) and kaempferol 3-O-rutinoside (compound 37) have already been characterized as a component of Camellia kucha [34], strawberry [35], and Rhus coriaria [36]. Both flavonols were found in extracts of D. palmatum. The CID spectrum in negative ion modes of kaempferol 3-O-rutinoside from extracts of D. palmatum is shown in Figure 7.
The [M − H] ion produced three fragment ions at m/z 285, m/z 534, and m/z 429 (Figure 7). The fragment ion with m/z 285 yields two daughter ions at m/z 241 and m/z 199. It was identified in the bibliography in extracts from Camellia kucha [34], strawberry [35], and Rhus coriaria [36].

3.2.2. Tetrahydroxyflavone

The flavonol kaempferol (compound 31) has already been characterized as a component of potato leaves [37], and rapeseed petals [38]. Flavonol kaempferol was found in extracts of D. palmatum and D. ruyschiana.

3.2.3. Hexahydroxyflavone

The hexahydroxyflavone ampelopsin (compound 34) has already been characterized as a component of Impatiens glandulifera Royle [39]. It was identified in extracts of D. palmatum. The CID spectrum in positive ion modes of ampelopsin from extracts of D. palmatum is shown in Figure 8.
The [M + H]+ ion produced one fragment ion at m/z 301 (Figure 8). The fragment ion with m/z 301 yields a daughter ion at m/z 284. The fragment ion with m/z 284 yields daughter ions at m/z 192. It was identified in the bibliography in extracts from Impatiens glandulifera Royle [39].

3.2.4. Dihydroflavonols

The dihydroflavonols dihydrokaempferol (compound 32) and dihydroquercetin (compound 33) have already been characterized as a component of strawberry [40] and Solanum tuberosum [41]. The flavonols dihydrokaempferol and dihydroquercetin were found in extracts of D. palmatum. The CID spectrum in negative ion modes of kaempferol 3-O-rutinoside from extracts of D. palmatum is shown in Figure 9.
The [M − H] ion produced two fragment ions at m/z 269 and m/z 151 (Figure 9). The fragment ion with m/z 269 yields two daughter ions at m/z 267 and m/z 183. This compound was identified in the bibliography in extracts from of strawberry [40] and Solanum tuberosum [41].

3.3. Condensed Tannin

The procyanidin A-type dimer (compound 78) has already been characterized as a component of Vaccinium macrocarpon [42] and Vaccinium myrtillus [43]. The CID spectrum in positive ion modes of procyanidin A-type dimer from D. ruyschiana is shown in Figure 10. The [M + H]+ ion produced four fragment ions at m/z 415, m/z 352, m/z 283, and m/z 164 (Figure 10). The fragment ion with m/z 415 yields three daughter ions at m/z 337, m/z 295, and m/z 193. This compound was identified in the bibliography in extracts from Vaccinium macrocarpon [42] and Vaccinium myrtillus [43].
The polyphenol composition distribution table is shown below (Table 1). The comparison table shows the presence of some flavonoids in both types of the genus Dracocephalum (apigenin, acacetin, luteolin, apigenin 7-O-glucoside, acacetin 7-O-glucoside, kaempferol, prunin, eriodictyol 7-O-glucoside, caffeic acid, caffeic acid-O-hexoside, dimethyl-secoisolariciresinol, petunidin, and pelargonidin 3-O-glucoside). Mass spectrometric studies have convincingly shown that the amount of polyphenolic compounds in the extracts of D. palmatum is greater than in the extracts of D. ruyschiana. The number of polyphenolic compounds identified as a result of the study in the extracts of D. palmatum is 57 compounds. In extracts of D. ruyschiana, 35 compounds.
A total of 114 metabolome compounds were identified in the extracts of D. palmatum and D. ruyschiana, many of which are characteristic of the genus Dracocephalum. Of these, 92 components were identified for the first time in this plant species. These are flavones: apigenin 8-C-pentoside-6-C-hexoside, nevadensin, apigenin 7-O-glucuronide, negletein, chrysin 6-C-glucoside, luteolin 7-O-β-glucuronide, chrysin glucuronide, and acacetin 7-O-glucoside; flavanols: dihydrokaempferol, dihydroquercetin, astragalin, kaempferol 3-O-rutinoside, and ampelopsin; flavan-3-ols: catechin, gallocatechin, and flavanone fustin; phenolic acids: 4-hydroxybenzoic acid, methylgallic acid, hydroxy methoxy dimethylbenzoic acid, ellagic acid, caffeoylshikimic acid, prolithospermic acid, salvianolic acid G, and 3,4-O-dicaffeoylquinic acid; stilbenes: pinosylvin and resveratrol; anthocyanins: pelargonidin-3-O-glucoside, peonidin O-pentoside, cyanidin 3-(6″-malonylglucoside), cyanidin 3-(acetyl)hexose, and condensed tannin procyanidin A-type dimer; lignans: hinokinin and dimethyl-secoisolariciresinol; stilbenes: resveratrol and pinosylvin; carotenoids: β-apo-12′carotenal, apocarotenal, 5,8-epoxy-α-carotene, cryptoxanthin, violaxanthin, and sceletium; alkaloids: mesembrenol and 4′-O-desmethyl mesembranol; oxylipins: oxo-DHOD, THODE, and tetrahydroxyxanthen mangiferin; and so forth.

4. Materials and Methods

4.1. Materials

Aboveground, phytomass of D. palmatum S. was collected during expedition work on the territory of the Pole of Cold Oymyakon during the period of seed ripening (from 15 to 25 July 2019). Phytomass of D. ruyschiana L. was collected on the territory of the river Amga, Yakutia, in June 2019. The identification of the species was carried out by E. G. Nikolin, PhD (IBPK SB RAS). All samples were morphologically authenticated according to the current standard of Pharmacopoeia of the Eurasian Economic Union [44]. Herbariums of plants are kept in the collection of the educational and scientific laboratory “Molecular Genetic and Cellular Technologies” of the Institute of Natural Sciences of North-Eastern Federal University (Yakutsk, Republic of Sakha (Yakutia), Russian Federation).

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was prepared from a Siemens Ultra Clear (Siemens Water Technologies, Munich, Germany), and all other chemicals were analytical grade.

4.3. Fractional Maceration

Fractional maceration technique was applied to obtain highly concentrated extracts [45]. From 500 g of the sample, 10 g of leaves was randomly selected for maceration. The total amount of the extractant (ethyl alcohol of reagent grade) was divided into three parts and consistently infused to the grains with the first, second, and third parts. A solid–solvent ratio was 1:20. The infusion of each part of the extractant lasted 7 days at room temperature.

4.4. Liquid Chromatography

HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan), equipped with a UV sensor and C18 silica reverse phase column (4.6 × 150 mm, particle size: 2.7 µm) to perform the separation of multicomponent mixtures. The gradient elution with two mobile phases’ program (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0.01–5 min, 100% CH3CN; 5–45 min, 100–25% CH3CN; 45–55 min, 25–0% CH3CN; control washing, 55–60 min, 0% CH3CN. The entire HPLC analysis was performed with a UV–VIS detector, SPD-20A (Shimadzu, Kyoto, Japan), at a wavelength of 230 nm; the temperature was 50 °C, and the total flow rate was 0.25 mL/min. The injection volume was 10 µL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

4.5. Mass Spectrometry

MS analysis was performed on an ion trap, amaZon SL (Bruker Daltonics, Bremen, Germany), equipped with an ESI source in negative and positive ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 L/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. A four-stage ion separation mode (MS/MS mode) was implemented. An ion trap was used in the scan range m/z 100–1.700 for MS and MS/MS. All experiments were repeated three times. A four-stage ion separation mode (MS/MS mode) was implemented.

5. Conclusions

The extracts of D. palmatum S. and D. ruyschiana L. contain a large number of polyphenolic complexes, which are biologically active compounds. For the most complete and safe extraction, the method of maceration with MeOH was used. To identify target analytes in extracts, HPLC was used in combination with an ion trap. The results of the preliminary study showed the presence of 114 compounds corresponding to the genus Dracocephalum, of which 92 were identified for the first time in the genus Dracocephalum L.
The data obtained will help to intensify future research on the development and production of various medical products containing targeted extracts of D. palmatum S. and D. ruyschiana L. A wide variety of biologically active polyphenolic compounds open up rich opportunities for the creation of new drugs, as well as biologically active additives based on extracts from the genus Dracocephalum.

Author Contributions

Conceptualization, M.P.R.; methodology, M.P.R., Z.M.O. and K.S.P.; investigation, M.P.R., Z.M.O. and K.S.P.; resources, Z.M.O., A.M.Z. and K.S.G.; writing—original draft preparation, M.P.R.; supervision, W.P., K.S.G.; project administration, W.P., Y.A.M., S.E. and K.S.G.; funding acquisition, Z.M.O. and K.S.G. All authors have read and agreed to the published version of the manuscript.

Funding

This work has been carried out with financial support of the Ministry of Education and Science of the Russian Federation within the framework of implementation of the project of NEFU, “Cell and molecular genetic technologies of research of northern and arctic plants of Yakutia and development on their basis”, SRP No. 6, 30.10.2020, and No. 0662-2019-0003, “Genetic resources of vegetable and melons of the world collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources: effective ways of expanding diversity, disclosing the patterns of hereditary variability, use of adaptive potential”.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Compounds identified from the extracts of D. palmatum S. and D. ruyschiana L. in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Table A1. Compounds identified from the extracts of D. palmatum S. and D. ruyschiana L. in positive and negative ionization modes by HPLC–ion trap–MS/MS.
Variety of DracocephalumClass of CompoundsIdentified CompoundsFormulaMassMolecular Ion [M − H]Molecular Ion [M + H]+2 Fragmentation MS/MS3 Fragmentation MS/MS4 Fragmentation MS/MSReferences
POLYPHENOLS
1D. ruyschianaFlavoneApigeninidinC15H11O4255.2454 256168122 Triticum [46]
2D. palmatum, D. ruyschianaFlavoneApigenin (5,7-dixydroxy-2-(40hydroxyphenyl)-4H-chromen-4-one)C15H10O5270.2369 269225181117Dracocephalum palmatum [4], Andean blueberry [10], Lonicera japonicum [11], Mexican lupine species [12]
3D. palmatumFlavoneNegletein (5,6-dihydroxy-7-methoxy-flavone)C16H12O5284.2635 285271241187Actinocarya tibetica [19]
4D. palmatum, D. ruyschianaFlavoneAcacetin (linarigenin, buddleoflavonol)C16H12O5284.2635 285268211; 143 Dracocephalum palmatum [4], Mexican lupine species [12], Mentha [14], Dracocephalum moldavica [15], Wissadula periplocifolia [18]
5D. palmatum, D. ruyschianaFlavoneLuteolinC15H10O6286.2363 287286; 153171153Dracocephalum palmatum [4], Eucalyptus [16], Lonicera japonicum [11]
6D. palmatumFlavoneApigenin-7, 4′-dimethyl etherC17H14O5298.2901 299284256 Ocimum [20]
7D. palmatumFlavoneDiosmetin (luteolin 4′-methyl ether, salinigricoflavonol)C16H12O6300.2629 301286258 Andean blueberry [10], Lonicera japonicum [11], Cirsium japonicum [13], Mentha [14], Dracocephalum moldavica [15]
8D. palmatumFlavoneSalvigeninC18H16O6328.3160 329314; 240154 Dracocephalum palmatum [4], Ocimum [20]
9D. palmatumFlavoneNevadensinC18H16O7344.3154 345311284149Mentha [14], Ocimum [20]
10D. ruyschianaFlavoneApigenin 7-sulfateC15H10O8S350.3001349 269223 sulfates [18], G. linguiforme [28],
11D. ruyschianaFlavoneChrysin 6-C-glucosideC21H20O9416.3781 41751; 127333; 267165Passiflora incarnata [26]
12D. ruyschianaFlavoneChrysin glucuronideC21H18O10430.3616 431255255; 153171F. pottsii [28]
13D. palmatumFlavoneApigenin-5-O-glucosideC21H20O10432.3775 433414; 274; 215; 145371; 245; 147327Rice [22]
14D. palmatum, D. ruyschianaFlavoneApigenin-7-O-glucoside (apigetrin, cosmosiin)C21H20O10432.3775 433271153 Dracocephalum palmatum [4], Mentha [24], Mexican lupine species [12]
15D. ruyschianaFlavoneApigenin 7-O-glucuronideC21H18O11446.361 447271153271; 171 Pear [25], Bougainvillea [27]
16D. palmatum, D. ruyschianaFlavoneAcacetin 7-O-glucoside (tilianin)C22H22O10446.4041 447285; 149270242Dracocephalum palmatum [4], Bougainvillea [27]
17D. palmatumFlavoneAcacetin 8-C-glucosideC22H22O10446.4041 447428; 344343; 230; 133232Mexican lupine species [12]
18D. palmatumFlavoneLuteolin 7-O-glucoside (cynaroside, luteoloside)C21H20O11448.3769 449287; 199153 Lonicera japonicum [11], Pear [25], Passiflora incarnata [26]
19D. ruyschianaFlavoneAcacetin 7-O-beta-D-glucuronideC22H20O11460.3876459 283; 343; 175268267Dracocephalum moldavica [15]
20D. ruyschianaFlavoneLuteolin-7-O-beta-glucuronideC21H18O12462.3604 463287268245; 119Mentha [14], rat plasma [32], Newbouldia laevis [30]
21D. ruyschianaFlavoneDiosmetin-7-O-beta-glucosideC22H22O11462.4035 463287168123Dracocephalum moldavica [15], Oxalis corniculata [23]
22D. palmatumFlavoneLuteolin O-acetyl-hexosideC23H22O12490.4136489 285; 450199155Dracocephalum palmatum [4]
23D. palmatumIsoflavoneApigenin 7-O-beta-D-(6″-O-malonyl)-glucosideC24H22O13518.4237 519502; 184125 Dracocephalum moldavica [14], Zostera marina [21]
24D. palmatumFlavoneAcacetin 8-C-glucoside malonylatedC25H24O13532.4503 533497; 205377; 335 Mexican lupine species [12]
25D. palmatumIsoflavone2′-Hydroxygenistein O-glucoside malonylatedC24H22O14534.4231533 489285; 326284Mexican lupine species [12]
26D. palmatumFlavoneLuteolin 7-O-beta-D-(6-O-malonyl)-glucosideC24H22O14534.4231 535436; 354; 287; 214328; 238 Dracocephalum moldavica [15], Zostera marina [21]
27D. palmatumFlavoneAcacetin C-glucoside methylmalonylatedC26H26O13546.4758 547529; 496; 369343 Mexican lupine species [12]
28D. ruyschianaFlavoneApigenin 8-C-hexoside-6-C-pentosideC26H28O14564.4921 565547; 511; 427529; 499511Triticum aestivum L. [47,48], Bituminaria [49], Licania Rigida [50]
29D. ruyschianaFlavoneApigenin 8-C-pentoside-6-C-hexosideC26H28O14564.4921 565547; 274529; 474; 247390Triticum aestivum L. [47,48], Bituminaria [49], Licania Rigida [50]
30D. palmatumFlavoneApigenin 6-C-[6″-acetyl-2″-O-deoxyhexoside]-glucosideC29H32O15620.5554 621561; 218533445; 222Passiflora incarnata [26]
31D. palmatum, D. ruyschianaFlavonolKaempferol (3,5,7-trihydroxy-2-(4-hydro-xyphenyl)-4H-chromen-4-one)C15H10O6286.2363 287269; 202233; 205216Andean blueberry [10], Lonicera japonicum [11], Rhus coriaria (Sumac) [36], potato leaves [37], rapeseed petals [38]
32D. palmatumFlavonolDihydrokaempferol (aromadendrin, katuranin) C15H12O6288.2522287 269; 151267; 183211F. glaucescens [28], Camellia kucha [34], Rhodiola rosea [51]
33D. palmatumFlavonolDihydroquercetin (taxifolin, taxifoliol)C15H12O7304.2516 305287286; 186185Andean blueberry [10], Eucalyptus [16], Camellia kucha [34], strawberry [40]
34D. palmatumFlavonolAmpelopsin (dihydromyricetin, ampeloptin)C15H12O8320.251 321301284192Rhus coriaria [36], Impatiens glandulifera Royle [39]
35D. palmatumFlavonolAstragalin (kaempferol 3-O-glucoside, kaempferol-3-beta-monoglucoside)C21H20O11448.3769447 285; 327241199Lonicera japonicum [11], Mexican lupine species [12], pear [25], Camellia kucha [34]
36D. ruyschianaFlavonolKaempferol-3-O-glucuronideC21H18O12462.3604 463287268; 169241; 119A. cordifolia, G. linguiforme [28], Strawberry [35], Rhus coriaria [36]
37D. palmatumFlavonolKaempferol 3-O-rutinosideC27H30O15594.5181593 285241; 199199Lonicera japonicum [11], Pear [25], Camellia kucha [34], strawberry [35], Rhus coriaria [36],
38D. ruyschianaFlavan-3-ol(Epi)catechinC15H14O6290.2681 291273; 117255; 145 Andean blueberry [10], C. edulis [28], Camellia kucha [34], Radix polygoni multiflori [52], cranberry [53],
39D. palmatumFlavan-3-olGallocatechin (+(−)gallocatechin)C15H14O7306.2675 307289259 Licania ridigna [50], G. linguiforme [28], Vaccinium myrtillus [43], Rhodiola rosea [51]
40D. palmatumFlavanoneNaringenin (naringetol, naringenin)C15H12O5272.5228 273153; 256125 Dracocephalum palmatum [4], Andean blueberry [10], Eucalyptus [16], Mexican lupine species [12], rapeseed petals [38]
41D. palmatumFlavanoneEriodictyol (3′,4′,5,7-tetrahydroxy-flavanone)C15H12O6288.2522 289163; 271145117Dracocephalum palmatum [4], Andean blueberry [10], Eucalyptus [16], Mentha [24], peppermint [29]
42D. ruyschianaFlavanoneFustin (2,3-dihydrofistein)C15H12O6288.2522287 269; 141267; 185249F. glaucescens, F. pottsii [28]
43D. palmatum, D. ruyschianaFlavanonePrunin (naringenin-7-O-glucoside)C21H22O10434.3934433 271; 151269; 151 Dracocephalum palmatum [4], rapeseed petals [38], tomato [54]
44D. palmatum, D. ruyschianaFlavanoneEriodictyol-7-O-glucoside (pyracanthoside, miscanthoside)C21H22O11450.3928449 285; 151243; 151 Dracocephalum palmatum [4], Impatiens glandulifera Royle [39], peppermint [29], Mentha [24]
45D. palmatumFlavanoneEriodictyol O-malonyl-hexosideC24H24O14536.4390535 491; 287287; 151269; 151Dracocephalum palmatum [4]
46D. palmatum; D. ruyschianaHydroxycinnamic acidCaffeic acidC9H8O4180.1574 181135119 Dracocephalum palmatum [4], Eucalyptus [16], Triticum [46], Salvia miltiorrhiza [55]
47D. palmatumPhenolic acidMethylgallic acid (methyl gallate) C8H8O5184.1461183 139137119Eucalyptus [16], papaya [35], Rhus coriaria [36]
48D. ruyschianaPhenolic acidHydroxy methoxy dimethylbenzoic acidC10H12O4196.1999 197179161133F. herrerae, F. glaucescens [28]
49D. palmatumPhenolic acidEthyl caffeate (ethyl 3,4-dihydroxycinnamate)C11H12O4208.2106207 179135 Lepechinia [56]
50D. palmatumHydroxybenzoic acid4-Hydroxybenzoic acid (PHBA, benzoic acid, p-hydroxybenzoic acid)C7H6O3138.1207 139122 Bougainvillea [27], Triticum [46], Bituminaria [49], Vigna unguiculata [57], Eucalyptus globulus [58],
51D. ruyschianaHydroxybenzoic acidEllagic acid (benzoic acid, elagostasine, lagistase, eleagic acid)C14H6O8302.1926301 284221112Rhus coriaria [36], Eucalyptus [16], Eucalyptus globulus [58], Rubus occidentalis [59]
52D. palmatumHydroxycinnamic acidSinapic acid (trans-sinapic acid)C11H12O5224.21 225206138 Andean blueberry [10], rapeseed petals [38], Triticum [46], Cranberry [53], Cherimoya [60]
53D. ruyschianaHydroxycinnamic acid1-O-(4-coumaroyl)-glucoseC15H18O8326.2986325 145117 Cranberry [53], strawberry [40], Rubus occidentalis [59]
54D. palmatumGallate esterBeta-glucogallin (1-O-galloyl-beta-d-glucose, galloyl glucose)C13H16O10332.2601 333314271; 151244; 159Strawberry [40,61], carao tree seeds [62]
55D. ruyschianaPhenolic acidCaffeoylshikimic acid (5-O-caffeoylshikimate)C16H15O8335.2855335 179135133Andean blueberry [10], pear [25], passion fruits [35], Vaccinium myrtillus [43]
56D. palmatumPhenolic acidSalvianolic acid GC18H12O7340.2837 341296; 208278; 208235; 164Mentha [14], Salvia miltiorrhiza [55]
57D. palmatumPhenolic acid1-caffeoyl-beta-D-glucose (caffeic acid-3-O-beta-D-glucoside)C15H18O9342.298341 178; 119135 Passiflora incarnata [26], strawberry [40], Cranberry [53]
58D. palmatum, D. ruyschianaPhenolic acidCaffeic acid-O-hexoside (caffeoyl-O-hexoside)C15H18O9342.298341 178; 113 pear [25], Cherimoya, papaya [35], Sasa veitchii [63]
59D. palmatumPhenolic acidProlithospermic acidC18H14O8358.2990 359341; 207314; 267; 149 Mentha [14], Salvia miltiorrhiza [55]
60D. palmatumPhenolic acidRosmarinic acidC18H16O8360.3148359 161133 Dracocephalum palmatum [4], Mentha [14], Zostera marina [21], peppermint [29], Salvia miltiorrhiza [55], Lepechinia [56]
61D. palmatum, D. ruyschianaPhenolic acidCaffeic acid derivativeC16H18O9Na377.2985377 341; 215179 Bougainvillea [27]
62D. palmatumPhenolic acidSalvianic acid CC18H18O9378.3301377 359; 315289229Salviae miltiorrhiza [55], Lepechinia [56]
63D. ruyschianaPhenolic acid3,4-O-dicaffeoylquinic acid (isochlorogenic acid B)C25H24O12516.4509 517397337; 135 Lonicera japonicum [11], Pear [25], Stevia rebaudiana [64]
64D. ruyschianaStilbenePinosylvin (3,5-stilbenediol, trans-3,5-dihydroxystilbene)C14H12O2212.2439 213168126 Pinus sylvestris [50], Pinus resinosa [65]
65D. ruyschianaStilbeneResveratrol (trans-resveratrol, 3,4′,5-trihydroxystilbene, stilbentriol)C14H12O3228.2433 229142; 210114 A. cordifolia, F. glaucescens, F. herrerae [28], Radix polygoni multiflori [52]
66D. palmatumLignanHinokininC20H18O6354.3533 355337; 189319; 226 Triticum aestivum L. [46], Rhodiola rosea [51], lignans [66]
67D. palmatum, D. ruyschianaLignanDimethyl-secoisolariciresinolC22H30O6390.4700 391373; 249; 121355; 225313; 226Lignans [66]
68D. palmatum, D. ruyschianaAnthocyanidinPetunidinC16H13O7+317.2702 318166; 300121 A. cordifolia, C. edulis [28]
69D. palmatumAnthocyanidinCyanidin O-pentosideC20H19O10419.3589 419287219201Andean blueberry [10], Gaultheria mucronata, Gaultheria antarctica [60], Myrtle [67]
70D. palmatum, D. ruyschianaAnthocyanidinPelargonidin-3-O-glucoside (callistephin)C21H21O10433.3854 433271153; 225171strawberry [61], Triticum aestivum [68], Rubus ulmifolius [69]
71D. palmatumAnthocyanidinPeonidin O-pentosideC21H21O10433.3854 433301; 215; 145229; 139 Andean blueberry [10], Myrtle [67],
72D. palmatumAnthocyanidinCyanidin-3-O-glucoside (cyanidin 3-O-beta-D-glucoside, kuromarin)C21H21O11+449.3848 449287153 rice [22], Triticum [46,68], acerola [70]
73D. palmatumAnthocyanidinPeonidin-3-O-glucosideC22H23O11 +463.4114 463301286258; 140Berberis ilicifolia, Berberis empetrifolia [60], Andean blueberry [10], strawberry [61], Triticum aestivum [68]
74D. palmatumAnthocyanidinCyanidin 3-(acetyl)hexoseC23H23O12+491.4215 491287245; 153171Acerola [70]
75D. palmatumAnthocyanidinCyanidin 3-(6″-malonylglucoside)C24H23O14535.4310 535287285; 179242; 153strawberry [40], strawberry [61], Triticum aestivum [68]
76D. palmatumAnthocyanidinCyanidin 3-O-coumaroyl hexosideC30H27O13595.533 595287153 Grape vine varieties [71]
77D. palmatumAnthocyanidin7-O-Methyl-delphinidin-3-O-(2″galloyl)-galactosideC29H26O16630.5071 631317; 519 Rhus coriaria [36]
78D. ruyschianaCondensed tanninProcyanidin A-type dimerC30H24O12576.501 577416; 352; 283; 164337; 295; 193319; 225; 150pear [25], Vaccinium myrtillus [43]
OTHERS
79D. palmatumAmino acidL-Leucine ((S)-2-amino-methylpentanoic acid)C6H13NO2131.1729 132130 Lonicera japonica [11], Camellia kucha [34], Potato leaves [37], Vigna unguiculata [57]
80D. palmatumAlpha-omega dicarboxylic acidHydroxymethylglutaric acidC6H10O5162.1406 163145117 Potato leaves [37]
81D. palmatumCyclohexenecarboxylic acidPerillic acidC10H14O2166.217 167149121 Mentha [14]
82D. palmatum, D. ruyschianaAmino acidL-tryptophan (tryptophan; (S)-tryptophan)C11H12N2O2204.2252 205188144118Passiflora incarnata [26], Camellia kucha [34], Vigna unguiculata [57]
83D. palmatumAminoalkylindole5-MethoxydimethyltryptamineC13H18N2O218.2948 219201159; 118 Camellia kucha [34]
84D. palmatumSesquiterpenoidEpiglobulol ((−)-globulol)C15H26O222.3663 223205; 153133 Olive leaves [72]
85D. palmatumOmega-5 fatty acidMyristoleic acid (cis-9-tetradecanoic acid)C14H26O2226.3550 227209139 F. glaucescens [28]
86D. palmatumMedium-chain fatty acidHydroxydodecanoic acidC12H22O5246.3001 247229216 F. glaucescens [28]
87D. palmatumOmega-3 unsaturated fatty acidHexadecatrienoic acid (hexadeca-2,4,6-trienoic acid)C16H26O2250.3764 251233; 191187 F. glaucescens [28]
88D. ruyschianaPropionic acidKetoprofenC16H14O3254.2806253 210180 Ginkgo biloba [73]
89D. palmatum; D. ruyschianaRibonucleoside composite of adenine (purine)AdenosineC10H13N5O4267.2413 268136; 258 Lonicera japonica [11]
90D. palmatumSceletium alkaloidO-Methyl-dehydrojoubertiamineC17H21NO2271.3541 272256242226A. cordifolia [28]
91D. ruyschianaSceletium alkaloid4′-O-desmethyl mesembranolC16H23NO3277.3587 278258240141A. cordifolia [28]
92D. palmatumOmega-9 unsaturated fatty acidOleic acid (cis-9-octadecenoic acid, cis-oleic acid)C18H34O2282.4614 283209; 114 Sanguisorba officinalis [74], Pinus sylvestris [75]
93D. palmatum2-Hydroxy fatty acid2-Hydroxyheptadecanoic acidC17H34O3286.4501285 265186 F. pottsii [28]
94D. palmatumAlkaloidMesembrenolC17H23NO3289.3694 290242; 122184; 149 Sceletium [76]
95D. palmatum, D. ruyschianaDiterpenoidTanshinone IIB ((S)-6-(hydroxymethyl)-1,6-dimethyl-6,7,8,9-tetrahydrophenanthro[1,2-B]furan-10,11-dione) C19H18O4310.3438 311283; 137119 Salviae miltiorrhiza [77]
96D. palmatumAlpha-omega dicarboxylic acidOctadecanedioic acid (1,16-hexadecanedicarboxylic acid) C18H34O4314.4602 315297; 179212 F. glaucescens [28]
97D. palmatumUnsaturated essential fatty acidOxo-eicosatetraenoic acidC20H30O3318.4504 319300282; 167240F. pottsii [28]
98D. ruyschianaOxylipins9,10-Dihydroxy-8-oxooctadec-12-enoic acid (oxo-DHODE; oxo-dihydroxy-octadecenoic acid) C18H32O5328.4437327 229209183Bituminaria [49], Phyllostachys nigra [63]
99D. ruyschianaOxylipinsTrihydroxyoctadecadienoic acidC18H32O5328.4437327 211; 171183 Potato leaves [37]
100D. ruyschianaLong-chain polyunsaturated fatty acidDocosahexaenoic acidC22H32O2328.4883327 309; 201291; 171273Marine extracts [78]
101D. palmatum, D. ruyschianaOxylipins13- Trihydroxy-octadecenoic acid (THODE) C18H34O5330.4596329 229; 311211167Bituminaria [49], Sasa veitchii [63], Brassica oleracea [79]
102D. ruyschianaCarotenoidBeta-apo-12′-carotenalC25H34O350.5369 351259; 147231; 145 Carotenoids [80,81]
103D. palmatumSterolStigmasterol (stigmasterin, beta-stigmasterol) C29H48O412.6908 413301188 A. cordifolia, F. pottsii [28], Olive leaves [72], Hedyotis diffusa [82]
104D. ruyschianaCarotenoidApocarotenal ((all-E)-beta-apo-caroten-8′-al) C30H40O416.6380 417399; 200351267Carica papaya [83]
105D. palmatumTetrahydroxyxanthenMangiferinC19H18O11422.3396 423387; 238345 [84,85]
106D. palmatumLong-chain fatty acidNonacosanoic acidC29H58O2438.7696 439395; 353; 245245 C. edulis [28]
107D. palmatumAnabolic steroid, androgen, androgen esterVebonolC30H44O3452.6686 453435; 336; 226336209Rhus coriaria [36], Hylocereus polyrhizus [86]
108D. ruyschianaTriterpenic acidOleanolic acid (oleanic acid, cariophyllin, astrantiagenin C, virgaureagenin B) C30H48O3456.7003 457410; 325342; 164 C. edulis [28], Hedyotis diffusa [82], Folium Eriobotryae [87], Eleutherococcus [88]
109D. palmatumIndole sesquiterpene alkaloidSespendoleC33H45NO4519.7147 520184; 359124 Rhus coriaria [36], Hylocereus polyrhizus [86]
110D. ruyschianaCarotenoid(Z)-luteinC40H54O550.8562 551533 Physalis peruviana [89], carotenoids [90]
111D. palmatumCarotenoid5,8-epoxy-alpha-caroteneC40H56O552.872 553536; 412; 207299; 261 Physalis peruviana [89]
112D. ruyschianaCarotenoidCryptoxanthin (beta-cryptoxanthin) C40H56O552.872 553535; 325; 223517 Carotenoids [81,91], Smilax aspera [92]
113D. ruyschianaCarotenoidViolaxanthin (zeaxanthin dieperoxide, all-trans-violaxanthin) C40H56O4600.8702 601364; 582346; 202; 142114Carotenoids [91]
114D. palmatumMacrocyclic glycolipid lactoneResinoside AC31H34O13614.5939 615287; 203162 Eucalyptus genus [93]

References

  1. Zakharova, V.I.; Kuznetsova, L.V. Abstract of the Flora of Yakutia: Vascular Plants; Nauka: Novosibirsk, Russia, 2012; p. 272. (In Russian) [Google Scholar]
  2. Karavaev, M.N. Summary of the Flora of Yakutia; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1958; p. 189. (In Russian) [Google Scholar]
  3. Danilova, N.S.; Borisova, S.Z.; Ivanova, N.S. Ornamental Plants of Yakutia: Atlas-Key; JSC “Fiton +”: Moscow, Russia, 2012; 248p. (In Russian) [Google Scholar]
  4. Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules 2013, 18, 14105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Kim, J.; Kim, J.N.; Park, I.; Sivtseva, S.; Okhlopkova, Z.; Zulfugarov, I.S.; Kim, S.-W. Dracocephalum palmatum Stephan extract induces caspase and mitochondria dependent apoptosis via Myc inhibition in diffuse large B cell lymphoma. Oncol. Rep. 2020, 44, 2746–2756. [Google Scholar] [CrossRef] [PubMed]
  6. Lee, S.E.; Okhlopkova, Z.M.; Lim, C.; Cho, S.I. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway. Chin. J. Nat. Med. 2020, 18, 793–800. [Google Scholar] [CrossRef]
  7. Kakasy, A.; Fuzfai, Z.; Kursinszki, L.; Molnar-Perl, I.; Lemberkovics, E. Analysis of non-volatile constituents in Dracocephalum species by HPLC and GC-MS. Chromatographia 2006, 63, S17–S22. [Google Scholar] [CrossRef]
  8. Zeng, Q.; Jin, H.Z.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Liu, J.H.; Yan, L.; Chen, M.; Zhang, W.D. Chemical Constituents of Plants from the Genus Dracocephalum. Chem. Biodivers. 2010, 7, 1911–1929. [Google Scholar] [CrossRef]
  9. Selenge, E.; Murata, T.; Kobayashi, K.; Batkhuu, J.; Yoshizaki, F. Flavone tetraglycosides and benzyl alcohol glycosides from the mongolian medicinal plant Dracocephalum ruyschiana. J. Nat. Prod. 2013, 76, 186–193. [Google Scholar] [CrossRef]
  10. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  11. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef] [Green Version]
  12. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
  13. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef]
  14. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography–high resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Martinez-Vazquez, M.; Estrada-Reyes, R.; Martinez-Laurrabaquio, A.; Lopez-Rubalcava, C.; Heinze, G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: Sedative effect and chemical analysis of an aqueous extract. J. Ethnopharmacol. 2012, 141, 908–917. [Google Scholar] [CrossRef] [PubMed]
  16. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef] [PubMed]
  17. Levandi, T.; Pussa, T.; Vaher, M.; Ingver, A.; Koppel, R. Principal component analysis of HPLC–MS/MS patterns of wheat (Triticum aestivum) varieties. Food Chem. 2014, 63, 86–92. [Google Scholar] [CrossRef]
  18. Teles, Y.C.E.; Rebello Horta, C.C.; de Fatima Agra, M.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; de Fatima Vanderlei de Souza, M. New Sulphated Flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). Molecules 2015, 20, 20161–20172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  19. Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Com. 2016, 11, 239–244. [Google Scholar] [CrossRef] [Green Version]
  20. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  21. Enerstvedt, K.H.; Jordheim, M.; Andersen, O.M. Isolation and Identification of Flavonoids Found in Zostera marina Collected in Norwegian Coastal Waters. Am. J. Plant Sci. 2016, 7, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
  22. Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant. 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
  23. Pandey, B.P.; Pradhan, S.P.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155. [Google Scholar]
  24. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound With Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067. [Google Scholar] [CrossRef] [PubMed]
  25. Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Siqueira, A.; Chaves, D.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
  27. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
  28. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
  29. Bodalska, A.; Kowalczyk, A.; Wlodarczyk, M.; Feska, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint Tincture. Molecules 2020, 25, 69. [Google Scholar] [CrossRef] [Green Version]
  30. Thomford, N.E.; Dzobo, K.; Chopera, D.; Wonkam, A.; Maroyi, A.; Blackhurst, D.; Dandara, C. In vitro reversible and time-dependent CYP450 inhibition profiles of medicinal herbal plant extracts Newbouldia laevis and Cassia abbreviata: Implications for herb-drug interactions. Molecules 2016, 21, 891. [Google Scholar] [CrossRef] [Green Version]
  31. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [Green Version]
  32. Shi, F.; Pan, H.; Lu, Y.; Ding, L. An HPLC–MS/MS method for the simultaneous determination of luteolin and its major metabolites in rat plasma and its application to a pharmacokinetic study. J. Sep. Sci. 2018, 41, 3830–3839. [Google Scholar] [CrossRef]
  33. Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 92, 369–379. [Google Scholar] [CrossRef]
  34. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef] [PubMed]
  35. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
  36. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. [Google Scholar] [CrossRef]
  38. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
  39. Viera, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatients glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125. [Google Scholar] [CrossRef]
  40. Hanhineva, K.; Karenlampi, S.O.; Aharoni, A. Resent Advances in Strawberry Metabolomics. Genes Genomes Genom. 2011, 5, 65–75. [Google Scholar]
  41. Oertel, A.; Matros, A.; Hartmann, A.; Arapitsas, P.; Dehmer, K.J.; Martens, S.; Mock, H.P. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta 2017, 246, 281–297. [Google Scholar] [CrossRef]
  42. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
  43. Bujor, O.-C. Extraction, Identification and Antioxidant Activity of the Phenolic Secondary Metabolites Isolated from the Leaves, Stems and Fruits Oo Two Shrubs of the Ericaceae Family. Ph.D. Thesis, Technical University of Iasi, Iași, Romania, 2016. [Google Scholar]
  44. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 Dated August 11, 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Documents/%D0%A4%D0%B0%D1%80%D0%BC%D0%B0%D0%BA%D0%BE%D0%BF%D0%B5%D1%8F%20%D0%A1%D0%BE%D1%8E%D0%B7%D0%B0%2011%2008.pdf (accessed on 25 December 2021).
  45. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
  46. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparison analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (unleavened flat bread) quality. Front. Plant. Sci. 2016, 7, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnly, J.M.; Chen, P. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMSn and mass defect filtering. J. Mass Spectr. 2016, 51, 914–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  48. Stallmann, J.; Schweiger, R.; Pons, C.A.; Müller, C. Wheat growth, applied water use efficiency and flag leaf metabolome under continuous and pulsed deficit irrigation. Sci. Rep. 2020, 10, 10112. [Google Scholar] [CrossRef] [PubMed]
  49. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
  50. De Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; de Oliveira, T.F.; dos Santos, F.; Silva Buonafina, M.D. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  51. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef] [PubMed]
  52. Zhu, Z.-W.; Li, J.; Gao, X.-M.; Amponsem, E.; Kang, L.-Y.; Hu, L.-M.; Zhang, B.-L.; Chang, Y.-X. Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharm. Biomed. Anal. 2012, 62, 162–166. [Google Scholar] [CrossRef]
  53. Wang, Y.; Vorsa, N.; Harrington, P.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM−HRMS. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
  54. Vallverdú-Queralt, A.; Jauregui, O.; Medina-Remón, A.; Lamuela-Raventos, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380. [Google Scholar] [CrossRef]
  55. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef]
  56. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. [Google Scholar] [CrossRef] [PubMed]
  57. Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef] [PubMed]
  58. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  59. Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin secondary metabolites of black raspberry (Rubus occidentalis L.) fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. J. Agric. Food Chem. 2013, 61, 12032–12043. [Google Scholar] [CrossRef]
  60. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  61. Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef] [Green Version]
  62. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
  63. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef]
  64. Lee, S.Y.; Shaari, K. LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochem. Analys. 2021, 1–13. [Google Scholar] [CrossRef]
  65. Simard, F.; Legault, J.; Lavoie, S.; Mshvildadze, V.; Pichette, A. Isolation and Identification of Cytotoxic Compounds from the Wood of Pinus resinosa. Phytother. Res. 2008, 22, 919–922. [Google Scholar] [CrossRef]
  66. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. [Google Scholar] [CrossRef] [PubMed]
  67. D’Urso, G.; Sarais, G.; Lai, C.; Pizza, C.; Montoro, P. LC-MS based metabolomics study of different parts of myrtle berry from Sardinia (Italy). J. Berry Res. 2017, 7, 217–229. [Google Scholar] [CrossRef]
  68. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  69. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Compos. Anal. 2008, 21, 291–299. [Google Scholar] [CrossRef]
  71. Pantelic, M.M.; Dabic Zagorac, D.C.; Davidovic, C.M.; Todic, S.R.; Beslic, Z.S.; Gasic, U.M.; Tesic, Z.L.; Natic, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food. Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef]
  72. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
  73. Xie, J.; Ding, C.; Ge, Q.; Zhou, Z.; Zhi, X. Simultaneous determination of ginkgolides A, B, C and bilobalide in plasma by LC–MS/MS and its application to the pharmacokinetic study of Ginkgo biloba extract in rats. J. Chromatogr. B 2008, 864, 87–94. [Google Scholar] [CrossRef]
  74. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [Green Version]
  75. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef]
  76. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization-Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef] [Green Version]
  78. Thomas, M.C.; Dunn, S.R.; Altvater, J.; Dove, S.G.; Nette, G.W. Rapid Identification of Long-Chain Polyunsaturated Fatty Acids in a Marine Extract by HPLC-MS Using Data-Dependent Acquisition. Anal. Chem. 2012, 84, 5976–5983. [Google Scholar] [CrossRef] [PubMed]
  79. Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.S.; Guo, T.J.; Lee, U.; Kim, D.-O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agric. Food. Chem. 2016, 64, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
  80. Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Barros Mariutti, L.R. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
  81. Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofre, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. J. Pharma. Biomed. Anal. 2018, 1032, 40–47. [Google Scholar] [CrossRef] [PubMed]
  82. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512. [Google Scholar] [CrossRef]
  83. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Roots. Foods 2021, 10, 434. [Google Scholar] [CrossRef]
  84. Geodakyan, S.V.; Voskoboinikova, I.V.; Tjukavkina, N.A.; Sokolov, S.J. Experimental pharmacokinetics of biologically active plant phenolic compounds. I. Pharmacokinetics of mangiferin in the rat. Phytother. Res. 1992, 6, 332–334. [Google Scholar] [CrossRef]
  85. Han, D.; Chen, C.; Zhang, C.; Zhang, Y.; Tang, X. Determination of mangiferin in rat plasma by liquid–liquid extraction with UPLC–MS/MS. J. Pharm. Biomed. Anal. 2010, 51, 260–263. [Google Scholar] [CrossRef]
  86. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Li, Z.-X.; Zhu, H.; Cai, X.-P.; He, D.-D.; Hua, J.-L.; Ju, J.-M.; Lv, H.; Ma, L.; Li, W.-L. Simultaneous determination of five triterpene acids in rat plasma by liquid chromatography–mass spectrometry and its application in pharmacokinetic study after oral administration of Folium Eriobotryae effective fraction. Biomed. Chromatogr. 2015, 29, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
  88. Jin, L.; Schmiech, M.; El Gaafary, M.; Zhang, X.; Syrovets, T.; Simmet, T. A comparative study on root and bark extracts of Eleutherococcus senticosus and their effects on human macrophages. Phytomedicine 2020, 68, 153181. [Google Scholar] [CrossRef] [PubMed]
  89. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar] [CrossRef]
  90. Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J. Agric. Food Chem. 2016, 64, 8207–8224. [Google Scholar] [CrossRef]
  91. Mi, J.; Jia, K.-P.; Wang, J.Y.; Al-Babili, S. A rapid LC-MS method for qualitative and quantitative profiling of plant apocarotenoids. Anal. Chim. Acta 2018, 1035, 87–95. [Google Scholar] [CrossRef]
  92. Delgado-Pelayo, R.; Homero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Chromatogr. A 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [Green Version]
  93. Heskes, A.M.; Goodger, J.Q.D.; Tsegay, S.; Quach, T.; Williams, S.J.; Woodrow, I.E. Localization of Oleuropeyl Glucose Esters and a Flavanone to Secretory Cavities of Myrtaceae. PLoS ONE 2012, 7, e40856. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Dracocephalum palmatum S. in the Oymyakon area of Yakutia (photo taken by Okhlopkova, July 2019).
Figure 1. Dracocephalum palmatum S. in the Oymyakon area of Yakutia (photo taken by Okhlopkova, July 2019).
Applsci 12 01766 g001
Figure 2. Dracocephalum ruyschiana L. in the Amga area of Yakutia (photo taken by Okhlopkova, July 2019).
Figure 2. Dracocephalum ruyschiana L. in the Amga area of Yakutia (photo taken by Okhlopkova, July 2019).
Applsci 12 01766 g002
Figure 3. CID spectrum of diosmetin from extracts of D. palmatum, m/z 301.
Figure 3. CID spectrum of diosmetin from extracts of D. palmatum, m/z 301.
Applsci 12 01766 g003
Figure 4. CID spectrum of luteolin from extracts of D. palmatum, m/z 286.98.
Figure 4. CID spectrum of luteolin from extracts of D. palmatum, m/z 286.98.
Applsci 12 01766 g004
Figure 5. CID spectrum of negletein from extracts of D. palmatum, m/z 285.03.
Figure 5. CID spectrum of negletein from extracts of D. palmatum, m/z 285.03.
Applsci 12 01766 g005
Figure 6. CID spectrum of acacetin 7-O-glucoside from D. palmatum, m/z 446.98.
Figure 6. CID spectrum of acacetin 7-O-glucoside from D. palmatum, m/z 446.98.
Applsci 12 01766 g006
Figure 7. CID spectrum of kaempferol 3-O-rutinoside from extracts of D. palmatum, m/z 593.21.
Figure 7. CID spectrum of kaempferol 3-O-rutinoside from extracts of D. palmatum, m/z 593.21.
Applsci 12 01766 g007
Figure 8. CID spectrum of ampelopsin from extracts of D. palmatum, m/z 321.11.
Figure 8. CID spectrum of ampelopsin from extracts of D. palmatum, m/z 321.11.
Applsci 12 01766 g008
Figure 9. CID spectrum of dihydrokaempferol from extracts of D. palmatum, m/z 287.26.
Figure 9. CID spectrum of dihydrokaempferol from extracts of D. palmatum, m/z 287.26.
Applsci 12 01766 g009
Figure 10. CID spectrum of procyanidin from extracts of D. ruyschiana, m/z 577.07.
Figure 10. CID spectrum of procyanidin from extracts of D. ruyschiana, m/z 577.07.
Applsci 12 01766 g010
Table 1. The flavonoid composition distribution of the genus Dracocephalum L. Blue square—presence in extracts of D. ruyschiana; magenta square—in extracts of D. palmatum.
Table 1. The flavonoid composition distribution of the genus Dracocephalum L. Blue square—presence in extracts of D. ruyschiana; magenta square—in extracts of D. palmatum.
No.Class of CompoundsIdentified CompoundsFormulaD. ruyschianaD. palmatum
1FlavoneApigeninidinC15H11O4
2FlavoneApigeninC15H10O5
3FlavoneNegletein (5,6-dihydroxy-7-methoxyflavone)C16H12O5
4FlavoneAcacetin (linarigenin, buddleoflavonol)C16H12O5
5FlavoneLuteolinC15H10O6
6FlavoneApigenin-7, 4′-dimethyl etherC17H14O5
7FlavoneDiosmetinC16H12O6
8FlavoneSalvigeninC18H16O6
9FlavoneNevadensinC18H16O7
10FlavoneApigenin 7-sulfateC15H10O8S
11FlavoneChrysin 6-C-glucosideC21H20O9
12FlavoneChrysin glucuronideC21H18O10
13FlavoneApigenin-5-O-glucosideC21H20O10
14FlavoneApigenin-7-O-glucosideC21H20O10
15FlavoneApigenin 7-O-glucuronideC21H18O11
16FlavoneAcacetin 7-O-glucosideC22H22O10
17FlavoneAcacetin 8-C-glucosideC22H22O10
18FlavoneLuteolin 7-O-glucoside (cynaroside, luteoloside)C21H20O11
19FlavoneAcacetin 7-O-beta-D-glucuronideC22H20O11
20FlavoneLuteolin-7-O-beta-glucuronideC21H18O12
21FlavoneDiosmetin-7-O-beta-glucosideC22H22O11
22FlavoneLuteolin O-acetyl-hexosideC23H22O12
23IsoflavoneApigenin 7-O-beta-D-(6-O-malonyl)-glucosideC24H22O13
24FlavoneAcacetin 8-C-glucoside malonylatedC25H24O13
25Isoflavone2′-Hydroxygenistein O-glucoside malonylatedC24H22O14
26FlavoneLuteolin 7-O-beta-D-(6-O-malonyl)-glucosideC24H22O14
27FlavoneAcacetin C-glucoside methylmalonylatedC26H26O13
28FlavoneApigenin 8-C-hexoside-6-C-pentosideC26H28O14
29FlavoneApigenin 8-C-pentoside-6-C-hexosideC26H28O14
30FlavoneApigenin 6-C-[6″-acetyl-2″-O-deoxyhexoside]-glucosideC29H32O15
31FlavonolKaempferolC15H10O6
32FlavonolDihydrokaempferol (aromadendrin; katuranin)C15H12O6
33FlavonolDihydroquercetin (taxifolin, taxifoliol)C15H12O7
34FlavonolAmpelopsin (dihydromyricetin, ampeloptin)C15H12O8
35FlavonolAstragalin (kaempferol 3-O-glucoside; kaempferol-3-beta-monoglucoside, astragaline)C21H20O11
36FlavonolKaempferol-3-O-glucuronideC21H18O12
37FlavonolKaempferol 3-O-rutinosideC27H30O15
38Flavan-3-ol(epi)catechinC15H14O6
39Flavan-3-olGallocatechin [+(−)gallocatechin]C15H14O7
40FlavanoneNaringenin (naringetol, naringenin)C15H12O5
41FlavanoneEriodictyol (3′,4′,5,7-tetrahydroxy-flavanone)C15H12O6
42FlavanoneFustin (2,3-dihydrofistein)C15H12O6
43FlavanonePrunin (naringenin-7-O-glucoside)C21H22O10
44FlavanoneEriodictyol-7-O-glucosideC21H22O11
45FlavanoneEriodictyol O-malonyl-hexosideC24H24O14
46Hydroxycinnamic acidCaffeic acidC9H8O4
47Phenolic acidMethylgallic acid (methyl gallate)C8H8O5
48Phenolic acidHydroxy methoxy dimethylbenzoic acidC10H12O4
49Phenolic acidEthyl caffeate (ethyl 3,4-dihydroxycinnamate)C11H12O4
50Hydroxybenzoic acid4-Hydroxybenzoic acidC7H6O3
51Hydroxybenzoic acidEllagic acidC14H6O8
52Hydroxycinnamic acidSinapic acid (trans-sinapic acid)C11H12O5
53Hydroxycinnamic acid1-O-(4-Coumaroyl)-glucoseC15H18O8
54Gallate esterBeta-glucogallinC13H16O10
55Phenolic acidCaffeoylshikimic acid (5-O-caffeoylshikimate)C16H15O8
56Phenolic acidSalvianolic acid GC18H12O7
57Phenolic acid1-caffeoyl-beta-D-glucoseC15H18O9
58Phenolic acidCaffeic acid-O-hexoside (caffeoyl-O-hexoside)C15H18O9
59Phenolic acidProlithospermic acidC18H14O8
60Phenolic acidRosmarinic acidC18H16O8
61Phenolic acidCaffeic acid derivativeC16H18O9Na
62Phenolic acidSalvianic acid CC18H18O9
63Phenolic acid3,4-O-dicaffeoylquinic acid (Isochlorogenic acid B)C25H24O12
64StilbenePinosylvinC14H12O2
65StilbeneResveratrolC14H12O3
66LignanHinokininC20H18O6
67LignanDimethyl-secoisolariciresinolC22H30O6
68AnthocyanidinPetunidinC16H13O7+
69AnthocyanidinCyanidin O-pentosideC20H19O10
70AnthocyanidinPelargonidin-3-O-glucoside (callistephin)C21H21O10
71AnthocyanidinPeonidin O-pentosideC21H21O10
72AnthocyanidinCyanidin-3-O-glucoside (cyanidin 3-O-beta-D-glucoside, kuromarin)C21H21O11+
73AnthocyanidinPeonidin-3-O-glucosideC22H23O11+
74AnthocyanidinCyanidin 3-(acetyl)hexoseC23H23O12+
75AnthocyanidinCyanidin 3-(6-malonylglucoside)C24H23O14
76AnthocyanidinCyanidin 3-O-coumaroyl hexosideC30H27O13
77Anthocyanidin7-O-Methyl-delphinidin-3-O-(2galloyl)-galactosideC29H26O16
78Condensed tanninProcyanidin A-type dimerC30H24O12
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Okhlopkova, Z.M.; Razgonova, M.P.; Pikula, K.S.; Zakharenko, A.M.; Piekoszewski, W.; Manakov, Y.A.; Ercisli, S.; Golokhvast, K.S. Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Appl. Sci. 2022, 12, 1766. https://0-doi-org.brum.beds.ac.uk/10.3390/app12031766

AMA Style

Okhlopkova ZM, Razgonova MP, Pikula KS, Zakharenko AM, Piekoszewski W, Manakov YA, Ercisli S, Golokhvast KS. Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Applied Sciences. 2022; 12(3):1766. https://0-doi-org.brum.beds.ac.uk/10.3390/app12031766

Chicago/Turabian Style

Okhlopkova, Zhanna M., Mayya P. Razgonova, Konstantin S. Pikula, Alexander M. Zakharenko, Wojciech Piekoszewski, Yuri A. Manakov, Sezai Ercisli, and Kirill S. Golokhvast. 2022. "Dracocephalum palmatum S. and Dracocephalum ruyschiana L. Originating from Yakutia: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds" Applied Sciences 12, no. 3: 1766. https://0-doi-org.brum.beds.ac.uk/10.3390/app12031766

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop