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Abstract: Most of the spacecraft telemetry anomaly detection methods based on statistical models
suffer from the problems of high false negatives, long time consumption, and poor interpretability.
Besides, complex interactions, which may determine the propagation of anomalous mode between
telemetry parameters, are often ignored. To discover the complex interaction between spacecraft
telemetry parameters and improve the efficiency and accuracy of anomaly detection, we propose an
anomaly detection framework based on parametric causality and Double-Criteria Drift Streaming
Peaks Over Threshold (DCDSPOT). We propose Normalized Effective Transfer Entropy (NETE) to
reduce the error and noise caused by nonstationarity of the data in the calculation of transfer entropy,
and then apply NETE to improve the Multivariate Effective Source Selection (MESS) causal inference
algorithm to infer parametric causality. We define the Weighted Source Parameter (WSP) of the target
parameter to be detected, then DSPOT is employed to set multi-tier thresholds for target parameter
and WSP. At last, two criteria are formulated to determine anomalies. Additionally, to cut the time
consumption of the DCDSPOT, we apply Probability Weighted Moments (PWM) for parameter
estimation of Generalized Pareto Distribution (GPD). Experiments on real satellite telemetry dataset
shows that our method has higher recall and F1-score than other commonly used methods, and the
running time is also significantly reduced.

Keywords: anomaly detection; causality; double criteria; DSPOT; spacecraft

1. Introduction

A spacecraft is a complex system consisting of many interrelated and mutually re-
strictive components. It requires multidisciplinary technologies of multiple fields such as
telemetry sensing, wireless communication, and navigation control [1,2]. The operation
of a spacecraft is affected by many uncertain factors, which make it prone to sudden or
gradual failures. Therefore, it is of practical significance to improve the safe operation of
the spacecraft and reduce the risk of spacecraft management system by analyzing telemetry
data [3–6]. Anomaly detection of spacecraft telemetry is still an intractable problem due to
the huge amount of data, complex data patterns, and limited computational resources.

At present, spacecraft telemetry anomaly detection methods include manually setting
thresholds for monitored data, expert system-based methods, and data-driven anomaly
detection [7]. The data-driven approaches are currently widely used because they can
detect unknown and within-threshold anomaly patterns through normal data analysis
without prior knowledge of experts. Data-driven anomaly detection methods include
methods based on statistical models, methods based on similarity, and methods based on
prediction models.
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Methods based on statistical models are commonly used in actual spacecraft operation
systems. By making distribution assumptions on historical data and establishing statistical
models, reasonable thresholds can be set, and the normal range of the data is then deter-
mined. Once the points or sequence are out of this range, a warning will be issued. This
kind of method is simple to operate and facilitates the implementation by engineers and
technicians. However, anomaly detection based on statistical model also has the following
three shortcomings:

1. Thresholds set merely by establishing a statistical model of historical data have poor
scalability, and they do not have the ability to cope with sudden failures and changes
of working mode;

2. Many types of anomalies will not cause the variables to exceed the thresholds when
they occur. The reason for anomalies may be the abnormal fluctuation or the failure
propagation effect;

3. Presetting thresholds via statistical model in large-scale sequence is very time-consuming,
and it is laborious to adjust thresholds in consideration of different operating conditions.

To solve the problems above, many advanced methods have been proposed recently [8–11].
Among the existing work, Peaks Over Thresholds (POT) [12] achieves the most competitive
performance. POT can be used as an automatic thresholding block that can provide strong
statistical guarantees and adapt to the changes in data stream. POT does not rely on any
prior knowledge or distribution assumptions, and it can automatically set and update
thresholds. However, when it is used in telemetry data anomaly detection, the problems of
poor interpretability and high false negative rate are still unsolved.

As a kind of multivariate time series, telemetry data has complex causalities among its
parameters. These causalities have great potential in telemetry data analysis and anomaly
detection, helping to study satellite operation mechanisms, and improve detection efficiency
and the interpretability of anomaly detection.

Aiming at solving the problems of traditional methods as well as taking advantage
of causality between parameters, we propose an anomaly detection framework based
on the parametric causality and Double-Criteria Drift Streaming Peaks Over Threshold
(DCDSPOT) to realize spacecraft telemetry data anomaly detection with interpretability and
high detection efficiency and accuracy. The key contributions of this paper are as follows:

1. We propose the Normalized Effective Transfer Entropy (NETE) to remove the noise
and errors caused by nonstationarity of the data in the calculation of transfer entropy.
Transfer entropy is the most commonly used and important metric for time series
causal network inference based on information theory;

2. We use NETE to improve the Multivariate Effective Source Selection algorithm, and
then apply it to construct a causal network of telemetry parameters;

3. We propose the DCDSPOT method, which sets multi-tier thresholds for the target pa-
rameter to be detected and Weighted Source Parameter (WSP) of the target parameter,
and then formulate two criteria to determine the anomaly. Anomaly detection using
DCDSPOT has a lower false negative rate and a higher F1-score than other commonly
used methods;

4. We apply Probability Weighted Moments (PWM) for parameter estimation of Gener-
alized Pareto Distribution (GPD) instead of Maximum Likelihood Estimation (MLE)
to shorten the running time of threshold calculating.

The framework of our method is shown in Figure 1.
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Figure 1. Framework of spacecraft telemetry anomaly detection based on parametric causality and
double-criteria drift streaming peaks over threshold.

2. Related Work

In this section, we introduce the related works involved in our research. It mainly
includes contents about spacecraft telemetry data anomaly detection, time series causal
network inference, and POT and its derived methods.

2.1. Spacecraft Telemetry Data Anomaly Detection

During the spacecraft’s on-orbit operation, the sensor parameter information obtained
by its internal operating status monitoring system is encoded and transmitted to the
ground through the telemetry system. This telemetry data is the only basis for ground-
based spacecraft operators to understand the spacecraft’s on-orbit operating status. If the
on-orbit spacecraft is abnormal, the corresponding telemetry parameters’ trend will change.
Hence, anomalies in telemetry data can reflect problems such as acquisition equipment
failure, transmission link damage, quality problems, and mechanical and electronic failure.

Anomaly detection of the telemetry data is the key to realize the early warning of
abnormal changes and effectively avoid possible failures. Anomaly detection is to use a
certain method to realize the discovery of abnormal components in telemetry data. The
anomaly types of telemetry data include point anomalies, contextual anomalies, collective
anomalies, and correlated anomalies [13]. Recently, data-driven anomaly detection technol-
ogy for spacecraft telemetry data has become a hot research topic, it does not require prior
knowledge of expert experience, and it can detect anomaly through data analysis. Data-
driven anomaly detection uses statistics, traditional machine learning or deep learning to
model and characterize telemetry data to identify anomalous patterns that do not conform
to normal data.
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With the increasing number of on-orbit spacecrafts, the dimension of telemetry data
that needs to be monitored in real time is expanding. Moreover, due to the different
characteristics of anomalies and complex interaction in telemetry parameters, using data-
driven methods to detect anomalies in telemetry data in a timely and effective manner
has become more and more challenging. The problems of time-consuming methods,
false negatives, and false positives commonly exist. Hence, detection methods with a
high detection rate, low false detection rate, and strong interpretability have become a
pressing need.

2.2. Time Series Causal Network

Telemetry data is essentially a multivariate time series with complex causality among
its multiple parameters. Causality is more interpretable than correlation. Correlation only
means “synchronized changes” of two variables, not directional, but causality means that
a change in one variable will irreversibly affect another variable in some fixed pattern.
Causality reflects not only the correlation in the aspect of statistics, but also the mutual influ-
ence in terms of physical mechanism or logic. Causality has been widely applied in many
areas such as physics [14], biomedical science [15], ecosystems [16], and neuroscience [17].

Causal Bayesian Network (CBN) [18] represents a form of a time series causal network,
and it is a specific version of Bayesian networks. A Bayesian network is based on the
principles of Bayesian statistics, it is suitable for expressing and analyzing uncertain and
probabilistic events. A Bayesian network uses the conditional probability to express the
strength of the relationship, and uses the prior probability to express the information
without a parent node. CBN is a Bayesian network that further stipulates that the edge
between nodes indicates the causal relationship between two variables, the out-degree node
of the edge denotes the cause variable (usually called source variable), and the in-degree
node of the edge denotes the result variable (usually called the target variable).

A time series causal network is a causal network that considers the causal relationship
and time lag between variables. The Directed Acyclic Graph (DAG) G = {X, E, T} denotes
the time series causal network, and the node set X = {X1, X2, ..., Xn} denotes the set of
variables. These variables are supposed to all be observable [19]. The set of directed edges
E denotes the causal relationship between nodes, and the causal time lag T = {τ1, τ2, ..., τn}
denotes the max time lags of causal relationships. Figure 2 shows an example of a time
series causal network.
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Figure 2. An example of a time series causal network with five nodes and five edges. The arrows
denote causal links, and τmax denotes the max time lag of each causality.
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Time series causal inference algorithms include methods based on regression analysis,
methods based on information theory, and methods based on state space model [20].
Methods based on information theory can be applied to high-dimensional data as well as
measuring the strength of the causality. Thus, they are widely used in time series causal
inference. Schreiber et al. [21] proposed Binary Transfer Entropy (BTE) as a measure for
causality strength. BTE can be used for non-linear data, but not for multivariate time series.
Sun et al. [22] proposed Causal Entropy (CE) to measure causal strength. CE can be applied
to multivariate time series and can also distinguish direct and indirect causality, but it
cannot reflect the true causality strength. Hao et al. [23] proposed Normalized Causal
Entropy (NCE), which can eliminate the indirect influence between nodes and measure
the strength of causality more accurately than traditional methods by unifying dimension.
However, for time series with a large amount of variables, its calculation complexity is high
and it depends on prior knowledge. Runge [24] proposed the PCMCI (Peter Clark-Moment
Conditional Independence) algorithm for constructing a causal network in a large scale
multivariate time series. The algorithm is the improved version of the traditional PC
(Peter Clark) algorithm. PCMCI removes false causality by adding an MCI test, but it
has still not completely overcome the shortcomings of the PC algorithm, which has poor
comprehensibility and robustness. Time series causal inference methods that are suitable
for non-stationary, high-dimensional sequences, and can accurately reflect causal strength
are the focus of current scholars.

2.3. Peaks over Threshold and Its Derived Methods

Siffer [12] proposed a POT method based on extreme value theory, which do not
require manual threshold setting, and no assumptions are made on the distribution. POT
is inspired by the Pickands-Balkema-de Haan theorem [25]. The POT approach tries to
fit a Generalized Pareto Distribution (GPD) to the extreme values of X− t, t is the initial
“over-limit” threshold set as the high empirical quantile. Equation (1) shows that exceeding
the initial threshold obeys the GPD G(x) with parameters µ, σ and γ, namely:

G(x) = exp(−(1 + γ
x− µ

σ
)−1/γ
+ ) (1)

Here µ is a location parameter but set null, σ > 0 is a scale parameter, γ is a shape parameter,
and the “+” signifies that if the expression in parentheses is negative then it should be
replaced by 0.

Using the method proposed by Pickands [25] to estimate γ̂, σ̂, the final threshold zq is
computed via Equation (2).

zq ' t +
σ̂

γ̂
((

qn
Nt

)−γ̂ − 1) (2)

q is the risk parameter, n is the length of time series, Nt is the number of peaks (that is, the
number of xi > t, ∀i ∈ {1, 2, ..., n}), zq is the updated threshold determined according to
the confidence level 1− q, and Algorithm 1 shows the steps of POT.

Algorithm 1 Peaks Over Threshold

Require: time series X = (x1, x2, ..., xn, xn+1, ..., xN), risk parameter q, quantile α
Ensure: zq, t

1: function POT(X, q, α)
2: t← SetInitialThreshold(X1, X2, ..., Xn) # set by low α quantile
3: Yt ← {Xi − t|Xi > t}
4: γ̂, σ̂ ← Grimshaw(Y) a method for the maximum likelihood estimation of

parameter, see [26]
5: zq ← t + σ̂

γ̂ [(
qk
Nt
)−γ̂ − 1]

6: return zq
7: end function
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Besides, Siffer proposed Streaming POT (SPOT), Drift SPOT (DSPOT), bidirectional
SPOT (biSPOT), and bidirectional DSPOT (biDSPOT) based on POT.

SPOT works in stationary cases assuming that the distribution of the Xi does not
change over time. The principle of the SPOT is the following: we want to detect abnormal
events in a stream Xi > 0 in a blind way (without knowledge about the distribution).
Firstly, we perform a POT estimate on the n first values and we get an initial threshold zq
(initialization). Then, for all the next observed values we can flag the events or update the
threshold (see Figure 3a). If a value exceeds threshold zq then we consider it as abnormal.

DSPOT takes a drift component into account to be applied in sequences with non-
static distribution. DSPOT makes SPOT run not on the absolute values Xi but on the relative

ones X′i = Xi −Mi, where Mi models the local behavior at time i . Mi = (1/d)
d
∑

k=1
X∗i−k

with X∗i−1, X∗i−2, ...., X∗i−d the last d “normal” values (see Figure 3b), d can be viewed as a
window size.

t

1x nx但是都是多所多所多所多所多所多
calibration data test data

1nx +
.......但是都是多所多所多所多所多所多 time

Normal data 

Peak data 

Anomaly

qz

(a) Anomaly detection using SPOT

Algorithm 2 SPOT (Streaming POT)
1: procedure SPOT((Xi )i>0,n,q)
2: A← ∅ ▷ set of the anomalies
3: zq , t ← POT(X1, . . .Xn ,q)
4: k ← n
5: for i > n do
6: if Xi > zq then ▷ anomaly case
7: Add (i,Xi ) in A
8: else if Xi > t then ▷ real peak case
9: Yi ← Xi − t
10: Add Yi in Yt
11: Nt ← Nt + 1
12: k ← k + 1
13: γ̂ , σ̂ ← Grimshaw(Yt )
14: zq ← CalcThreshold(q, γ̂ , σ̂ ,k,Nt , t)
15: else ▷ normal case
16: k ← k + 1
17: end if
18: end for
19: end procedure

zq

t

time

FLAG!

X1 Xn
calibration

Xn+1
stream
· · ·

Normal

Peaks

Abnormal

Figure 3: Anomaly detection overview

but the method is the same for lower-bound ones and we can even
combine both (performances will be presented in 5.4).

4.2.2 Drifting case. SPOT assumes that the distribution of theXi
does not change over time but it might be restrictive. For instance,
a mid-term seasonality cannot be taken into account, making lo-
cal peaks undetectable. In this section we overcome this issue by
modeling an average local behavior and applying SPOT on relative
gaps.

We propose Drift SPOT (DSPOT) which makes SPOT run not
on the absolute values Xi but on the relative ones. We use the
variable change X ′i = Xi −Mi whereMi models the local behavior
at time i (see figure 4). In our implementation we used a moving
average Mi = (1/d) ·

∑d
k=1 X

∗
i−k with X ∗i−1, . . .X

∗
i−d the last d

"normal" observations (so d is a window parameter). In this new
context we assume that the local variations X ′i come from a same
stationary distribution (the hypothesis assumed for Xi in SPOT is
now assumed for X ′i ).

This variant uses an additional parameterd , which can be viewed
as a window size. The distinctive features of this window (noted
W ∗) are the following: it might be non continuous and it does not
contain abnormal values.

FLAG! zq

t

M

time
Xi Mi X j Mj

Figure 4: Anomaly detection with drift

Algorithm 3 DSPOT (Streaming POT with drift)
1: procedure DSPOT((Xi )i>0,n,d,q)
2: A← ∅ ▷ set of the anomalies
3: W ∗ ← [X1, . . .Xd ] ▷ Last d normal values

4: Md+1 =W ∗ ▷ Local model with depth d
5: for i ∈ [[d + 1,d + n]] do
6: X ′i = Xi −Mi
7: W ∗ ← [Xi−d+1, . . .Xi ]
8: Mi+1 ←W ∗
9: end for
10: zq , t ← POT(X ′d+1, . . .X

′
d+n ,q)

11: k ← n
12: for i > d + n do
13: X ′i = Xi −Mi ▷ variable change
14: if X ′i > zq then ▷ anomaly case
15: Add (i,Xi ) in A
16: Mi+1 ← Mi ▷ no update
17: else if X ′i > t then ▷ real peak case
18: Yi ← X ′i − t
19: Add Yi in Yt
20: Nt ← Nt + 1
21: k ← k + 1
22: γ̂ , σ̂ ← Grimshaw(Yt )
23: zq ← CalcThreshold(q, γ̂ , σ̂ ,k,Nt , t)
24: W ∗ ←W ∗[1 :] ∪ Xi ▷ window slide
25: Mi+1 ←W ∗ ▷ update of the local model
26: else ▷ normal case
27: k ← k + 1
28: W ∗ ←W ∗[1 :] ∪ Xi ▷ window slide
29: Mi+1 ←W ∗ ▷ update of the local model
30: end if
31: end for
32: end procedure

The algorithm 3 shows ourmethod to capture the local model and
perform SPOT thresholding on local variations. It contains some
additional steps so as to compute variable changes. For these stages,
we principally use a sliding windows over normal observationsW ∗
(lines 3, 7, 24 and 28) in order to calculate a local normal behavior
Mi (lines 4, 8, 25 and 29) through averaging. We logically update
the local behavior only in normal or peak cases (lines 25 and 29).

We can retrieve sequentially the “real" extreme quantiles by
adding Mi to the calculated zq . Such a choice to model the local

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1071

(b) Anomaly detection using DSPOT

Figure 3. Principles of anomaly detection using SPOT and DSPOT.

SPOT and DSPOT can detect upper outliers but not lower outliers, so they may lead
to a large number of false negatives. biSPOT and biDSPOT can effectively overcome the
above shortcomings of SPOT and DSPOT. “bi” denotes “both sides”, which takes upper
and lower thresholds updates into account.

POT and its derived methods achieve outstanding performance in detecting extreme
values without any label-related information, which has the potential to solve the unsuper-
vised anomaly detection problem in large-scale time series. Figure 4 shows examples of
anomaly detection using SPOT, biSPOT, DSPOT, and biDSPOT.

(a) SPOT

Figure 4. Cont.



Appl. Sci. 2022, 12, 1803 7 of 24

(b) DSPOT

(c) biSPOT

(d) biDSPOT

Figure 4. Examples of anomaly detection using SPOT, biSPOT, DSPOT, and biDSPOT.

3. Causality Inference Using IMESS

In this section, we introduce a multivariate time series causal inference method based
on Transfer Entropy (TE) and the Multivariate Effective Source Selection (MESS) algorithm.
Then, we analyze the shortcomings of TE and propose a more reliable metric Normalized
Effective Transfer Entropy (NETE) to overcome the defects of TE. Finally, we use NETE
instead of TE to perform the MESS algorithm, which we call Improved MESS (IMESS).

3.1. Transfer Entropy

Transfer Entropy (TE) is a measure of causality for time series [19]. It can be intu-
itively interpreted as the current degree of uncertainty of X that is solved jointly by the
variables X and Y and exceeds the current degree of uncertainty, which can be solved by
X’s own past. Equation (3) gives the relationship between TE and Shannon entropy H, here
H = −∑

x
p(x) log p(x).
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TY→X(t) = H(Xt|Xk
t−1)− H(Xt|Xk

t−1, Yl
t−1) (3)

TY→X denotes transfer entropy from Y to X, H(·) denotes Shannon information entropy,
the subscript t denotes time, k and l denotes the embedding history length of X and Y, that
is Xk

t−1 = [Xt−1, Xt−2..., Xt−k], Yl
t−1 has the same meaning. According to the calculation

formula of Shannon entropy, Equation (4) gives the calculation of TE:

TY→X(t) = ∑
xt ,xk

t−1,yl
t−1

p(xt, xk
t−1, yl

t−1) log
p(xt |xk

t−1,yl
t−1)

p(xt |xk
t−1)

= ∑
xk

t−1,yl
t−1

p(xk
t−1, yl

t−1)∑
xt

p(xt|xk
t−1, yl

t−1) log
p(xt |xk

t−1,yl
t−1)

p(xt |xk
t−1)

(4)

Generally, k is set as 1, l can be freely selected in practical applications, different l
denotes different time lags of causality.

3.2. Multivariate Effective Source Selection

In a multivariate time series, the causality between variables are influenced by other
parameters, resulting in a binary transfer entropy that cannot reflect the true flow of infor-
mation between the two parameters. Lizier [27] proposed an algorithm named Multivariate
Effective Source Selection (MESS), which can identify causality in multivariate time series.

Let D be all variables in system,VX be the set of source parameters of X (VX ∈ D),
which is called the information contribution set. We can decompose H(X) into the collective
transfer entropy of the previous t time-step information contribution set VX (denoted by
TVX→X), the historical information provided by X itself (called Active Information Storage
and denoted by AX), and the inherent uncertainty or randomness information U(X) in X,
as shown in Equation (5):

HX = AX + TVX→X + UX (5)

Equation (5) is called the information decomposition formula. According to the
information decomposition formula, the source variables of a target variable is the set of
variables that can incrementally provide enough information to reduce the uncertainty of
the target variable. The steps of MESS are as follows:

1. Initialize VX = ∅.
2. For each possible source parameter Z ∈ D\VX , calculate TZ→X|VX

.
3. Choose the Z ∈ D\VX that provides the largest incremental information contribution

TZ→X|VX
for the next state of X.

4. Repeat steps 2 and 3 until there is no Z that can be added to VX. The reason for
the termination of the algorithm is that there is no more information in X left to
account for, or no source Z provides a statistically significant information contribution
TZ→X|VX

which could account for part of the remaining uncertainty in X.
5. When no source Z can be found to provide a statistically significant information

contribution TZ→X|VX
, consider joint pair of sources Z= {Za, Zb|Za, Zb ∈ D\VX}

instead of a single source Z, and repeat steps 2 and 3.
6. Once we have finalized the determination of VX after the above, then check whether

each Z ∈ VX adds a statistically significant amount of information TZ→X|VX\Z given
all of the other sources selected for VX . Where the source fails this test, it is removed
from VX .

3.3. Improved Multivariate Effective Source Selection (IMESS)

MESS has low computational complexity and can quickly determine causality in
multivariate time series. The basis of the MESS is calculating the TE, but TE has two defects
when it is used for causal inference:
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1. The calculation of TE depends on the probability distribution of time series, which
is affected by the non-stationarity and the noise of the data, and the limited sample
effect can also easily lead to error of Shannon entropy estimation [19];

2. TE is affected by the amount of information of the variable, but the dimensions among
different variables are not uniform, so that TE is not comparable. Even if there is no
effective causal relationship between variables with large self-information, there might
also be abundant information flow between them. Therefore, if the self-information
gap of variables is too large, the accuracy of the causal inference algorithm based on
TE will drop significantly.

Due to the two defects of TE above, causal inference based on MESS may lead to lots of
false causalities. To overcome the defects of TE, we propose Normalized Effective Transfer
Entropy (NETE). Before giving the definition of NETE, the definitions of Random Transfer
Entropy (RTE) and Effective Transfer Entropy (ETE) are given below.

Definition 1 (Random Transfer Entropy (RTE)). Randomly shuffle the time series of source
variable for K times to break any causal relationship between variables, but keep the probability
distribution of each time series unchanged, then calculate TE for each shuffling and take the average,
which is the RTE.

RTEX→Y =
1
K

K

∑
k=1

TXshu f f le [k]→Y (6)

Xshu f f le[k] denotes the sequence obtained by randomly shuffling X for the k-th time. RTE reflects
the noise (error) caused by the non-timing of TE calculation, the non-stationarity of the data, and
the finiteness of the scale of data. The value of K is generally set to be greater than 1000.

Definition 2 (Effective Transfer Entropy (ETE)). ETE is the value that TE calculated by actual
order of the data minus RTE, which reflects the “net” information transfer after eliminating the
noise (error) caused by non-timing and non-stationarity of the data.

ETEX→Y = TX→Y − RTEX→Y (7)

Definition 3 (Normalized Effective Transfer Entropy (NETE)). NETE is the ratio of ETE
to the Shannon entropy of the target variable. NETE considers the self-information of the target
variable, and can unify the dimensions to a certain extent, so that it can measure the strength of
causality more accurately.

NETEX→Y =
ETEX→Y

H(Y)
(8)

Then we use NETE instead of TE as the basic metric for MESS to infer causality in
multivariate time series. MESS based on NETE is called Improved MESS (IMESS) in our
paper. Algorithm 2 shows the detailed steps of IMESS.

It should be noted that there might be bidirectional causalities of the network inferred
by MESS and IMESS. They are logically unreasonable, but since we cannot observe all the
variables in the system during causal inference, confusion bias is inevitable [28]. Bidirec-
tional causality implies that there may be confusion bias caused by a hidden common cause
(see Figure 5). Hence, in our study, bidirectional causality is considered to be reasonable.
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X Y

U
Unobserved Variable

Confusion Bias

Figure 5. An example of bidirectional causality. There is a causality Y→X. The variable U is an
unobserved variable (or cannot measure), and there is causalities U →X and U →Y (U is the common
cause of X and Y). However, since U cannot be observed, the information flow between U and X and
U and Y may affect the information flow between X and Y, and since data-driven causal inference
relies on conditional independence (conditional mutual information), which occurs when using the
MESS algorithm, we may infer that X is the source variable of Y, and Y is also the source variable of X.

Algorithm 2 Improved multivariate effective source selection (IMESS)

Require: time series X = (x1, x2, ..., xn, xn+1, ..., xN), target parameter XT(T ∈ {1, 2, ..., n})
Ensure: VXT (source parameters of XT)

1: function IMESS(X, XT)
2: VXT ← ∅
3: repeat:
4: for Z ∈ D\VX do
5: calculate NETEZ→XT |VXT

6: end for
7: Add Z = arg max(NETEZ→XT |VXT

) in VXT

8: until:
9: No more information in XT left to account for OR no source Z provides a

statistically significant information contribution NETEZ→XT |VXT
which could account

for part of the remaining uncertainty in XT

10: repeat:
11: for Z= {Za, Zb|Za, Zb ∈ D\VXT} do
12: calculate NETEZ→XT |VXT

13: end for
14: Add Z = arg max(NETEZ→XT |VXT

) in VXT

15: until:
16: no source Z provide a statistically significant information contribution

NETEZ→XT |VXT
which could account for part of the remaining uncertainty in XT

17: for Z ∈ VXT do
18: if Z does not add a statistically significant amount of information

NETEZ→XT |VXT
given all of the other sources selected for VXT then

19: Remove Z from VXT

20: end if
21: end for
22: return VXT

23: end function

4. Double-Criteria Drift Streaming Peaks over Threshold (DCDSPOT)

POT and its derived methods have satisfying performance in univariate time series
anomaly detection, but spacecraft telemetry data is multivariate, and there are complex
interactions (causalities) among the parameters. These causalities tend to have a crucial
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impact on the anomalous patterns propagation of the parameters. To effectively take these
causalities into consideration in anomaly detection, we propose a double-criteria anomaly
detection method. Our method is improved on the basis of the DSPOT approach.

4.1. Weighted Source Parameter

Since causality exists universally in telemetry, when we aim to detect the anomaly of a
certain target parameter, it is necessary to consider both the target parameter and its source
parameters. In other words, we need to additionally take the values of source parameters
of the target parameter into consideration when determining whether the target parameter
is abnormal.

When we apply causality to detect anomalies of a target parameter, whether it is
anomalous or not cannot be inferred merely based on the value of a certain source parameter
or part of the source parameters. There are two reasons. First, some variables that have
non-negligible impact on the system exist but we cannot observe them (or it is difficult to be
accurately measured), such as the intensity of sunlight in the spacecraft system. Therefore,
the source parameters we select may be only part of all the source parameters, and the
anomaly of one source parameter does not inevitably cause the anomaly of the target
parameter. Second, although the interactions among some source parameters and the target
parameter are not significant, their extreme anomalous mode may also lead to anomaly
of the target parameter. Hence, we need to comprehensively consider the influence of all
source parameters on target parameter.

Suppose the target parameter is X, and all its source parameters are U1, U2, ..., Uk, the
time lags of all causalities are t = [τ1, τ2, ..., τk]. When we are detecting the value of the
target parameter X at time t, we need to take the value of the source parameter Uj at time
t− τj (j = 1, 2, ..., k) into consideration, because if the anomalous mode appears in Uj at
time t, it will not spread to target parameter X until time t + τj. When t is less than τj, we
take Uj[0] as a substitute for Uj[t− τj].

Then we define the Weighted Source Parameter (WSP), which is denoted by VX.
WSP is a “virtual” parameter weighted and summed according to the strength of the
source parameters’ influence (value of NETE in our method) on the target parameter (see
Equation (10). Equation (9) shows the mathematical definition of WSP, and the negative
sign in superscript means the timestep moves backward. WSP does not actually exist, but
it represents the weighted synthesis of the numerical modes of all the source parameters.
The extreme value distribution of WSP can also be regarded as approximately obeying
GPD [29].

VX = wTU−t = wT(U1
−τ1 , U2

−τ2 , ..., Uk
−τk ) (9)

wT =
1

k
∑

i=1
NETEUi→X

[NETEU1→X , NETEU2→X , ..., NETEUk→X ]
T (10)

Uj
−τj denotes shifting the sequence Uj backward by τj, that is Uj

−τj [t] = Uj[t− τj].

4.2. Multi-Tier Thresholds

The original threshold-based anomaly detection often sets a single threshold. Once
the threshold is exceeded, the value here is determined to be an anomaly, such as setting
threshold based on threshold library [30], setting threshold based on expert experience [31],
3σ criterion, and mixture Gaussian distribution [32]. The original methods are simple and
fast, but they have poor robustness, because the setting of the threshold is not completely
automatic, some risk parameters (such as q in SPOT) need to be set manually, and the
selection is often subjective and instable. To enhance the robustness, we introduce multi-tier
thresholds based on biDSPOT, which is suitable for multivariate time series.

First, we define the high-tier, medium-tier, and low-tier thresholds TUh, TUm, and
TUl of the target parameter. TUh is the limit of the threshold, once the value of the target
parameter exceeds TUh, then it can be concluded to be an anomaly. TUl is a safety threshold,
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and if the value of the target parameter does not exceed TUl , it can be concluded that it
is not an anomaly. TUm can be regarded as an “alarm” threshold, when the value of the
target parameter exceeds TUm, it is likely to be anomalous.

The “high-tier, medium-tier, and low-tier” thresholds mentioned above are applicable
to anomaly detection of “exceeding upper limit”. To detect values that exceed low limit, we
use lower thresholds denoted by TLh, TLm, and TLl . All thresholds are computed using
the biDSPOT by setting different risk parameters (see Equation (11)).

X = [x1, x2, ..., xn, xn+1, ..., xN ]
thuh, thll = biDSPOT(X, q1)
thum, thlm = biDSPOT(X, q2)
thul , thlh = biDSPOT(X, q3)
TUh, TUm, TUl = max, med, min{thuh, thum, thul}
TLh, TLm, TLl = max, med, min{thlh, thlm, thll}

(11)

q1, q2,and q3 denote high, medium, and low risk parameters, and q1 < q2 < q3. The
reason for using the last two sub-equations in Equation (11) is that due to the error of
parameter estimation, the threshold computed by q1 < q2 < q3 does not necessarily lead to
TUh > TUm > TUl , so we need to reorder them to get the result we want. “max, min, med”
means to find the maximum, minimum, and median of numbers. biDSPOT(·) denotes
using Algorithm 1 and methods illustrated in Section 2.3 to compute upper and lower
thresholds.

Similarly, we can also define high-tier, medium-tier, and low-tier thresholds for the
WSP. The “exceeding upper limit" thresholds are denoted by STUh, STUm, and STUl . The
“exceeding low limit" thresholds are denoted by STLh, STLm, and STLl .

VX = wTU = [v1, v2, ..., vn, vn+1, ..., vN ]
sthuh, sthll = biDSPOT(VX, p1)
sthum, sthlm = biDSPOT(VX, p2)
sthul , sthlh = biDSPOT(VX, p3)
STUh, STUm, STUl = max, med, min{sthuh, sthum, sthul}
STLh, STLm, STLl = max, med, min{sthlh, sthlm, sthll}

(12)

p1, p2, and p3 denote high, medium, and low risk parameters, and p1 < p2 < p3. Generally,
we set pi = qi(i = 1, 2, 3). For WSP, we only need two tiers of threshold, but we still
compute the thresholds using three risk parameters, because we must ensure that the
thresholds of target parameter and WSP are determined at the same risk levels.

In order to detect anomaly according to the multi-tier thresholds, we formulate two
criteria for WSP and target parameter, which are given in Table 1. When the values of target
parameter and the WSP meet the two criteria respectively at the same time, the value of the
target parameter is judged to be an anomaly.

Table 1. Anomaly cases determined by double-criteria and multi-tier thresholds.

Criterion 1: for Target Parameter Criterion 2: for WSP

xi > TUh or xi < TLl /
TUm < xi ≤ TUh vi>STUm or vi < STLm
TLl ≤ xi < TLm vi < STLm or vi>STUm
TUl < x ≤ TUm vi > STUh or vi < STLl
TLm ≤ x < TLh vi < STLl or vi > STUh

The method of setting multi-tier thresholds based on biDSPOT and using two criteria
to identify anomaly is called Double-Criteria DSPOT (DCDSPOT). DCDSPOT considers
the target parameter and the source parameters at the same time, which can reduce the
false detection caused by the instability and noise of the target parameter during anomaly
detection. As a result, the performance of DCDSPOT in reducing false negatives is out-
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standing. Figure 6 shows a case of anomaly detection by DCDSPOT, Figure 7 compares the
biDSPOT and DCDSPOT methods and shows how DCDSPOT eliminates false negatives.

(a) Multi-tier thresholds setting of target parameter (b) Multi-tier thresholds setting of weighted source parameter

(c) Anomaly detection using DCDSPOT

Figure 6. An example of anomaly detection using DCDSPOT. In the first and second sub-figures,
the red curve represents thresholds calculated by q1 and p1, the orange curve represents thresholds
calculated by q2 and p2, and the light blue curve represents thresholds calculated by q3 and p3.

False Negatives

False Negatives（reduced）

Identified as anomalies
m h

TL < x < TL  

i l
v < STL

Figure 7. A case that illustrates how DCDSPOT eliminates false negatives. A sequence is judged as
normal by biDSPOT, but these are false negatives. By setting multi-tier thresholds for WSP and target
parameter, false negatives that meet TUm < xi ≤ TUh and vi<STLl are corrected.
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4.3. Probability Weighted Moments for Parameter Estimation of GPD

When we employ DCDSPOT for anomaly detection, it is inevitable to set three different
thresholds for the target parameter and the WSP. Hence, the running time is 6 times that of
the original biDSPOT. To shorten the running time of our method, parameter estimation
needs to be improved.

Parameter estimation using the Maximum Likelihood Estimation (MLE) method is
time-consuming. In our method, we applied Probability Weighted Moments (PWM) for
parameter estimation of GPD instead of MLE by Grimshaw trick [26]. PWM is based
on the basic principle of the moment estimation method, which regards the probability
distribution as the weights. The formula of PWM is described in Equation (13):

wr(θ) = E[YFr(Y; θ)] (13)

wr denotes r-order probability weighted moment, and θ denotes the parameter of the distribu-
tion function, and E(·) means to find the expected value. Substituting the GPD function into
Equation (13), the r-order PWM of the GPD distribution can be calculated via Equation (14):

wr = E(YGr) =
σ

γ
× [

r!
(r + 1− γ)(r− γ)...(1− γ)

− 1
r + 1

] (14)

wr can be estimated by Equation (15) using the sample:

wr =
1

Nt

Nt

∑
i=1

(i− 1)(i− 2)...(i− r)
(Nt − 1)(Nt − 2)...(Nt − r)

Y(i) (15)

where Y(1) ≤ Y(2) ≤ ... ≤ Y(Nt), that is, Y(i) denotes the i-th data in the sequence after
arranging the sample data from small to large. Then w0 and w1 can be computed via
Equation (16):

w0 = 1
Nt

Nt
∑

i=1

i
Nt

Y(i) =
1

N2
t

Nt
∑

i=1
Y(i)i

w1 = 1
Nt

Nt
∑

i=1

i−1
Nt−1 Y(i) =

Nt
Nt−1 w0 − 1

Nt(Nt−1)E(Y)
(16)

Finally, the sample PWM is used instead of the population PWM to estimate parame-
ters, namely: {

w0 = σ
1−γ

w1 = σ 3−γ
2(1−γ)(2−γ)

→
{

σ̂ = 2w0(w1−w0)
w0−2w1

γ̂ = 2 + w0
w0−2w1

(17)

In our method, we use Algorithm 3 to calculate thresholds of POT.

Algorithm 3 Peaks over threshold Using PWM

Require: time series X = (x1, x2, ..., xn, xn+1, ..., xN), risk parameter q, quantile α
Ensure: zq, t

1: function POT USING PWM(X, q, α)
2: t← SetInitialThreshold(X1, X2, ..., Xn) # set by low α quantile
3: Yt ← {Xi − t|Xi > t}
4: γ̂, σ̂← PWM(Y) Equation (17)
5: zq ← t + σ̂

γ̂ [(
qk
Nt
)−γ̂ − 1]

6: return zq
7: end function

5. Case Study

In this section, to verify the novelty and effectiveness of our method in causal inference
and anomaly detection, we conduct comparative experiments on two datasets with known
causality and a satellite telemetry dataset.
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5.1. Causal Network Inference Experiment

To verify the effectiveness on causal inference of IMESS algorithm , we employ two
datasets with known causal relationships to conduct comparative experiments. In the
experiment, three advanced algorithms of PCMCI, NCE, and MESS are used as the baseline
algorithms to be compared with IMESS.

We selected two datasets in Refs. [33,34] for experimental verification, which are
denoted by Dataset1 and Dataset2, respectively. The true causal relationships in these two
datasets are shown in Figure 8. Dataset1 comes from the physical system of the network,
and Dataset2 comes from the industrial system.

Level

S4

S11S10

V1

S6

S8

S9

S10

S11

Figure 8. Real causal network of Dataset1 and Dataset2.

In our experiment, MESS and IMESS may infer bidirectional causality, and when
bidirectional causality is inferred, we choose the causality with greater τmax as the final
direction of causality, which is also logical.

Three evaluation metrics, recall, precision, and F1-score, are introduced to evaluate
the performance of the algorithm. Recall is used to measure undiscovered edges between
nodes. Precision is used to measure edges that do not exist in the causal network graph that
are added by mistake. F1-score is a combination of recall and precision that can evaluate
the integrated performance of the causal network inference algorithm. Figure 9a shows the
confusion matrix of causal inference experiment, Equation (18) gives the definition of the
three metrics.

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− score = 2× Precision×Recall
Precision+Recall

(18)

TP
（discovered causality 

∩ 
actual causality）

FP
（discovered causality 

∩ 
spurious causality）

FN
（undiscovered causality 

∩ 
actual causality）

TN
（undiscovered causality 

∩ 
spurious causality）

(a) Confusion matrix of the causal inference experiment

TP
（number of anomalies 

detected）

FP
（ number of normal 

data detected as 
anomalies）

FN
（number of anomalies 

undetected）

TN
（ number of normal data 

not detected as 
anomalies ）

(b) Confusion matrix of anomaly detection experiment

Figure 9. Confusion matrix of the anomaly detection experiment.
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Figure 10 shows the inference results of the baseline algorithms and IMESS on two
datasets. Table 2 shows the precision, recall, and F1-score of these causal inference algo-
rithms. It should be noted that all four algorithms need to manually set the confidence
level of the significance test or conditional independence test (which can be regarded as
the “hyperparameters” of the algorithm), the inference results will also change with these
hyperparameters. Therefore, we selected the results closest to the true causal network by
grid search among all the results of the four causal inference algorithms for comparison. It
can be concluded that IMESS has a higher F1-score than the baseline algorithms.

Level

S4

S11S10

Level

S4

S11S10

Level

S4

S11S10

Level

S4

S11S10

PCMCI NCE

MESS IMESS

(a) Results of causal inference in Dataset1

Valve1

S6

S8

S9

S10

S11

Valve1

S6

S8

S9

S10

S11

Valve1

S6

S8

S9

S10

S11

Valve1

S6

S8

S9

S10

S11

PCMCI NCE

MESS IMESS

(b) Results of causal inference in Dataset2

Figure 10. Causal inference results of IMESS and three baseline algorithms on Dataset1 and Dataset2.

Table 2. Performance comparison between IMESS and three baseline algorithms.

Causal Inference Algorithm
Dataset1 Dataset2

Pre (%) Rec (%) F1 Pre (%) Rec (%) F1

PCMCI 80 60 0.7273 50 50 0.5
NCE 60 60 0.6 50 66.67 0.5714
MESS 80 60 0.7273 62.5 55.56 0.5882
IMESS 100 83.33 0.9192 87.5 77.78 0.8235

5.2. Parametric Causality Inference and Anomaly Detection on a Real Satellite Telemetry Dataset
5.2.1. Telemetry Dataset

To verify the performance of our method in spacecraft telemetry anomaly detection, we
select a real satellite for the experiment. The name of this satellite is “Satellite A”. Satellite
A is a military communication satellite, it enables any ground, sea and air communication
stations in the coverage area to communicate with each other at the same time, and has the
function of transmitting information such as telephone, telegram, fax, data, and television.
The telemetry dataset of satellite A contains more than 20 telemetry parameters, and the
labels of anomalies are given by experts and the operation system of the satellite. For the
purpose of confidentiality, we do not give the actual meaning of each telemetry parameter
in this satellite. Instead, we use A, B, C, . . . T to indicate them. Our satellite telemetry data
has been declassified through normalization and uploaded together with the paper (named
“experiment data.csv”). Among these parameters, B, D, Q, and T are are the important
parameters summed up by most experts and engineers in the long-term satellite anomaly
detection task based on the basic structure and design principles of the satellite. These
parameters have a crucial impact on the normal operation of the satellite. Parameter B
represents the output power of the southern solar array, parameter D represents the output
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power of the northern solar array, parameter Q represents the shell temperature of the
transponder, and parameter T represents the bearing shell temperature of the momentum
wheel. The dataset has 67,968 items of data sampled in 236 days, and the sampling interval
is 5 min. Table 3 gives the basic information of this satellite telemetry dataset.

Table 3. Basic information of the satellite telemetry dataset.

Attribute Contents

Number of parameters 20
Data sampling duration 236 days

Data sampling frequency 5 min
Length of dataset 67,968

Parameters to detect anomaly B, D, Q, T

5.2.2. Parametric Causal Network Inference

In this section, we applied MESS and IMESS for parametric causal network infer-
ence. Similarly, we employ precision, recall, and F1-score as the evaluate metrics of (see
Equation (18)). Figure 11 shows the parametric causal network inferred by MESS and
IMESS. Table 4 shows all the target parameters and their corresponding source parameters
of all causalities. Regarding the inferred causalities, we verify the reliability by analyzing
the physical properties the parameters represented and consulting experts in satellite de-
velopment, design, operation, and maintenance. After comprehensive analysis, combined
with the experimental results of Section 5.1, we have reason to believe that the causality
inferred by IMESS is reliable and more reasonable than that of MESS (although we do not
know the true mechanism of the satellite system and causality of these parameters).
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(a) Causal network constructed by MESS
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(b) Causal network constructed by IMESS

Figure 11. Parametric causal network inferred by MESS and IMESS. MESS leads to 95 edges, and
IMESS leads to 43 edges. The width of the edge in the causal network represents the maximum causal
time lag.

5.2.3. Anomaly Detection

To verify the performance on telemetry anomaly detection of our method, we compare
it with biSPOT and biDSPOT methods to verify the improvement. The 3σ, Local Outlier
Factor (LOF) [35], One-class support vector machine (OCSVM) [36], and Isolation Forest [37]
methods also serve as baselines, all of which do not require predicting the telemetry data.
Furthermore, we compare our method with three data-driven anomaly detection methods
based on prediction models, Long Short-term Memory-Variance Auto Encoder (LSTM-
VAE) [38], Generative Adversarial Networks (GAN) [39], and Temporal Convolutional
Network (TCN) [40].
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We employ precision, recall, and F1-score as the evaluate metrics (see Equation (18)).
Figure 9b shows the confusion matrix of anomaly detection experiment. We also recorded
the time-consumption of each method in the anomaly detection phase (experimental
environment configuration: Windows 10 + python 3.8 + CUDA 10.1 + CUDNN 7.6.5 +
tensorflow 2.5.0).

Table 4. Target parameters and corresponding source parameters with maximum causal time lags.

Target Parameter Source Parameters Maximum Causal Time Lags

A B, M, S 1,1,1
B A, M, S 5,3,5
C F, I, T 1,3,1
D A, Q, S 4,1,1
E B, O 5,1
F C 1
G C, F 5,3
I B, F, S, T 2,5,2,1
J N 1

M A, F 1,3
O A, E, M, Q 2,1,4,4
P A, E, O 1,2,5
Q D, O, S 1,2,1
R H 1
S A, B, M 2,1,2
T C, F, I 1,1,1

When using biSPOT, biDSPOT, and DCDSPOT for anomaly detection, the setting of
the risk parameter q1, q2, q3 and p1, p2, p3 are very critical, because they directly affect the
detection effect. In Ref. [12], q is manually set to be 10−3 and 10−4, but in actual application,
we need to determine the most reasonable q value based on historical detection results.
In our experiment, value of q is selected by hyperparameter optimization, that is, we use
grid search to find the q that can achieve the best detection performance. For different
target parameter sequences, the optimal q settings are different, because these parameters
have different operating modes. The parameter d of DSPOT is also determined by the
same approach.

When applying LSTM-VAE, GAN, and TCN for anomaly detection, it is necessary
to set thresholds for residual to determine whether a value is anomalous. We use the
SPOT to set thresholds for the residual sequence, because the residual sequence is often
considered stable.

5.2.4. Results and Discussion

Figures 12–15 show the multi-tier thresholds setting and anomaly detection result of
the four target parameters using DCDSPOT. Table 5 shows the precision, recall, F1-score,
and running time of DCDSPOT and the baseline methods.

Our method and similarity-based methods and other statistical model-based methods.
It can be concluded that the recall and F1-score of the DCDSPOT method are significantly
higher than those of the baseline methods of 3σ, LOF, OCSVM, Isolation Forest, biSPOT,
and biDSPOT. However, DCDSPOT takes a longer running time compared with them.
The reason why DCDSPOT has a higher recall rate (lower false negative rate) is that it
fully considers all other factors in the telemetry system that have a significant impact on
target detection parameters. Moreover, our method determines anomalies by taking the
propagation effects of anomalous data patterns into consideration. For example, items
3371–4431 of parameter D are anomalies, but it is difficult to detect them merely based on
the data of the target parameter (which can be achieved by setting lower risk parameters,
but there will be many false positives). However, these anomalies can be determined by
analyzing D and D’s weighted source parameter. All in all, by setting multiple thresholds
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and comprehensively analyzing the weighted source parameters and target parameter,
DCDSPOT can effectively reduce false positives and false negatives.

Our method and prediction model-based methods. Anomaly detection based on
prediction models has lower precision and recall than our method, which is mainly due
to the error of the prediction models. In addition, they are more time-consuming because
a good prediction model requires multiple epoch of iterations. Another shortcoming of
anomaly detection methods based on prediction model is that they may learn anomalous
patterns after encountering anomalies with a long duration, which makes the model no
longer sensitive to anomalies (see the anomaly detection of parameter T). By contrast,
DCDSPOT has higher recall and F1-score than anomaly detection methods based on
prediction models, and it can better identify long sequential anomalies.

Precision of our method. Compared with some baseline methods, DCDSPOT has
lower precision. The reason is that in order to reduce false negatives as much as possible,
the multi-tier risk parameters need to be set lower, which will inevitably lead to more false
positives (lower precision). However, the degree of recall improvement is much higher
than that of precision reduction, so the F1-score is improved significantly. The F1-score
is a comprehensive metric of anomaly detection, and it is also the metric we pay more
attention to.

Comparison of detection time complexity using PWM and MLE. Furthermore, to
improve the performance of time complexity of DCDSPOT, we replace Grimshaw trick
based MLE with PWM to estimate the parameters of GPD and to set the thresholds. It can be
seen from Table 6 that the detection performance of DCDSPOT using PWM and DCDSPOT
using MLE is not much different, but that the running time is shortened by 4–5 times, which
proves that the method we proposed is efficient in reducing time complexity.

(a) Multi-tier thresholds setting of target parameter (b) Multi-tier thresholds setting of WSP

(c) Detection result of parameter B using DCDSPOT

Figure 12. Thresholds setting and detection result of B by DCDSPOT. (a,b) The multi-tier thresholds
setting of the target parameter and WSP (the red dashed line is (S)TUh, (S)TLl , the orange dashed
line is the (S)TUm, (S)TLm, and the blue dashed line is the (S)TUl , (S)TLh), and (c) the detection
results of DCDSPOT.
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(a) thresholds setting of target parameter (b) thresholds setting of WSP

(c) detection result of D by DCDSPOT

Figure 13. Thresholds setting and detection result of D by DCDSPOT. (a,b) The multi-tier thresholds
setting of the target parameter and WSP (the red dashed line is (S)TUh, (S)TLl , the orange dashed
line is the (S)TUm, (S)TLm, and the blue dashed line is the (S)TUl , (S)TLh), and (c) the detection
results of DCDSPOT.

(a) thresholds setting of target parameter (b) thresholds setting of WSP

(c) detection result of Q by DCDSPOT

Figure 14. Thresholds setting and detection result of Q by DCDSPOT. (a,b) The multi-tier thresholds
setting of the target parameter and WSP (the red dashed line is (S)TUh, (S)TLl , the orange dashed
line is the (S)TUm, (S)TLm, and the blue dashed line is the (S)TUl , (S)TLh), and (c) the detection
results of DCDSPOT.
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(a) thresholds setting of target parameter (b) thresholds setting of WSP

(c) detection result of T by DCDSPOT

Figure 15. Thresholds setting and detection result of T by DCDSPOT. (a,b) The multi-tier thresholds
setting of the target parameter and WSP (the red dashed line is (S)TUh, (S)TLl , the orange dashed
line is the (S)TUm, (S)TLm, and the blue dashed line is the (S)TUl , (S)TLh), and (c) the detection
results of DCDSPOT.

Table 5. Anomaly detection performance of baseline methods and DCDSPOT.

Detection Method
Parameter: B Parameter: D

Pre (%) Rec (%) F1 T (s) Pre (%) Rec (%) F1 T (s)

3σ 100 40.91 0.5806 1.3 93.87 10.24 0.1847 1.23
LOF 4.17 0.88 0.0145 3.8 24.85 1.37 0.026 3.31

OCSVM 70.92 60.35 0.6521 61 30.79 36.15 0.3325 83
Isolation Forest 70.77 60.23 0.6508 74 30.26 35.56 0.327 111

biSPOT 51.07 54.17 0.5257 193 57.67 11.63 0.1936 207
biDSPOT 60.65 61.11 0.6088 44 99.88 28.86 0.4480 51

LSTM-VAE 66.29 53.89 0.5945 342 55.69 11.45 0.19 301
TCN 56.84 57.44 0.5714 217 52.73 18.61 0.2752 244
GAN 48.43 54.94 0.5148 311 45.45 19.25 0.2705 375

DCDSPOT 87.91 89.02 0.8846 259 82.82 87.89 0.8528 265

Detection Method
Parameter: Q Parameter: T

Pre (%) Rec (%) F1 T (s) Pre (%) Rec (%) F1 T (s)

3σ 84.41 6.81 0.1261 1.35 100 1.12 0.0222 1.07
LOF 25.25 1.19 0.0227 4.1 22.76 1.66 0.031 3.77

OCSVM 28.98 27.25 0.2809 73 71.64 32.05 0.4429 67
Isolation Forest 27.4 25.75 0.2655 96 40.39 19.29 0.2611 91

biSPOT 59.06 10.14 0.1730 212 93.17 13.19 0.231 199
biDSPOT 99.32 69.85 0.8202 63 84.51 2.87 0.0555 66

LSTM-VAE 56.08 10.97 0.1835 418 38.86 1.18 0.0229 335
TCN 55.69 7.99 0.1373 207 100 0.8 0.0168 236
GAN 51.06 10.69 0.1768 299 74.86 1.93 0.0376 327

DCDSPOT 81.84 91.77 0.8652 308 87.12 95.97 0.9133 318
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Table 6. Anomaly detection performance of PWM-based DCDSPOT and MLE-based DCDSPOT.

Estimation Method
Parameter: B Parameter: D

Pre (%) Rec (%) F1 T (s) Pre (%) Rec (%) F1 T (s)

PWM 86.93 89.14 0.8802 62 83.55 88.8 0.861 59
MLE(Grimshaw) 87.91 89.02 0.8846 259 82.82 87.89 0.8528 265

Estimation Method
Parameter: Q Parameter: T

Pre (%) Rec (%) F1 T (s) Pre (%) Rec (%) F1 T (s)

PWM 82.14 91.8 0.8671 74 95.76 86.69 0.9100 73
MLE(Grimshaw) 81.84 91.77 0.8652 308 95.97 87.12 0.9133 318

6. Conclusions and Future Work

To solve the problems of high false negatives, long time consumption, and poor
interpretability of spacecraft telemetry data anomaly detection methods based on statistical
model, an anomaly detection method based on parametric causality and Double-Criteria
DSPOT (DCDSPOT) is proposed in this paper. Normalized Effective Transfer Entropy
(NETE) is proposed to remove errors and noise in the calculation of transfer entropy so
as to improve the MESS algorithm. An experiment on two datasets with known causality
verifies that the F1-score of causality inference using Improved MESS is significantly
improved. DCDSPOT is proposed for thresholds setting of target parameters to be detected
and the Weighted Source Parameter (WSP), then two criteria are formulated to determine
the anomaly of the target parameter. Furthermore, to mitigate the time-consumption
problem of DCDSPOT, we use PWM instead of MLE to estimate the parameters of GPD
to set the thresholds. An experiment on a real satellite shows that our method has better
performance on recall, F1-score, and running time.

Causality is common in the parameters of spacecraft systems, and it also plays an
important role in anomaly detection and fault diagnosis of spacecrafts. In future research
work, the authors will further study and improve the causal inference algorithm of telemetry
parameters, the method of fault root cause diagnosis, and especially the combination of
causality and advanced deep learning methods (such as LSTM, Graph Neural Networks,
Transformer, etc.), so as to develop methods to detect different types of anomalies and
better monitor the health status of the spacecraft and effectively maintain the system.
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Abbreviations
The following abbreviations are used in this manuscript:

TE Transfer Entropy
RTE Random Transfer Entropy
ETE Effective Transfer Entropy
NETE Normalized Effective Transfer Entropy
MESS Multivariate Effective Source Selection
IMESS Improved Multivariate Effective Source Selection
POT Peaks Over Threshold
SPOT Streaming Peaks Over Threshold
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DSPOT Drift Streaming Peaks Over Threshold
DCDSPOT Double-Criteria Drift Streaming Peaks Over Threshold
MLE Maximum Likelihood Estimation
MoM Method of Moment
PWM Probability Weighted Moment
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