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Abstract: Triangular meshes play critical roles in many applications, such as numerical simulation
and additive manufacturing. However, the triangular meshes transformed from computer-aided
design models using common algorithms may have many undesirable narrow triangles, which tends
to affect the downstream applications. In this paper, we proposed two algorithms for Delaunay mesh
construction and simplification to improve the quality of the triangular meshes. Two improved mesh
operations of inserting vertices and collapsing vertices based on the principle of minimum volume
destruction were designed. The improved vertex inserting operation is able to modify the local mesh
so that it will conform to the local Delaunay property. The improved vertex collapsing operation can
realize the simplification of the original mesh while maintaining the local Delaunay property. The
results of visualized rendering and thermal diffusion simulations verified the improvement of the
proposed algorithms in the aspects of the quantity and quality of the meshes.

Keywords: Delaunay mesh; construction; simplification; geodesic distance

1. Introduction

Computer-aided design (CAD) models have played crucial roles in technical fields,
such as numerical simulation, additive manufacturing and visualization. Accordingly, the
triangular mesh, generated from CAD models, has become the dominant type of functional
element due to its advantages of efficiency, simplicity and flexibility. However, triangular
meshes, which are always transformed directly from a CAD model, usually have the defects
of excessively small or large angles, and redundant or irregular vertices. These defects tend
to reduce the accuracy of the numerical simulation based on triangular meshes. Thus, it is
necessary to establish effective remeshing algorithms to optimize the generated triangular
meshes, which is important for the downstream applications.

Alliez et al. [1] summarized many theories and applications of remeshing algorithms,
which can be divided into the quantity-dominant simplification algorithms and quality-
dominant optimization algorithms. In the aspects of simplification algorithms, Hoppe
et al. [2] presented a serious of basic mesh operations for mesh simplification. Garland
and Heckbert [3] also proposed a kind of quadratic error metrics (QEM) simplification
method, which is also regarded as the general model simplification algorithm. As for the
optimization algorithms, Botsch and Konnelt [4] first introduced the Laplace–Beltrami (LB)
operator to improve the quality of the irregular triangular meshes. Based on the LB operator,
they were able to construct area-equalizing triangulations with vertex smoothing operation
and optimize the original mesh, which was regarded as the basic optimization algorithms.
Furthermore, Wang et al. [5] transformed the original judgment condition for edges into
the angles, enabling the simplification after the mesh optimization. Wang et al. [6] have
realized the constraint of the shape of the triangle by varying the size of bubble based
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on the dynamics simulation method. Khan et al. [7] also tried to plan a more reasonable
distribution of the number of vertex-to-vertex connections and optimize the meshes by
constraining the range of angles. Most of these algorithms were based on the method of
area-equalizing triangulation, which were used to achieve optimization and simplification
of meshes in forms of regular triangles. Although the regular triangles can improve the
computational accuracy of simulation results, the overemphasis on the evenly constructed
triangular elements may limit the reduction of data storage and cause destruction to the
geometric feature information of the original model. It is considered that the accuracy
of numerical simulations can be improved when the cotangent formula cot α + cot β of
the discrete LB operators has non-negative weight. According to this theory, a geodesic
distance based on the discrete LB operator was used to simulate the thermal diffusion
by Crane et al. [8]. Moreover, Bobenko and Springborn [9] proved that the Delaunay
triangulation could always satisfy the non-negative weight for discrete LB operators, which
was defined as the local property of the Delaunay triangulation. Correspondingly, the
global property of the Delaunay triangulation was defined as the maximization of all the
minimum angles in the triangulation, which can be used to indirectly constrain the shape of
the triangle and avoid narrow triangles [10]. It is obvious that the Delaunay triangulation
has the advantages in protecting the geometric features and simplifying the original meshes.
However, it is difficult to achieve the Delaunay triangulation on the Riemannian manifold,
considering that the geodesic paths are difficult to be directly represented with existing
data structures. To solve this problem, Dyer et al. [11] defined a special concept of Delaunay
mesh that, as long as the sampling criterion acquired a relatively lower bound among the
distances of vertices in the Voronoi diagram, the Delaunay mesh can be obtained. Both
Dyer et al. [12] and Liu et al. [13] proposed their adaptive sampling criterions to convert
an arbitrary mesh into the Delaunay mesh by splitting non-Delaunay edges. Their methods
tended to increase the number of vertices while the original mesh was converted to the
Delaunay mesh. Therefore, the computational complexity including space complexity of
data storage and time complexity of model processing will be inevitably increased, which
may limit the application and development of Delaunay triangulation, especially for the
case of original meshes with narrow triangles. Although Yi et al. [14] proved a hybrid
mechanism operation of edge splitting and collapsing based on differential equations,
which were able to reduce the complexity of the computational processing, the basic
principle of algorithms has not been optimized.

In this paper, we propose two algorithms for the construction and simplification of
Delaunay meshes. The Delaunay construction algorithm can transform arbitrary triangular
meshes into the Delaunay meshes with the same topological type. Because the positions of
the inserted vertices are calculated according to the geometric information of the mesh, and
the identification criteria of the narrow triangles are designed to terminate the algorithm
loop, both the space complexity and the time complexity of the Delaunay mesh construction
algorithm can be optimized. In addition, a simplification algorithm is designed to simplify
the inserted vertices during the construction process, and then it will decrease the data
storage of the constructed meshes. The hybrid algorithms can preserve the geometric
features of the original CAD model with the principle of minimal volume destruction.
The experiments show that the proposed algorithms were effective for optimizing the
non-Delaunay meshes, and especially for the improvement of the quality and quantity of
the Delaunay meshes.

2. Related Work
2.1. Definition of Delaunay Triangulation

The Delaunay triangulation has similar effects in the numerical simulation with the
regular triangulation. It is defined as its duality with the Voronoi diagram, which is shown
as the dashed lines in Figure 1. The region of the Voronoi diagram Ri is divided according
to the nearest neighbor principle, where point is associated with its nearest neighbor region.
Ri can be expressed as the following:
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Ri = {p|d(p, vi) ≤ d(p, vj), j = 0, 1, 2, . . . , n, i 6= j} (1)

where p is any point in the defined space and d(p, vi) is the distance between p and vi. In
particular, as the dual graph with the Voronoi diagram, the Delaunay triangulation mesh
has the local property, which is also named as the empty geodesic circumcircle property.
This means that, for a triangle t consisting of vertices v0, v1, v2 in the Delaunay triangulation
mesh M, no other vertices that are not the vertex of the triangle in the circumcircle of t
exist. The local property implies that the commonly used cotangent Laplace–Beltrami
operator has non-negative weights [13], which enables the Delaunay triangulation to have
the similar performance as the area-equalizing triangulation in the numerical simulation.
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Figure 1. The illustration of the local Delaunay property.

2.2. Intrinsic Delaunay Triangulation

Rivin et al. [15] first defined the intrinsic Delaunay Triangulation on the manifold
surface. Then, Leibon et al. [16] proved that a unique Delaunay triangulation existed on
each closed Riemannian manifold, but it needs a large number of vertices to construct
Delaunay triangulation this way. Since the geodesic paths, also known as the triangular
edges of iDT, do not uniquely exist on the Riemannian manifold, it is necessary to confine
the domain to a sufficiently small area by vertices. Chen et al. [17] presented a two-
dimensional Delaunay mesh smoother based on the optimal Delaunay triangulation (ODT),
and they also tried to extend the ODT to three-dimensional conditions. However, on
the Riemannian manifold, it is not easy to directly transform arbitrary triangle mesh
into the Delaunay mesh. Because the geodesic paths are difficult to directly represent by
existing data structures, one indirect method was proposed by using a Geometric Voronoi
Diagram (GVD) [18,19], namely the dual of the Delaunay triangle, as an intermediate
element. Liu et al. [20] proposed a Centroidal Voronoi Tessellation (CVT) approach that
was proved to be able to construct high quality meshes. The classical Lloyd’s iterations for
CVT computing are linearly convergent and inefficient. Then, some algorithms are built
to improve the efficiency of this kind of indirect construction algorithm by increasing the
speed of solving. Liu et al. [21] proposed a quasi-Newton method to accelerate the speed
of convergence. Wang et al. [22] summarized and compared the aforementioned methods
and the limited-memory BFGS (L-BFGS) method in detail. They also contrived a way to
efficiently compute the Riemannian center on the basis of the discrete exponential map.
Subsequently, Liu et al. [23] presented a novel method relying on manifold differential
evolution (MDE), and obtained the globally optimal geodesic on triangle meshes.
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3. Method

In this section, we first give the necessary symbol definitions and several standard
local mesh operations. Then, two important improved mesh operations and the algorithm
based on them are designed.

3.1. Symbol Definition and Standard Mesh Operations

Given an input mesh M = (V, E, F) is a closed 2-manifold triangle mesh, where V, E, T
are the sets of vertex, edge, and triangular element, respectively, for an edge eij, vertices
(vi, vj) are the endpoints of it. The definition of the 1-ring neighborhood Ω(vi) of vi ∈ V is
shown in Figure 2a:

• For vertex v, if the v ∈ Ω(vi), the set {v} is all of the vertices adjacent to vi, as shown
in red vertices in Figure 2a.

• For edge eij, if eij ∈ Ω(vi), the set {eij|1 ≤ i, j ≤ n} is all of the edges whose endpoints
are the pair of vertices (vi, vj).

• For triangle tijk, if tijk ∈ Ω(vi), the set {tijk|1 ≤ i, j, k ≤ n} is all of the triangles incident
to vertex vi.

• In particular, for edge ejk, if ejk ∈ tijk and tijk ∈ Ω(vi), the set D(vi) could denote all
ejk which satisfy the condition, as indicated by the blue lines in Figure 2a.

Figure 2b shows a series of standard local mesh operations. These operations were
originally designed for the mesh simplification algorithm [2]. The effect on the local
Delaunay properties of the mesh is not considered when the operations are executed. It
is necessary to improve them to make these operations more suitable for Delaunay mesh
construction and simplification algorithms.

(a) 1ring neighborhood 

(b2) Edge collapsing

(b1) Edge splitting 

(b3) Edge flipping

Figure 2. (a) Schematic of a 1-ring neighborhood Ω(vi); (b) standard operations for the remeshing
algorithm.

3.2. The Delaunay Mesh Construction Algorithm

The vertex inserting is considered as an improved version of the edge splitting. For
a local non-Delaunay mesh M, it is possible to satisfy the local Delaunay property by
choosing the appropriate position for inserting a new vertex. First, an assumption of a
general situation and related inferences is given.

As shown in Figure 3, the local non-Delaunay mesh M consists of four vertices vi, vg, vj
and vk. For a non-locally Delaunay edge eij, the sum of the two opposite angles ∠vivkvj
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and ∠vivgvj is greater than π. In this case, at least one of the two opposite angles of eij
exists as an obtuse angle, and eij is the longest edge of this obtuse triangle tijk. Such that eij
is not the shortest edge in the set Ei = {eij|eij ∈ Ω(vi)} because there must exist both eij
and eik belonging to Ω(vi). Thus, we assume that edge eia ∈ Ei is the shortest edge of Ei. As
shown in Figure 3, the same length on eij is intercepted at point v

′
a, and O is the midpoint

of this length. Given any inserted vertex s on the line between O and v
′
a, the intersection of

the gray area with eij is the targeted range of s. Considering the relation of lAvi = lsvi = lBvi ,
the suitable location can be determined by the following conditions:

∠vivks +∠vivgs ≤ ∠vi As +∠viBs =
2π −∠vkvivg

2
< π, (2)

Similarly, we can also obtain a vertex s
′

for the case of vj. If the regions of s and s
′

are
overlapped, the inserted vertex is chosen as the midpoint in the regions. However, if these
regions are not overlapped, the above process can be repeated and the convergence of it are
acquired due to the monotonically of sum1 = ∠vivks+∠vivgs and sum2 = ∠svkvj +∠svgvj.
As the region where s is taken gradually moves away from vi to vj, sum1 monotonically
increases and sum2 monotonically decreases. Both of them are less than π, which means eis
and esj can fulfill the local Delaunay property. The improved vertex inserting operation can
choose the suitable location for the newly inserted vertex s, and then the local Delaunay
property can be achieved. After the improved vertex inserting operation, the Delaunay
property of the region consisting of four vertices vi, vg, vj and vk is satisfied. These new
angles ∠visvk,∠visvg and ∠vjsvg destroy the local Delaunay property of the surrounding
region, so the repeated vertex inserting is acceptable. However, in the case of narrow
triangle appearance, it may repeat the vertex inserting operation endlessly. Therefore, a
control parameter δ should be designed to detect narrow triangles and avoid this kind of
useless repetitive operation.

Figure 3. Choosing the position of newly insert vertex. For the original vertex vi, the newly in-
serted vertex s on the line segment between O and v

′
a. Similarly, for the vj, an inserted vertex s

′
is

been obtained.

For the original mesh M, lmin is the length of the shortest edge. θmin is the smallest
angle. h is the distance between vertex vk and bottom edge eij of triangle tijk. d is the
distance between vertex vk and inserted vertex vs. For a Delaunay mesh DM complied
with the local Delaunay property, all the edges of DM satisfy the following conditions:

• Conditions 1: As shown in Figure 4a, for any triangle tijk in M, this state is always
satisfied:

d ≥ h = l · sin(θ) ≥ lmin · sin(θmin), (3)
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• Conditions 2: For original edge e in M, the condition is also found that:

min{le|e ∈ Ω(vi)} ≥ lmin · sin(θmin), (4)

• Conditions 3: As shown in Figure 4b, the distance of the newly inserted vertex from
any vertex also satisfies that:

lis ≥ lig · sin(θmin) ≥ lmin · sin(θmin), (5)

Therefore, if a new edge esg is shown in Figure 4b, whose length is less than lmin ·
sin(θ0), the triangle tijg could be considered as a narrow triangle. In the practical application,
the lmin and sin(θmin) do not exist in the same triangle. Thus, a control factor δ could be
set as δ = k · lmin · sin(θ0), k ∈ Z+ to replace lmin · sin(θ0). In other words, if the length of a
new edge esg is less than δ, the triangle will be considered as a narrow triangle which is
collapsible in the algorithm and shown in Figure 4c. This condition is considered as the
case of volume destruction to the original mesh because it makes the final narrow triangle
compressed into a single edge.

(a)Case 1 (b)Case 3

(c) Face collapsing

Figure 4. (a) Schematic diagram of Case 1; (b) schematic diagram of Case 3; (c) face collapsing.

A Delaunay mesh construction algorithm is designed and the pseudo code is shown
in Algorithm 1. We try to implement the stack using the priority queue approach. Firstly,
the control factor δ is initialized. Then, we place all non-local Delaunay edges in a priority
queue Q keyed on the sum of the diagonals corresponding to edge e with the largest sum
at the top. The algorithm iterative inserts a newly vertex vs to split the NLD edge from the
queue, and updates the information about all elements in Ω(vs) such as connectivity and
normal vectors. Finally, the edges in the D(vs) should be determined if them are the NLD
edges and all of the new NLD edges will be pushed in the priority queue Q. The algorithm
will repeat this procedure until the priority queue Q is empty.
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Algorithm 1: Delaunay mesh construction.
Input: Arbitray watertight triangle Mesh M = (V, E, F)
Output: A Delaunay Mesh DM = (VD, ED, FD)

1 Initialization:;
2 First, initialize control factor δ;
3 Second, initialize the priority queue Q of the all NLD edges.
4 while Q is not empty do
5 Pop the NLD edge eij with the largest diagonal sum from Q;

/* Determine whether triangles are a narrow triangles */
6 tijk ← T(vi, vj, vk), tijg ← T(vi, vj, vg);
7 if dk ≤ δ then
8 collapseTriangle(tijk);
9 end

10 if dg ≤ δ then
11 collapseTriangle(tijg);
12 end

/* Splitting the NLD edges */
13 e1 ← eik, e2 ← eig, e3 ← ejk, e4 ← ejg;
14 r[4]← null;
15 for m← 1 to 4 do
16 pm← FindCrossPoint(sm, eij);
17 if m == 1||m == 2 then
18 r[m]← FindOverlapRange(vi, pm);
19 end
20 if m == 3||m == 4 then
21 r[m]← FindOverlapRange(pm, vj);
22 end
23 end

24 vert_insert← FindOverlapPoint(r[1], r[2], r[3], r[4]);

25 Split edge eij at vert_insert;
// Update boundary

26 for m← 1 to 4 do
27 if em is a NLD edge then
28 Push em into S.
29 end
30 end
31 end

3.3. The Delaunay Mesh Simplification Algorithm

The complexity of a mesh will increase because of the newly inserted vertices according
to the vertex inserting operation. An improved vertex collapsing operation is designed to
conquer this drawback. The requirement for the improved vertex collapsing operation is
that the local Delaunay property should be preserved in the non-connected domain. We
assume that the original mesh is a Delaunay mesh, and the all edges in the set of hollow
edges satisfied the local Delaunay property. As shown in Figure 5a, a hollow would be
created if a vertex was deleted, and an improved vertex collapsing operation is designed to
fill the hollow created by the vertex deletion, whose output is still a Delaunay mesh.
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(a1) (a2)

(a3)(a4)

(a5) (a6)

(b)

Figure 5. (a) Schematic diagram of hole filling; (b) principle of vertex collapsing.

The principle of the improved operation is shown in Figure 5b. The edge eij is in
the set of hollow-edges, and the set of vertices V is all the vertices that are located in the
hollow-edges. We assume that eij is a directed edge with the certain direction from vertex
vi to vertex vj. From the principle of the empty geodesic circumcircle property, for any
triangle containing edge eij, there are no other vertices in its circumcircle. Thus, the key of
vertices collapsing operation is to find the minimum distance between the circumcenter O
of a triangle t and the edge eij. The specific situation is represented as shown in Figure 5b,
where O1 is the circumcenter of tijk, and the distance from O1 to eij is the shortest; then,
the triangle tijk will satisfy the empty geodesic circumcircle property. Setting the direction
of an edge and finding a vertex to the left of eij can avoid errors in the results because of
the concave vertex just like vk. After all the edges in the set of hollow-edges rebuild the
required vertices, the hollow would be patched. The local-Delaunay property of the interior
edges, which are inserted after hollow-patching, could be preserved as well.

It is obvious that the improved vertex collapsing operation could be able to simplify a
Delaunay mesh. Even if there are NLD edges in the original mesh, this operation can still
work on the vertex vi as long as the edges ejk ∈ D(vi) satisfy the local Delaunay property.
Therefore, a simplification algorithm based on minimal volume destruction can be designed.
The pseudo code is named as the pseudo-code Algorithm 2, where the iterative cost of vi is
set as the volume of Ω(vi) (see Figure 6). Firstly, we classify vertex vi as the non-collapsible
and collapsible vertex according to the number of NLD edges in D(vi), respectively. If
there are no NLD edges in D(vi), the vertex vi is classified as the collapsible vertex. In this
cases, all edges ejk ∈ D(vi) satisfy the local Delaunay property, and the improved vertex
collapsing operation is worked on vi, which will not destruct the local Delaunay property
of all edges in D(vi). On the contrary, if there are NLD edges in D(vi), the improved vertex
inserting operation would choose suitable locations on the NLD edge for newly inserted
vertices. Then, a hybrid mechanism combined the improved vertex inserting operation and
vertex collapsing operation will repeat until the number of vertices in the simplified mesh
DM matches the user-defined value.
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Figure 6. The expression of the sum of volume as an iterative constraint.

Algorithm 2: Delaunay mesh simplification.
Input: Arbitray closed triangle Mesh M = (V, E, F)
Output: A simplified Delaunay Mesh DM = (VD, ED, FD) with N vertices

1 Function calCost(vert):
2 num_o f _NLD← is_NLD(e ∈ Ω(vert)); traingles← hollowPatching(vert);
3 volume← 0;
4 for t : trianlges do
5 volume← get_volume(t, vert) ;
6 end
7 return volume - num_o f _NLD;

8 Initialize
• the control factor δ;
• the priority queue Q of the all NLD edges.;
• the cost of each vertex ;

repeat
/* type_I is a non-collapsible vertex, which has NLD edges in

D(vert) */
/* type_II is a collapsible vertex, which has no NLD edges in

D(vert) */
9 Divide the vert into type_I and type_II;

10 if vert ∈ type_I then
11 Enhanced_Vert_Inserting(vert);
12 end
13 if vert ∈ type_I I then
14 Enhanced_Vert_Collapsing(vert);
15 end
16 Upate the cost of vertices for every v ∈ Ω(vert) by using the funciton

calCost(vert);
until the number of vertices in the simplified mesh DM matches the user-specified value.;
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4. Experimental and Discussion

In this section, experimental results of the construction and simplification algorithm
are demonstrated and discussed. All these results are conducted and obtained on a PC with
an Intel Core i7-8750H CPU 2.20 GHz and 16.0 GB RAM, and all the codes are implemented
in C++.

4.1. Evaluations of the Algorithm Effectiveness

In this paper, the performance of the proposed algorithms is defined as the degree
of geometric feature restoration of the original meshes and the accuracy of numerical
simulation. Accordingly, two kinds of measures are proposed to evaluate the effectiveness
of the algorithms. Firstly, for the degree of geometric feature restoration of the original
meshes, the use of visual renderings allows for the visual and intuitive assessment. In
addition, volume and surface area are the basic geometric information of a model. We set
the geometric feature parameter r as the ratio is a surface-area-to-volume to measure the
geometric information of the triangular mesh. Volume, surface area, and their ratio r can
be calculated by the following equations, where vi, vj, vk are vertices on a triangle tijk:

volume = ∑ 1
6 (vi × vj) · vk,

sur f ace_area = ∑ 1
2 (vj − vi)× (vk − vi),

r = sur f ace_area
volume ,

(6)

Secondly, to demonstrate the effectiveness of numerical simulations, we used a geodesic
distance based on the gradient calculation to simulate the thermal diffusion of isotropic
simulation [8]. The accuracy of the computation of the scalar function determines the
accuracy of the final numerical simulation, where the discrete Laplace operator is defined
as a key factor, in the computation of the gradient of the scalar function. In particular,
when calculating the gradient of thermal diffusion (see Figure 7), it can be specifically
expressed as

∆ui =
1

2Ai
∑(cot αij + cot βij)(uj − ui) (7)

Here, u is a scalar function defined on the triangle mesh, and Ai is one third of the area
of all triangles incident on vertex vi. The sum is calculated by adding up all neighboring
vertices vj ∈ Ω(vi), where αij, βij are the angles opposing to the corresponding edge
eij ∈ Ω(vi).

Figure 7. The cot formula for a scalar function on the mesh.
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4.2. Performance of the Construction Algorithm

Algorithm 1 is supposed to transform an arbitrary triangular mesh into a Delaunay
mesh by inserting a finite number of vertices. For each NLD edge in the original mesh, the
inserting operation may change the local Delaunay property of the edge. When there are
narrow triangles connected to the NLD edge, it will result in more inserting vertices. As
mentioned in Section 3.2, the control factor δ is defined to identify the narrow triangles
and the improved face collapsing operation is used to handle this situation. Thus, for
the construction algorithm of Delaunay mesh, δ is the most important parameter that
determines the space complexity, represented by the number of vertices of the constructed
Delaunay mesh. The theoretical lower bound of δ is lmin · sin(θmin).

In this experiment, δ = 2 · Average_length · sin 15◦ was selected as the suitable
empirical parameter for the algorithms, which was able to achieve good performance
for all the experimental meshes. In Figure 8, a triangle mesh “dinosaur” is used to
demonstrate the effects of variable δ. We take lmin · sin(θmin) as the smallest value and
2 ∗ Average_length ∗ sin 15◦ as the largest value, and select five data in that range to dis-
place the relationship between the number of vertices and δ. The rendering results of the
smallest and largest values are shown. As shown in Figure 8a, the red curve depicts the
relation between the control factor δ and the number of vertices of the constructed Delaunay
mesh. With the increase of control factor δ, the judgment criterion of the narrow triangles
is amplified. Fewer vertices will be inserted because the face collapsing operation will be
used before that. The geometric feature information of the triangle mesh is represented by
the parameter r, which is the ratio of surface area to volume of the triangular mesh. As
the control factor δ increases, the change of the parameter r remains almost constant. This
indicates that the variation of the control factor δ within a reasonable range has little effect
on the geometric feature information of the Delaunay mesh. The constructed Delaunay
meshes obtained by the two special control factors are rendered as shown in Figure 8b.
When the control factor is set as δ = lmin · sin(θmin), more vertices will be inserted because
the narrow triangles generated from the face collapsing operation are too small. If the
control factor is set as δ = 2 ∗ Average_length ∗ sin 15◦, the density of vertices in local areas
can be effectively improved.
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Figure 8. The results of parameter δ selection with the model of “dinosaur”.
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The mesh renderings demonstrate the preservation of the geometric feature infor-
mation. The thermal diffusion renderings are performed to illustrate the calculation ef-
fectiveness in numerical simulations. In Figure 9a, the original mesh “refinement” has
510 vertices. Due to the presence of many NLD edges in the original mesh, the results
of its thermal diffusion simulation have many errors. For example, in the region A, the
isotherms represented by the black line are not consistent with uniform diffusion. In the
region B, necessary data information is missing because of too few vertices. The above two
conditions show that a non-Delaunay mesh has the lower accuracy in numerical simulation.
Figure 9b shows the constructed Delaunay mesh and the thermal diffusion rendering of
it. After the processing of Algorithm 1, the Delaunay mesh with 688 vertices is obtained.
It can be demonstrated that the constructed Delaunay mesh with 688 vertices can avoid
the errors in the thermal diffusion simulation compared to results of the original mesh. In
addition, we can find by the geometric feature parameter r that the algorithm proposed in
this paper has a better preservation of the geometric feature information of the mesh. In
order to demonstrate the performance of the proposed method, the results of the classical
area-equaling triangulation method [4] and the Delaunay mesh construction algorithm [13]
are performed with the same model and shown in Figure 9c and Figure 9d, respectively.
The selected area-equaling triangulation method is a basic algorithm for model meshing
of finite element method (FEM), and Liu’s method [13] is a typical representation for the
construction of the Delaunay mesh. The number of vertices using their methods are 7003
and 7907, respectively. It is obvious that the construction algorithm proposed in this paper
has better performance in the aspects of simulation accuracy with less vertex numbers.

（a）Original mesh
𝑽 = 𝟓𝟏𝟎, 𝒓 = 𝟎. 𝟐𝟖𝟕

（b）Our method
𝑽 = 𝟔𝟖𝟖, 𝒓 = 𝟎. 𝟐𝟖𝟓

（c）Area-equalizing method
𝑽 = 𝟕𝟎𝟎𝟑, 𝒓 = 𝟎. 𝟐𝟖𝟕

（d）Liu’s method
𝑽 = 𝟕𝟗𝟎𝟕, 𝒓 = 𝟎. 𝟐𝟖𝟕

Figure 9. The comparison of the construction algorithms with numerical simulation results, where
regions A and B are significant changes.

4.3. Performance of the Simplification Algorithm

After the construction algorithm of Delaunay mesh via Algorithm 1, any triangle
mesh can be transformed to the Delaunay mesh. However, the inserted vertices may
lead to the increase of the mesh complexity and the data storage. Algorithm 2 provides a
Delaunay mesh simplification algorithm that can maintain the local Delaunay property of
the Delaunay mesh and transform the non-Delaunay mesh to the Delaunay mesh.

A model of “bumpy” is used to show the effect of the simplification algorithm on
the preservation of the geometric information. The original mesh with 1250 vertices is the
Delaunay mesh, and the improved vertex collapsing operation is used to simplify it. As
shown in Figure 10, the un-simplified mesh and the simplified meshes with 80% vertices,
40% vertices, and 20% vertices are displayed, respectively. Both the visualization and the
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ratio r, surface-area-to-volume, demonstrate that there is better preservation of geometric
information as the number of vertices of the simplified mesh is reduced.

𝑉𝑉 =1250, 𝑟𝑟 = 1.105 𝑉𝑉 = 1000,𝑟𝑟 = 1.108 𝑉𝑉 =500,𝑟𝑟 = 1.114 𝑉𝑉 = 250,𝑟𝑟 = 1.105

Figure 10. The simplification results for a Delaunay mesh using the model of “bumpy”.

Similarly, the simplification algorithm also works for non-Delaunay mesh. The vari-
ation trends of the number of vertices and the number of NLD edges with the iteration
steps are shown in Figure 11. The blue curve indicates the trend of vertices versus iteration
steps, and the red curve represents the trend of NLD edges versus iteration steps. The
input mesh of Algorithm 2 is a non-Delaunay mesh with 9397 vertices and 1082 NLD
edges, which are illustrated as A. The processing of algorithm can be divided into two parts.
According to the simplification algorithm described in Section 3.3, for a non-Delaunay
mesh, it firstly classifies all vertices into two types. For all of the non-collapsible vertices, it
can be found that the number of the mesh vertices increased with the number of iterations
of the algorithm in region-I of Figure 11a. Subsequently, when all the vertices in the mesh
are collapsible vertices, which is illustrated as B, the number of vertices start to decrease.
As the iterative step proceeds, the Delaunay mesh based on minimal volume destruction
can be obtained, which is illustrated as C. In the region-II of Figure 11a, the NLD edges
disappear, and the simplification algorithm is executed repeatedly until the user defined
value is satisfied.

𝑉 =9397,NLD=1082

A

𝑉 =9610,NLD=1046

B

𝑉 = 8109,NLD=0 𝑉 = 3000,NLD=0

C D
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（a）Trend of vertices and NLD edges with 
steps of iteration

（c）Thermal diffusion 
simulation effect

（b）Visualization of meshes
Delaunay mesh Simplified mesh

Delaunay mesh

Simplified mesh

Original mesh Transient mesh

Figure 11. The results after the hybrid construction and simplification algorithm with the model of
“rocker”.
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The visualization of the meshes of A, B, C and D is shown in Figure 11b, respectively.
As mentioned above, A is the original mesh with 9397 vertices and 1082 NLD-edges, B is
a non-Delaunay meshes processed by the vertices inserting operation, C is the Delaunay
mesh obtained by the Algorithm 2 with 8109 vertices, and D is a simplified mesh with
3000 vertices. Especially, the thermal diffusion simulation results for C and D are also shown
in Figure 11c, respectively. As the number of vertices reduce, the geometric features of the
original mesh can still be effectively displayed. These results demonstrate the effectiveness
of the simplification algorithm in preserving geometric information. In addition, the
thermal diffusion rendering of the two simplified meshes also show that the constructed
Delaunay meshes can also achieve a good performance in numerical simulation. For the
case of D, it is possible to obtain similar numerical simulation results in the case of C with
fewer vertices. It will enable the simplification of both the Delaunay mesh and the non-
Delaunay mesh without destroying the performance of the thermal diffusion simulation.

In order to further illustrate the generality of Algorithm 2, three more experiments are
conducted and shown in Figure 12. The processed models are “elephant”, “horse”, and
“head” of non-Delaunay mesh, respectively. After the processing of Algorithm 2, all the
meshes can be transformed into the Delaunay meshes and the number of vertices is reduced.
To demonstrate the advantage of the simplification algorithm, the methods of the classical
QEM [3] and the Delaunay mesh simplification [13] were conducted and illustrated as the
contrast. All these two methods and the proposed method in this paper are simplified
to the same number of vertices. The QEM method [3] is considered as a general control
experiment for the simplification algorithm because of its good performance in the aspect
of geometric feature preservation of the model. However, it is noteworthy that the results
obtained with this method do not have the local and global properties of Delaunay mesh.
There are still many narrow triangles among the simplified meshes, which are easy to be
visually detected by its surface meshes. Although Liu’s method [13] can preserve the local
and global properties of the Delaunay meshes, it is visually noticeable that the meshes
obtained by our method are more uniform with the same level of simplification.

(a)  Original mesh (b)  Our method

𝑉 =2775,NLD=16

𝑉 =664,NLD=298

(c)  QEM method (d) Liu’s method

𝑉 = 1377,NLD=0

𝑉 = 516,NLD=0

𝑉 = 2000,NLD=823 𝑉 = 878,NLD=0

𝑉 = 1377,NLD=347

𝑉 = 516,NLD=211

𝑉 = 878,NLD=346

𝑉 = 1377,NLD=0

𝑉 = 516,NLD=0

𝑉 = 878,NLD=0

Figure 12. The comparison of the processed effects of the Delaunay mesh, (a) the original mesh,
(b) our method, (c) QEM method, and (d) Liu’s method.
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To better illustrate the preservation level of the geometric features after the simplifi-
cation, the ratios surface-area-to-volume r of these four models are calculated and listed
in Table 1. The algorithm proposed in this paper is based on the principle of minimal
volume destruction. It can be seen that the vertices of mesh gradually decreases when the
quantity of the meshes is improved. As the illustration factor of geometric features, the
quantification criterions r of all these methods differ slightly. The values of ∆r are defined
as the geometric feature variations of the meshes compared to the original mesh. The small
∆r value means that the changes to the geometric feature of the simplified mesh is little.
The results show that the geometric features of all these meshes can be preserved after the
simplification algorithm. In particular, for the original mesh with a large number of vertices,
such as “rocker”, “elephant”, and “horse”, the simplified mesh of the proposed method
has smaller ∆r compared to the simplified meshes of other methods. However, since the
proposed method is based on minimal volume destruction, when the original model of
“head” with fewer vertices is simplified, the vertex collapsing may result in the undesired
volume destruction. Therefore, the proposed method in this paper is not applicable to
process meshes with few vertices. All in all, it is demonstrated that the method proposed
in this paper can protect the local and global properties of the Delaunay mesh and preserve
the geometric features of the original mesh in most cases.

Table 1. The geometric feature information of the meshes.

Meshes Vertices Volume Surface Area r ∆r

rocker_original 9397 0.0425 1.2965 30.4965 0
rocker_our 3000 0.0423 1.28926 30.4283 0.00223

rocker_qem [3] 3000 0.0424 1.30145 30.6283 0.00432
rocker_liu [13] 3000 0.0423 1.28805 30.4141 0.00270

elephant_original 2775 0.046201 1.24496 26.9465 0
elephant_our 1377 0.045656 1.22927 26.925 0.00079

elephant_qem [3] 1377 0.04609 1.24725 27.061 0.00424
elephant_liu [13] 1377 0.045757 1.24068 27.11 0.00606

horse_original 2000 0.157444 2.49807 15.8664 0
horse_our 878 0.153055 2.44337 15.964 0.00615

horse_qem [3] 878 0.156998 2.50834 15.9769 0.00696
horse_liu [13] 878 0.153371 2.46727 16.087 0.01390

head_original 664 5.62153 0.183606 0.032661 0
head_our 516 5.60071 0.181661 0.032435 0.00691

head_qem [3] 516 5.61976 0.183612 0.032673 0.00035
head_liu [13] 516 5.5796 0.18225 0.032664 0.00007

5. Conclusions

In this paper, the Delaunay construction and simplification algorithms were proposed
to improve the model complexity and simulating accuracy. Firstly, we proposed two
improved remeshing operations of the vertex inserting and the vertex collapsing. Then, the
improved algorithms for the construction and simplification of Delaunay mesh based on
minimal volume destruction were presented. The Delaunay construction algorithm can
transform the arbitrary mesh into the Delaunay mesh by inserting finite numbers of vertices.
The simplification algorithm can classify the vertices into collapsible and non-collapsible
vertices, which will be performed differently according to the types of vertices. Moreover,
the renderings of triangular meshes demonstrated the accuracy of the proposed algorithms.
Finally, the experimental results showed that the algorithm can improve the quality of the
arbitrary meshes. It is also noteworthy that, when the original model with fewer vertices
is simplified, the vertex collapsing may result in the undesired volume destruction. The
similar limitation occurs when the meshes with a large number of vertices were simplified
to a high level, for example to 20% of the original vertices. Then, the cost of the algorithm
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will increase significantly and the geometric feature information of the simplified mesh
may degenerate. To minimize the destruction to the original mesh, the control factor δ
was designed to judge the narrow triangle. At present, the value of the control factor
δ should be based on the user defined values. We will try to realize the automatic and
real-time optimization of the control factor in the future study. In our future work, the
proposed algorithms will be applied to 3D model processing for stereo-lithography additive
manufacturing and experiments will be conducted to evaluate the performance.
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