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Abstract: Lung cancer is one of the most common causes of cancer-related mortality, and since
the majority of cases are diagnosed when the tumor is in an advanced stage, the 5-year survival
rate is dismally low. Nevertheless, the chances of survival can increase if the tumor is identified
early on, which can be achieved through screening with computed tomography (CT). The clinical
evaluation of CT images is a very time-consuming task and computed-aided diagnosis systems
can help reduce this burden. The segmentation of the lungs is usually the first step taken in image
analysis automatic models of the thorax. However, this task is very challenging since the lungs present
high variability in shape and size. Moreover, the co-occurrence of other respiratory comorbidities
alongside lung cancer is frequent, and each pathology can present its own scope of CT imaging
appearances. This work investigated the development of a deep learning model, whose architecture
consists of the combination of two structures, a U-Net and a ResNet34. The proposed model was
designed on a cross-cohort dataset and it achieved a mean dice similarity coefficient (DSC) higher
than 0.93 for the 4 different cohorts tested. The segmentation masks were qualitatively evaluated by
two experienced radiologists to identify the main limitations of the developed model, despite the
good overall performance obtained. The performance per pathology was assessed, and the results
confirmed a small degradation for consolidation and pneumocystis pneumonia cases, with a DSC of
0.9015 ± 0.2140 and 0.8750 ± 0.1290, respectively. This work represents a relevant assessment of the
lung segmentation model, taking into consideration the pathological cases that can be found in the
clinical routine, since a global assessment could not detail the fragilities of the model.

Keywords: lung segmentation; deep learning; CT images; cross-cohort; clinical assessment

1. Introduction

Respiratory diseases are the leading causes of death worldwide, and among the
most common causes are asthma, chronic obstructive pulmonary disease (COPD), acute
respiratory infections, tuberculosis, and lung cancer, contributing to the global burden of
respiratory diseases [1,2]. Lung cancer is one of the most common causes of cancer-related
mortality. In 2020, approximately 2.2 million people were diagnosed with lung cancer
and about 1.79 million individuals died from this condition [3]. The majority of patients
are diagnosed in advanced stages, resulting in small chances of 5-year survival rate of
around 3.9%. When lung cancer is identified in early stages, which can be achieved through
screening, these probabilities increase up to approximately 54% [4]. Among the available
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imaging modalities for screening, computed tomography (CT) has shown the highest
reduction in cancer mortality [3].

Clinical assessment of CT images is a time-consuming task that is prone to discrep-
ancies as a result of the subjective physicians interpretation, and computer-aided diagno-
sis (CAD) systems can help reduce this burden [4,5] . In automatic image analysis systems
of the thorax, the segmentation of the lungs usually constitutes the first stage of process-
ing, in order to reduce the computational cost [6,7] and to regularize the prediction task
of the CAD by eliminating unnecessary information, or allow feature extraction from a
region of interest for machine learning approaches [8–11]. This task is very challenging
given that the lungs present high variability in shape, size, and volume. Moreover, the
presence of abnormalities in the lung parenchyma, such as consolidations and cavities,
makes segmentation even more difficult, leading to inaccurate delineations [6]. Current
lung segmentation methodologies are able to segment lungs, exhibiting characteristics that
are within a specific spectrum of patterns [6], but fail in the cases that present pathologies
with complex patterns, for which they were not trained [6], as a consequence of a lack of
diverse training data [7].

DL approaches, applied to medical imaging tasks, have been gaining popularity
in recent years [5] and are preferred to other techniques, such as traditional imaging
processing [12]. U-Net-based approaches have shown promising results on the segmen-
tation tasks of medical images [13]. Skourt et al. [14] proposed a U-Net-based model
composed of a contracting path similar to the one of U-Net (two convolutions followed by
rectified linear unit (ReLU) activation and max-pooling, repeated four times) and an ex-
pansive path in which the upsampled layer is concatenated with a cropped corresponding
feature map of the first path. Images from the Lung Image Database Consortium’s Image
Database Resource Initiative (LIDC-IDRI) dataset were manually segmented to generate
the ground truth and later used to train and test the model. The average dice similarity co-
efficient (DSC) achieved was 0.9502. Shaziya et al. [15] also presented a U-Net model, with
a contracting path, formed by three blocks of convolutional layers, ReLU and max-pooling,
and an expansive path, formed by three blocks, two of them with two convolutions, concate-
nation with the corresponding feature map of the contracting path, and upsampling. The
last one is similar to the previous blocks, except that it presents three convolutions, instead
of two, and following the upsampling, there were two more convolutions and a dropout
layer, followed by the output layer. The input images, with dimensions of 128 × 128, were
resized to 32 × 32, in order to reduce computational time. Data augmentation was per-
formed by rotation using the available training samples, to increase the number of images
used to develop the model, and an accuracy of 0.9678 is achieved. Yoo et al. [16] presented
2D and 3D U-Net models for the segmentation of the lungs as one region and separately.
The 2D model has an input dimension of 512 × 512 × 1 and it is formed by 4 encoders and
4 decoders, in which bilinear interpolation is used for the upsampling step. On the other
hand, the 3D model has an input dimension of 512 × 512 × 8, 3 downsampling steps, and
3 upsampling steps with trilinear interpolation. For both models, softmax function is used
in the output layer and cross entropy is used as a loss function. Two types of models were
trained, one for the segmentation of the whole lung region and another for the separated
segmentation of each lung. Concerning the latter, each ground truth was separated into
two additional masks, each containing only one of the lungs. Afterwards, each of these
masks was flipped horizontally and used as training for the segmentation of the opposite
lung. The University Hospitals of Geneva’s Interstitial Lung Disease (HUG-ILD) dataset
was used as external validation. The 2D model presents a DSC of 0.9840 and 0.9840 for the
whole segmentation and for the separated segmentation, respectively. Khanna et al. [17]
introduced a residual U-Net for the lung segmentation in CT images. Initially, to improve
the number of available training images, data augmentation was performed via flips, rota-
tion, zooming, and shifting. The residual U-Net architecture is a combination of ResNet
and U-Net architectures; hence, it presents an encoder path and a decoder path, each one
with four stages.
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The DSC was used as a loss function. In order to improve the model accuracy, a
connected component algorithm was applied to remove non-lung regions. The Lung
Nodule Analysis 2016 (LUNA16) and the Vessel Segmentation in the Lung 2012 (VESSEL12)
datasets were used for training, whereas the model evaluation was performed with the
HUG-ILD dataset. Two different architectures, ResNet34 and ResNet50, were implemented
alongside the U-Net. It was verified that the latter presents slightly better results, achieving
an average DSC of 0.9868.

Lung segmentation can be a very difficult task due to the influence of other pathologies
that produce imaging changes. The presence of other respiratory comorbidities alongside
lung cancer is frequent. Lung cancer and COPD, both predominantly caused by cigarette
smoking, are closely linked, and each condition presents its own range of characteris-
tic imaging features [18]. For this reason, apart from lung-cancer-specific patterns, it is
imperative that the segmentation models are likewise able to identify features particu-
lar to other pulmonary conditions. The main goal of this work is the development of a
deep-learning-based model for lung segmentation in CT images that must be robust on
a cross-cohort dataset and capable of coping with the numerous and variable imaging
appearances, derived from different pathologies with physiological heterogeneities.

2. Material and Methods

This section presents the multiple datasets used in the current study—the data selected
for both training and performance evaluation of the model—and gives a detailed descrip-
tion of each dataset. It also describes the preprocessing steps taken and the segmentation
model developed.

2.1. Datasets
2.1.1. Lung CT Segmentation Challenge 2017

The Lung CT Segmentation Challenge (LCTSC) 2017 [19] dataset was part of a compe-
tition in which the goal was the development of algorithms for the segmentation of several
organs at risk in CT images for radiation treatment planning. The data was collected from
3 different institutions, making a total of 60 CT scans. The dataset is divided into 2 subsets:
1 contains 36 scans that are intended to be used for training (36-LCTSC), and the other
subset contains 24 scans intended to be used for the assessment of the developed models
(24-LCTSC). The number of slices along the z-axis per scan varies between 103 and 279
and their axial resolution is 512 × 512. The slice spacing is of 1.02 ± 0.11 mm and the
slice thickness is of 2.65 ± 0.38 mm. The ground truth of the original images contains
the delineation of five anatomical structures: esophagus, heart, left and right lungs, and
spinal cord. Given that the lungs are the only organs of interest for this work, a binary
ground truth containing solely the pulmonary regions was generated for each slice, using
the information regarding these organs extracted from the DICOM RSTRUCT file.

2.1.2. Lung Nodule Analysis 2016

The Lung Nodule Analysis 2016 (LUNA16) [20] dataset was also part of a competition
and it was developed to provide a large set for the comparison and evaluation of CAD
systems designed for the detection of pulmonary nodules. This database contains 888 CT
scans with annotations from another public dataset, LIDC-IDRI, and lung masks are
available for each one of them. The scans were divided in 10 folders, intended to be used
into a 10-fold cross-validation manner. For this work, only two of them were used, being
randomly chosen from all the available folders. The number of slices varies between 103
and 733. The slice spacing is of 0.69 ± 0.09 mm and the slice thickness is of 1.60 ± 0.74 mm.

2.1.3. University Hospitals of Geneva—Interstitial Lung Disease

Motivated by the low availability of public collections of Interstitial Lung Disease
(ILD) cases, the University Hospitals of Geneva Interstitial Lung Disease (HUG-ILD)
database [21] was created to provide a public platform of interstitial lung disease (ILD)
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cases for the development and evaluation of CAD systems. This collection comprises
the 13 most common histological diagnosis of ILD, including conditions such as ground-
glass, emphysema, fibrosis, consolidations, reticulation, and micronodules. The HUG-ILD
database provides 112 CT scans with their respective binary lung segmentation masks. The
number of slices along the z-axis per scan varies between 14 and 60 and the spacing between
slices is within the range of 10–15 mm. Each slice is a matrix with 512 × 512 dimension.
The slice spacing is of 0.70 ± 0.10 mm and the slice thickness is of 1.00 ± 0.00 mm.

2.1.4. Vessel Segmentation in the Lung 2012

Similar to the LCTSC dataset, the Vessel Segmentation in the Lung 2012 (VESSEL12) [22]
dataset was part of a competition and its goal is to serve as a mean of comparison for (semi)
automatic models for the vessel segmentation in lung CT scans. This database contains
10 patients with CT scans and the correspondent binary lung masks and comprises cases
of alveolar inflammation, diffuse interstitial lung disease, and emphysema. Three extra
scans are available as well, but were not intended to be used as part of an evaluation set.
All thirteen scans have corresponding binary lung masks. The number of slices along the
z-axis , varies between 355 and 534 and their resolution is of 512 × 512. The slice spacing is
of 0.74 ± 0.09 mm and the slice thickness is of 0.88 ± 0.15 mm.

2.1.5. University Hospital Center of São João

A private dataset of 141 patients with lung cancer was collected in the University
Hospital Center of São João (CHUSJ) and contains severe cases of this pathology. Semantic
features were annotated for each scan and lung binary masks were generated for 27 of the
available scans. The number of slices of these scans varies between 61 and 281 and their
resolution is 512 × 512. The slice spacing is of 0.71 ± 0.08 mm and the slice thickness is of
3.07 ± 0.38 mm.

2.1.6. Summary of Cross-Cohort Dataset

In total, five datasets were used. Table 1 describes the number of scans used from
each dataset. These datasets allow the development and test of the segmentation model in
cross-cohorts, ensuring the heterogeneity of the data fundamental for a good generalization
of the learning model.

Table 1. Final number of patients with CT scans used from each dataset.

Dataset # CT Scans

LCTSC [19] 60

LUNA16 [20] 176

HUG-ILD [21] 112

VESSEL12 [22] 10

CHUSJ 27

2.2. Pre-Processing

When using data obtained from multiple sources, whether they are different institu-
tions, different CT equipment, patients, or acquisition protocols, there is a high probability
that the CT scans present variations, such as in image resolution, the field of view, and slice
spacing and thickness. Each pixel of the 2D slices is represented by a value corresponding
to the X-ray attenuation and it is expressed in Hounsfield Units (HU). Thus, the images
were submitted to a HU min-max normalization, in which values between −1000 HU
(HUmin) and 400 HU (HUmax) are rescaled into a range of [0, 1]. Then, as a second step of
the preprocessing phase, the input images were resized to a dimension of 128 × 128 via
bilinear interpolation, in order to reduce the computational cost. Regarding voxel spacing,
the images were not rescaled in the z-direction.
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2.3. Learning Model

Based on the model proposed by Khanna et al. [17], a hybrid architecture structure, de-
picted in Figure 1, was designed, consisting of the combination of the U-Net and ResNet34
architectures. This structure demonstrated better performance when compared to other
simpler DL structures, such as U-Net, and when using LUNA16 dataset [17]. Following the
typical structure of a U-Net, the model is composed of an encoder path and a decoder path,
each one formed by five stages. First, the input images were submitted to 7× 7 convolution,
batch normalization (BN), and max-pooling, similarly to the first block of the ResNet34;
likewise, each of the remaining 4 blocks that follow comprises residual units. Each unit
contains a convolutional layer, followed by BN and parametric rectified linear unit (PReLU)
activation, and a second convolutional layer followed by BN. In the end, in each unit, the
input, the designated shortcut connection (SC), is added to the output of the unit and then
submitted to a PReLU activation to produce a final result. Because max-pooling is not
performed, the first convolution of the first residual unit of each residual block (RB), from
RB2 to RB4, is applied with stride two, in order to reduce the dimension. Moreover, the
SC of this unit is also submitted to a convolutional layer, so that the dimensions are in
conformity. The blocks from RB1 to RB4 contain 3, 4, 6, and 3 residual units, respectively.
Concerning the decoder path, the first four stages comprise upsampling via 2D transpose
convolutions, followed by concatenation with the output of the corresponding block of the
encoder path. Thereafter, the set of operations, including convolution, BN, and rectified
linear unit (ReLU) activation, is performed two times. At the final stage, the output of the
previous block is submitted to upsampling, followed by convolution, BN, and ReLU. At
last, 1 × 1 convolution and sigmoid activation function are performed, producing the final
segmentation result, a probability mask.

input
image

64 x 6421 x 128 x 128 64 x 322 128 x 162 256 x 82

512 x 42

256 x 82128 x 16264 x 32264 x 642

output
image

1 x 128 x 128

R
B

1 
(3

x)

R
B

2 
(4

x)

R
B

3 
(6

x)

R
B

4 
(3

x)
Initial conv

block

Residual block

U-net block

Final conv
block

Skip connections

ResNet-34 encoder

Figure 1. Hybrid structure that results from combining the ResNet-34 and U-Net architectures.

2.4. Training

The loss function used in the training process was based on the DSC , due to the
fact that it has proven to be a useful measurement for this type of tasks [23]. The DSC is
given by Equation (1), in which DSC is the dice similarity coefficient, X, corresponds to the
ground truth mask, Y, is the predicted mask, X ∩Y is the area of overlap of the two images,
and X + Y is the total number of pixels of the two images.

DSC =
2(X ∩Y)

X + Y
(1)

This equation provides a measure of similarity between two images; thus, in order to
measure the loss between the ground truth and the predicted mask, Equation (2) was used,
in which DSCloss represents the loss and DSC corresponds to the dice similarity coefficient.

DSCloss = 1− DSC (2)
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With the aim of finding the best hyper-parameters, experiments with different combi-
nations of the optimizer, learning rate, and batch size were performed. Table 2 presents the
values taken by each one of these hyper-parameters.

Table 2. Variable hyper-parameters and their values.

Hyper-Parameter Value

Optimizer Adam

Learning rate 0.00001, 0.0001, 0.001

Batch size 4, 8, 16, 32

The 36-LCTSC and the LUNA16 datasets were chosen to be used for training since
these data are not intended to be used for evaluation (Table 3). As for the validation set,
30% of the training set was chosen randomly to be used as validation data and fixed with a
seed to ensure that this distribution was the same across all experiments. At last, regarding
the evaluation set, taking into account the importance of the capability of a model to cope
with the different lung heterogeneities and its generalization ability, 4 distinct datasets:
24-LCTSC, HUG-ILD, VESSEL12, and CHUSJ, comprising a variety of disease patterns
and differences in CT imaging protocols, were used. All tests were performed in each
dataset separately. A summary of the distribution of the data per training and test sets is
represented in Table 3.

Table 3. Distribution of the data per training, validation, and test set.

Task Dataset # CT Scans # CT Images

Training
36-LCTSC + LUNA16 212

34,969

Validation 14,986

Test

24-LCTSC 24 3675

HUG-ILD 112 2978

VESSEL12 10 4279

CHUSJ 27 3340

2.5. Evaluation

The evaluation metrics used were the DSC, given by Equation (1), Hausdorff dis-
tance (HD) and average symmetric surface distance (ASSD) [24]. The HD metric is given by
Equation (3) in which H(A, B) is the Hausdorff distance, A and B are two distinct objects,
h(A, B) is the maximum distance of any point of A to its nearest point in B, and vice versa
for h(B, A).

H(A, B) = max(h(A, B), h(B, A)) (3)

The ASSD metric is given by Equation (4), in which ASD(A, B) is the average of
distances between the points of the borders of the ground truth, A, and the predicted mask,
B, S(A) is the set of border points belonging to A, S(B) is the set of border points belonging
to B, ∑sA∈S(A)(dsA, S(B)) is the sum of distances of all border points of A to B—vice versa
for ∑sB∈S(B)(dsB, S(A))—and S(A) + S(B) is the sum of all border points of A and B.

ASD(A, B) =
∑sA∈S(A)(dsA, S(B)) + ∑sB∈S(B)(dsB, S(A))

| S(A) + S(B) | (4)

The HD and ASSD are metrics that take into account pixel spacing and each scan
can present its own value for this image property. Therefore, the preliminary results of
these two metrics obtained for each image were multiplied by the correspondent image
pixel spacing, in order to produce normalized metrics. The three metrics were determined
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between lung masks from the datasets (used as ground truth) and the segmentation mask
produced by the model developed.

Additionally, a clinical assessment of the results was performed by two experienced
radiologists. They performed a visual analysis of the 40 randomly selected cases and they
evaluated and discussed the cases for the learning models that failed the segmentation.

3. Results and Discussion

This section includes the results obtained in the quantitative and qualitative evalua-
tions for each test dataset, a clinical assessment performed by two radiologists, and the
limitations found.

3.1. Performance Results

The set of hyper-parameters that lead to the best performance is as follows: Adam
optimizer, the learning rate of 0.0001, and batch size of 8. The results obtained for each test
dataset are presented in Table 4.

Table 4. Mean and standard deviation (std) results of the three metrics: dice similarity coefficient
(DSC), Hausdorff distance (HD), and average symmetric surface distance (ASSD) for each dataset.
The maximum value of the range for HD and ASSD metrics was obtained by considering that the
maximum distance between 2 distinct objects in an image of 128 × 128 corresponded to the diagonal
of that image.

Test Set
DSC HD (mm) ASSD (mm)

Mean ± std Mean ± std Mean ± std

LCTSC 0.9472 ± 0.1752 3.7202 ± 5.7966 0.3359 ± 1.1534

HUG-ILD 0.9334 ± 0.1372 5.1783 ± 5.3090 0.4381 ± 1.4245

VESSEL12 0.9778 ± 0.2142 1.9395 ± 3.8952 0.1167 ± 0.5317

CHUSJ 0.9339 ± 0.1298 4.0943 ± 6.9651 0.4639 ± 1.5110

Range [0–1] [0–181.0193] [0–181.0193]

The results from the three metrics in the analysis are consistent, showing better seg-
mentations for the VESSEL12 dataset and worst results for HUG-ILD. However, the dif-
ference between the worst and the best results are very small, showing a good confidence
that the segmentation model is robust to the great variability of the pathological cases
used in the test sets. Overall, the model is able to generate good results and because
the four test datasets present differences between them regarding acquisition protocols,
pathologies included, and segmentation guidelines, the results for each one of them will be
discussed individually.

With respect to the 24-LCTSC dataset, the model is generally able to correctly segment
the pulmonary images (see the first row in Figure 2), but fails to identify their initial slices,
which correspond to the base of the lung, leading to a decrease in the DSC (see the second
row in Figure 2). Furthermore, for one of the patients, the masks produced by the model
seem to be more accurate than the ground truth images, as the latter excludes part of the
lung parenchyma. An example is shown in the third row in Figure 2. Therefore, even
though this contributes to a lower DSC due to the discrepancy between them, the predicted
mask is more precise. On the other hand, there are cases in which nodules are not included
in the ground truth, and there are elements that the model does not include as well, giving
rise to a higher DSC, although incorrectly classified. An example is depicted in Figure 2,
fourth row.
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(a) CT Image. (b) Ground Truth. (c) Predicted Mask.

Figure 2. Examples of LCTSC images, the ground truth and the predicted mask. From top to bottom
the examples are, respectively: good segmentation example; an example in which the model fails
to segment the base of the lung; an example of a ground truth image that excludes part of the
parenchyma of the lung; an example that excludes a nodule in its ground truth, and which is also
misclassified by the model.

Regarding the HUG-ILD dataset, the model successfully segments the majority of
scans and in some cases, it does not exclude pulmonary regions presenting a higher density.
The model was also assessed on this dataset on a pattern level, i.e., each pattern was
evaluated individually, to gain a better understanding of its behavior, and the results are
presented in Table 5.
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Table 5. Results obtained for the patterns included in the HUG-ILD dataset. The row “Other” refers
to scans that presented more than one pattern.

Pattern
Dice Similarity Coefficient

# CT Scans
Mean ± Standard Deviation

Micronodules 0.9545 ± 0.1372 22

Bronchioectasis 0.9377 ± 0.1845 2

Emphysema 0.9442 ± 0.1748 1

Fibrosis 0.9192 ± 0.1752 24

Macronodules 0.9281 ± 0.2142 3

Reticulation 0.9375 ± 0.1389 3

Consolidation 0.9015 ± 0.2140 2

Ground-glass 0.9436 ± 0.1298 15

Pneumocystis carinii pneumonia 0.8750 ± 0.1290 2

Other 0.9255 ± 0.1731 30

The results presented in Table 5 can be visually verified in Figure 3. For the specific
cases of micronodules, bronchioectasis, emphysema, and some cases of fibrosis, the model
is able to segment the entire lung area, as these are patterns which do not contain a higher
contrast in tissues density (see respective examples on the first four rows of Figure 3). In
general, those pathological cases showed a slightly better performance (Table 5).

In contrast, for cases of macronodules, reticulation, consolidation, ground-glass, and
pneumocystis carinii pneumonia, the model presents a difficulty in performing such tasks in
the regions of higher density (see last five examples (rows) of Figure 3). Besides that, the
scans from this dataset include the trachea and other respiratory structures (apart from
the lungs) in their ground truth, elements that are not identified by the model, and thus
contributing to a lower metric (see rows two–five in Figure 3). Once again the model fails
to identify the slices corresponding to the base of the lung (see the second row in Figure 6).

Concerning the VESSEL12 dataset, the model is able to produce good segmentation
masks (see Figure 4), in general, for all ten scans, which were translated on a higher
DSC, since this dataset does not contain intricate patterns. Moreover, the model does not
erroneously classify other darker structures that are present in some slices as lungs.

As for the CHUSJ dataset, the model demonstrates, once again, a difficulty in the
segmentation of the base of the lung (see the first row of Figure 5). Nonetheless, what
contributes most to the decrease in the DSC is the large masses of higher density that
are present in the majority of the scans and which the model does not identify. The
model correctly segments the surrounding pulmonary tissue and these masses are the
only structures that are not included in its predicted masks. Examples of these scans are
depicted in the last two rows of Figure 5.

3.2. Clinical Assessment

From the visual inspection, radiologists concluded that the model has a good overall
performance, especially for healthy cases for which the model always set a correct segmen-
tation. They tried to identify the physiological reasons that made the model fail and that
can be taken into consideration in future work. The radiologists identified that the model
tends to fail in areas of the lung that have different densities than expected.

In areas of higher density (“whiter” on the CT image) than the surrounding lung,
resulting from involvement by interstitial lung disease or inflammatory/infectious pathol-
ogy, they are not recognized by the model as lung tissue (see first three rows in Figure 6),
although they corresponded to areas of “diseased” lung, involved by interstitial pathology.
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Figure 3. Cont.
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(a) CT Image. (b) Ground Truth. (c) Predicted Mask.

Figure 3. Examples of HUG-ILD images for pathological cases. The patterns of these images from
top to bottom are, respectively, micronodules, bronchioectasis, emphysema, fibrosis, macronodules,
reticulation with ground-glass, consolidation, ground-glass, and pneumocystis carinii pneumonia. For
the last five examples, the model failed to segment part of the lung due to the pathological changes
present in the image.
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(a) CT Image. (b) Ground Truth. (c) Predicted Mask.

Figure 4. Examples of VESSEL12 images for which the model produces good segmentation masks.

(a) CT Image. (b) Ground Truth. (c) Predicted Mask.

Figure 5. Examples of CHUSJ images, the ground truth and predicted mask. The first row is an
example in which the model fails to correctly segment the pulmonary base; and second and third
rows are examples in which the model does not segment the high density tumor masses.
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In the case of lung neoplasms, something similar happens: the whole healthy lung is
properly recognized; however, only the area of the lung mass, which is denser (“whiter”)
than the remaining lung, is not properly recognized (see last two rows in Figure 5).

A similar situation occurs in areas of the lung that are even less dense than usual
(“blacker” on the CT image) which may also correspond to areas of “diseased” lung, in this
case, areas of “air-trapping”, emphysema, etc. (see the last row in Figure 6).

Lung pathologies present specific patterns, which correspond to changes in the density
of the radiological image. Density increases for pulmonary consolidation present in pneu-
monia or other inflammatory/infectious processes; areas of opacification in ground-glass
present innumerable causes, such as COVID, neoplasm, lung masses, and nodules. On the
other hand, the density decreases with air-trapping, which is often associated with small
airway disease and emphysema.

(a) CT Image. (b) Ground Truth. (c) Predicted Mask.

Figure 6. Examples from HUG-ILD dataset. First three rows show cases with higher density that the
model does not classify as being lung tissue. Last row shows a darker pulmonary region misclassified
by the model.
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3.3. Limitations

The main motivation of this work was the combination of multiple cohorts of patients
to train the learning model with a large spectrum of the heterogeneities that can be found in
the population and the assessment of the segmentation performance on the most frequent
lung diseases. The merge of cohorts covers the great majority of the pathophysiological
patterns that can be found in lung diseases, and for this reason, the learning model fails
only in the most extreme cases. Despite the overall good results, a large number of extreme
pathological cases must be used in the training set to allow an even better generalization of
the segmentation model in the future.

Another limitation comes from the annotations of the datasets. Those annotations
come from different projects and followed different segmentation guidelines. There is
no consensus on the inclusion/exclusion of some structures, such as airways or tumor
masses. Examples of airways inclusion are shown in the second, third, fourth, and fifth
rows in Figure 3 that belong to the HUG-ILD dataset, and examples of airways exclusion
are shown in the last row in Figure 2, the first row in Figure 4, and the last row in Figure 5,
that belong to the LCTSC, VESSEL12, and CHUSJ datasets, respectively. Examples of
tumor masses inclusion are shown in last two rows in Figure 5 that belong to the CHUSJ
dataset, and examples of exclusion are shown in the last row in Figure 2 that belong to the
LCSTC dataset. Ideal, a very objective protocol of segmentation should be followed for the
entire dataset annotation (training and test set) in order to not create label noise, which is
responsible for overall quantitative performance degradation.

The need for massive and well-annotated datasets in the medical field is still one of
the biggest limitations for the broad and impactful use of AI as support decision systems in
the clinical routine. Unsupervised and semi-supervised approaches could be strategies to
be used to overcome the lack of labeled medical data [25].

3.4. Methods Discussion

Considering the results obtained with the proposed approach and analyzing the differ-
ent challenges ahead to overcome, some methodology improvements should be explored
in the future, aiming to enhance the segmentation robustness of such models. Performance
effects caused by increasing network complexity have been discussed in related application
scenarios [7], being suggested that it will often be insufficient to overcome some specific
problems. In this direction, the idea is raised that the path to more robust lung segmentation
models would more likely comprise the development of models capable of being invariant
in the presence of specific factors (e.g., severe pathological lung regions) that have caused
significant performance drops. A robust segmentation model must not be influenced by
the lung status itself, as diseased regions should be included in the predicted masks for
further classification pipelines. In a different perspective, diving beyond traditional data
augmentation techniques would also be an interesting idea to explore; the possibility of
imitating some high-level properties of challenging tissue regions would enable us to
reproduce the intended characteristic in any training example, which could result in more
heterogeneous training data.

4. Conclusions

The proposed model was able to produce good results for the 24-LCTSC, the VESSEL12,
and the HUG-ILD datasets. Nevertheless, it also generated poorer segmentation masks for
the CHUSJ data, which mostly contains images with big tumor masses of higher density,
and for some cases of the HUG-ILD data that contained complex patterns with high contrast
tissues—all features that are not present in the training data. Thus, this work demonstrated
that having a representative training database is crucial to build a robust segmentation
model that is able to cope with complex patterns.

Subsequently, taking into account the wide variety of these elements and the limita-
tions mentioned above, in particular the lack of well-annotated datasets, future models
could be developed by making use of data augmentation techniques that would mimic the
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missing imaging features. In addition, one could also explore the field of continuous learn-
ing that would possibly allow a model to continuously learn and improve its performance
from the given data.
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