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Abstract: Topological mechanics is rapidly emerging as an attractive field of research where mechanical
waveguides can be designed and controlled via topological methods. With the development of topological
phases of matter, recent advances have shown that topological states have been realized in the elastic
media exploiting analogue quantum Hall effect, analogue quantum spin Hall effect, analogue quantum
valley Hall effect, higher-order topological physics, topological pump, topological lattice defects and so
on. This review aims to introduce the experimental and theoretical achievements with defect-immune
protected elastic waves in mechanical systems based on the abovementioned methods, respectively. From
these discussions, we predict the possible perspective of topological mechanics.
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1. Introduction

Over the last decade, topological mechanics has rapidly attracted extensive research.
This field mainly investigates topological wave propagation, which is immune to defects and
backscattering in mechanical systems, originally discovered in quantum systems. In this review,
we aim to cover the main achievements of topological mechanics, including the fundamental
concepts of topological phases of matter, theories and experimental realizations.

Over the past 40 years, topological phases of matter appeared as a leading field of
research. This field of research originated from the discovery of the quantum Hall effect
(QHE). In 1980, Klitzing et al. found that the Hall conductance equal to integer multiples of
the fundamental constant with a two-dimensional electron gas sample in a low temperature
and strong magnetic environment [1]. In 1982, Thouless et al. explored the mechanism
of the integer quantum Hall effect and elucidated the relationship between the integer
in the Hall conductance and a topological invariant in the QHE system [2]. Importantly,
they proposed the TKNN (Thouless–Kohmoto–Nightingale–den Nijs) theory to define
the integer, namely the Chern number. The Chern number characterizes the topological
phases of matter in momentum space over the Brillouin zone. Specifically, combining the
bulk-boundary correspondence [3], there exist edge states in the system with a non-zero
Chern number, while the ordinary insulators and vacuum with a zero Chern number are
trivial. However, realizing QHE requires breaking time-reversal symmetry, which is not
beneficial to practical application.

About 20 years later, in 2005, the quantum spin Hall effect (QSHE) or topological
insulators(TIs) were proposed in graphene [4], conventional semiconductors with a strain
gradient [5] and HgTe quantum wells [6]. Realizing QSHE exploits the spin-orbit interac-
tions and time-reversal symmetry. In these systems, a Chern number of zero arose from
the existence of conjugate electronic spins, hence the topological nature is characterized by
a Z2 topological invariant or the spin Chern number [7,8]. Phenomenologically, TIs have
gapless edge or surface states when the spin Chern numbers are non-zero.

Appl. Sci. 2022, 12, 1987. https://doi.org/10.3390/app12041987 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12041987
https://doi.org/10.3390/app12041987
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6009-8375
https://doi.org/10.3390/app12041987
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12041987?type=check_update&version=1


Appl. Sci. 2022, 12, 1987 2 of 22

Shortly afterwards, the quantum valley Hall effect (QVHE) was discovered in 2007 [9,10].
Valleys refer to the extrema of the band structure in momentum space, and the sign of
the valley Chern number at K and K′ is opposite. Of note is the fact that the total Chern
number remains zero. In addition, the edge or surface states protected by the time-reversal
symmetry could be observed at the interface between the two lattices with opposite valley
Chern numbers.

Over the past five years, a new type of topological phase called higher-order topolog-
ical insulators (HOTIs) has attracted rapidly growing attention, a phase which does not
apply the bulk-boundary correspondence [11–13]. Phenomenologically, a d-dimensions
n-th order HOTI hosts gapped (d − 1)-, (d − 2)-, . . . , (d − n + 1)-dimensional gapped
boundaries and (d − n)-dimensional gapless modes [14]. For example, a two-dimensional
(2D) HOTI has gapped one-dimensional (1D) boundaries and zero-dimensional (0D) cor-
ner states. A three-dimensional (3D) HOTI has 2D gapped surface states and 1D gapless
hinge states, or 2D gapped surface states, 1D gapped hinge states and 0D corner states.
The topological phases of HOTIs are characterized by new topological invariants [15].
Specifically, the topological invariants for the quantized multipole insulators are quantized
multipole moments, which can be calculated by the nested Wilson loop approach [11,12]
or the many-body multipole operators [16,17]. Specifically, for the nested Wilson loop
approach, the gapped Wannier bands carrying their own topological invariants can be
evaluated by this approach. One could start by constructing Wilson loop operators Wx,k
and Wy,k in the x and y directions, and k = (kx, ky) is the starting point of the loop. Here

Wx,k = Fx,k+Nx∆kx . . . Fx,k+∆kx Fx,k, and Wy,k is a similar form, where [Fx,k]
mn =

〈
µm

k+∆kx

∣∣∣µn
k

〉
,

µk are the occupied Bloch functions. For the many-body multipole operators, the bulk
multipoles in crystalline systems could be expressed in terms of ground-state expectation
values of many-body operators, and this approach has a wider range of applications that
could be used in interacting quantum many-body systems. The topological invariants
for the Cn-symmetric HOTIs are the dipole polarizations (extended Zak phase), which
are defined as an integration of the Berry phase vector potential A over the first Brillouin
zone(BZ): P = 1

2π

∫
dkxdkyTr

[
A(kx, ky)

]
[18,19].

An interesting exploration direction, topological pump, was firstly proposed in 1983 by
Thouless [20]. This work showed the relationship between the 1D quantization of particle
transport and 2D QHE. Recently, a topological pump was connected to 6D QHE [21,22]
via synthetic dimensions. More recently, a topological pump has been observed in higher-
order topological systems [23]. The topological phases of 2D QHE are characterized by
the first Chern number, which is defined as the integration of the Berry curvature over the
generalized 2D Brillouin zone, and 4D QHE, characterized by the second Chern number,
which is defined as the integration of the Berry curvature over the generalized 4D Brillouin
zone [24].

As we all know, topological crystalline insulators can be identified by the robust
spectral features and quantized fractional charges on boundaries or corners in experi-
ments. Moreover, topological lattice defects could serve as a bulk probe to characterize
the topological crystalline insulators [25]. Topological lattice defects, such as dislocations
and disclinations, break the local crystal symmetry, which can be constructed by a Volterra
process [25–28]. In general, topological defects are characterized by their holonomy [25] or
the Burgers vector [19,29], and the topological nature is characterized by the topological
index (the polarizations) [19].

The abovementioned distinct topological states could also be realized in classical
systems, such as photonics, acoustics, mechanics, electric circuits and so on since the
topological nature is unrelated to the quantum characteristics and depends on the wave
characteristics [30]. In this context, there are extensive efforts to realize topological states in
various elastic systems, leading to the emerging research field of topological mechanics.
Elastic solids support both longitudinal and transverse waves, which are highly hybridized,
bringing a great challenge to realize topological waveguides. However, elastic materials are
still a good platform for implementing topological band structures because their large scale
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makes the control of fabrication and the experimental process more flexible. Moreover,
elastic systems are not restricted by the Fermi levels therefore spectrum signature can be
measured directly at any region. Furthermore, there are a lot of potential applications
containing sensors, low loss devices, actuation, signal processing and so on [31].

The framework of this review is as follows. In Section 2, we introduce the main
achievements of elastic topological edge states. In Section 3, we present the main studies of
elastic HOTIs. In Section 4, we show the main researches of elastic topological pumps. In
Section 5, we discuss the main realization of elastic topological defect states. Finally, some
of the future perspectives in topological mechanical systems are outlined in Section 6.

2. Mechanical Topological Edge Sates

The discovery of the integer quantum Hall effect opened a new research field in
condensed-matter physics [1]. It was later discovered that the existence of the topological
invariant (non-zero Chern number) is the root cause of quantization, which is independent
of symmetry breaking [2]. If the Chern number is zero, the phase of the structure is ordinary;
otherwise, it is topological. The Chern number in 2D systems [32] is given by:

C =
1

2π

∫
∇k × A(k) · ds, (1)

where the Berry connection A(k) = 〈µn(k)|i∇k|µn(k)〉, µn(k) is the Bloch state on the nth
energy band. It has been proven that achieving the QHE requires an externally reinforced
magnetic field to break the time-reversal symmetry. However, it is difficult to apply a
magnetic field in a real environment.

Soon after that, Kane and Zhang et al. proposed the QSHE around 2005 [4,6]. This new
state of matter exhibits two topologically protected spin-up and spin-down edge states.
The implementation of the QSHE is different from QHE in that it does not need to break
the time-reversal symmetry and depends on spin–orbit interactions. The topological states
can be classified by a Z2 topological invariant or the spin Chern number. The spin Chern
number [32] is given by:

C± =
1

2π

∫
∇k × A±(k) · ds, (2)

With the development of TIs, QVHE was proposed in 2007 [10]. Compared to the QHE
and QSHE, realizing the QVHE is simpler and only needs to break the space symmetry,
such as inverse symmetry or mirror symmetry, which leads to the Dirac degeneracies being
opened in momentum space. The integral over the full Brillouin zone is zero because the Berry
curvature is opposite at two valleys. The integral for each valley is a half-integer. The QVHE is
characterized by valley Chern number CK/K′ = ± 1

2 sgn(m), m is the effective mass.
Although implementing QHE, QSHE and QVHE require structures to satisfy different

conditions, they have the common feature that the gapless edge states span the band
gap when the topological material is nontrivial. With the rapid development of topo-
logical phases in quantum systems, they were quickly transferred to photonics [33–41],
acoustics [42–53] and mechanical metamaterials [54–80]. Next, we will introduce the
achievements of elastic topological edge states in three categories which include QHE,
QSHE and QVHE.

2.1. Analogue Hall Insulators

As we all know, realizing the QHE must break time-reversal symmetry. QHE analogs
have been realized in photonics using gyromagnetic material in a magnetic field [33] and
acoustics by introducing moving airflow [43]. Elastic waves, such as sound waves, hardly
couple with the magnetic field, and therefore the interaction between elastic materials and
magnetic fields cannot be exploited to break time-reversal symmetry. Hence, breaking time-
reversal symmetry is quite challenging for mechanical systems. So far, the analogs of QHE
have been verified for elastic waves by using Coriolis force [54,55,80] in the non-inertial
reference frame or inducing gyroscopic inertial effects [56,57].
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In 2015, Yao-Ting Wang et al. designed a mechanical system (see Figure 1a) that exhibits
topologically nontrivial one-way edge states, numerically demonstrating the topological
nature [54]. Specifically, the structure consists of a mass-spring honeycomb lattice, whose
time-reversal symmetry is broken by placing it in a rotating frame, as shown in Figure 1b.
Here, the objects only have Coriolis force since the centrifugal force can be neglected for
enough small angular frequencies. The nontrivial topological orders can be confirmed by
calculating the Chern numbers for each band. The Chern numbers from the first band to
the fourth band are {−1, 0, 0, 1} when the constant angular velocity (z direction) Ω = 4Hz,
while the Chern numbers are {−1, 1,−1, 1} when Ω reaches Ωc =

√
3C/8M ∼ 12.247Hz.
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Figure 1. Analogue Hall insulators. (a) The mass-spring system is arranged in honeycomb lat-
tices [54]. (b) The non-inertial system [54]. (c) The hexagonal gyroscopic lattice [57]. (d) The ordinary
(nongyroscopic) unit cell [56]. (e) The gyroscopic unit cell [56]. (f) The experimental system [57].
(g) The dispersion of the ordinary (nongyroscopic) phononic crystal [56]. (h) The dispersion of the
gyroscopic phononic crystal with the Chern numbers labeled on the bulk bands [56]. (i) One period
of the unidirectional waveguide mode at t = 3.2s, the ellipses denote the shape of each orbit, and the
colors denote the phase at a fixed time [57].

In 2015, Pai Wang et al. constructed a new type of elastic phononic crystal by inducing
the gyroscopic inertial effects [56]. The ordinary unit cell with equal masses (m1 = m2)
connected by linear springs is shown in Figure 1d. The corresponding band structure of
the ordinary phononic crystal is shown in Figure 1g. The gap between the second and
third bands is topologically trivial. To acquire the nontrivial band gaps, how to break
the time-reversal symmetry needs to be solved. Consequently, the topological unit cell
for the gyroscopic phononic crystal is designed with each mass attached to the tip of
the rotational axis of a gyroscope, as shown in Figure 1e. The time-reversal symmetry
is broken by modulating gyroscopic coupling. The corresponding band structure of the
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gyroscopic phononic crystal with the spinner constants of the gyroscopes α1 = α2 =
0.3m1 is shown in Figure 1h. The two band gaps are nontrivial according to the non-zero
Chern numbers labeled on the bands. There are gapless one-way edge states in the two
topologically nontrivial gap frequency ranges. In these frequency ranges, the edge modes
can unidirectionally propagate without any reflection under topological protection even in
the presence of the sharp corner and the line defect.

In the same year, Nash et al. experimentally and theoretically demonstrated that a cou-
pled system of gyroscopes could generate topological states [57]. The honeycomb lattices
consisting of gyroscope–spring networks are shown in Figure 1c, and the experimental sys-
tem is shown in Figure 1f. The experimental system consists of 54 coupling gyroscopes on
a honeycomb lattice; the gyroscopes are composed of small dc motors spinning cylindrical
masses, which are coupled by placing a small neodymium magnet in each mass with its
moment aligned vertically. The time-reversal symmetry could be broken by controlling the
spinning gyroscopes and the geometry of the lattice. As expected, robust and topologically
protected one-way waveguides were observed in the experiment, as shown in Figure 1i.

2.2. Analogue Spin Hall Insulators

QSHE was firstly proposed in electronic systems based on spin-orbital coupling
effects [4,6]. Although the bosons do not have half-integer spin as electrons, the QSHE
is also demonstrated in photonics [35–37,81] and acoustics [47,48,51,82] by constructing
pseudo spins. In addition, the QSHE has been verified in elastic materials theoretically
and experimentally [58–68]. We note that there are three main methods used to construct
mechanical structures via QSHE, which include designing coupled pendula mimicking
spin-orbital coupling effects [58,59], using the elastic plates with distinct polarizations and
coupled deformation mechanisms to produce accidental fourfold degeneracy [60,61], and a
zone-folding method with honeycomb lattices [62–68].

In 2015, Mousavi et al. numerically demonstrated elastic-wave analogs of the QSHE
with a dual-scale phononic slab [60]. Inspired by this work, Miniaci et al. experimentally
investigated the topologically protected helical edge modes via elastic plates, e.g., the
sample in Ref. [60] in 2018 [61]. The patterned plate (PP) which resemblesthe twisted
Kagome lattice geometrically [83] and the unit cell, are shown in Figure 2a. The perspective
and cross-sectional view of the unit cells are shown in Figure 2b. By introducing circular
through holes (THs) in the PP, the accidental fourfold degeneracy of two Dirac cones
emerges at the K point. Furthermore, replacing THs with blind holes (BHs), the through-
the-thickness symmetry is broken, which resembles spin orbital coupling and lifts the
degeneracy at K point, as shown in Figure 2c The manufacturing pattern plate used for
the experiment is divided into two parts by a Z-shaped interface with BHs drilled on
the opposite (top or bottom) surfaces. As expected, the topologically protected Z-shaped
interface supports helical edge modes.

In 2018, Chaunsali et al. numerically [62] and experimentally [63] demonstrated
the pseudospin Hall effect via a zone-folding technique, respectively [81]. The actual
system, with bolts mounted on the thin plate and arranged in hexagonal lattices, is shown
in Figure 2d. The advent of double Dirac cones at Γ and the energy band reversal are
controlled by modulating the circumferential radius R of the bolts. The emergence of the
low-frequency edge states at the domain wall created between two topologically distinct
lattice patterns are controlled by the local resonance of bolts as shown in Figure 2e, and the
experimental setup is shown in Figure 2f. In the same year, Cha et al. designed an on-chip
topological elastic material that can generate high-frequency waves [64]. These on-chip
devices could produce steady-state transmission and might have potential applications in
on-chip acoustic devices.
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Figure 2. Analogue spin Hall insulators. (a) The elastic plate and the zoomed-in view of the unit cell.
The inset presents the high-symmetry points Γ, K, K′, M of the first irreducible Brillouin zone. [61].
(b) The schematic of three types of unit cell with distinct holes [61]. (c) Dispersion curve for the plate
with blind holes. The colors ranging from blue to red suggest that from pure in-plane modes to pure
out-of-plane modes [61]. (d) The experimental configuration [63]. (e) The edge-state transmission
along the domain wall at 7.70 kHz frequency [63]. The color represents the power spectral density,
which is calculated from the measured out-of-plane velocity of the plate. (f) The experimental setup,
in which a piezoelectric actuator is positioned at the center to excite the plate, and out-of-plane
velocity is measured point-by-point by an LDV (Polytec OFV 534 laser Doppler vibrometer) mounted
on a two-axis linear stage [63].

2.3. Analogue Valley Hall Insulators

A new degree of freedom, valley, has been introduced into the classical wave systems.
The QVHE has been theoretically and experimentally demonstrated in photonic crys-
tals [38–41,84,85], sonic crystals [42,49,50,53] and mechanical structures [55,69–79,86,87].
In particular, topologically valley-polarized states in elastic systems have been proposed
via bi-layered lattices [69,74], hexagonal lattices [55,70,73,75–79,88–90] and triangular lat-
tices [71,72,86]. The key to realizing the QVHE is breaking mirror symmetries or inversion
symmetries. Now we will discuss some iconic achievements regarding QVHE in mechani-
cal systems.

In 2017, Vila et al. constructed a continuous elastic plate that consists of hexagonal
lattices with magnetic cylinders attached to the sublattice sites, as shown in Figure 3a [76].
The magnetic cylinders act as the localized masses at the nodes used to break the mirror
symmetry. Particularly, it refers to reducing the original C3v symmetry to C3 symmetry in a
unit cell. The number of cylinders (masses) is controlled by the parameter γ. The masses
of the two sites a, b in a unit cell are ma = m(1 + γ) and mb = m(1− γ) respectively, as
shown in Figure 3b. The value γ = 0 represents no additional masses, and the Dirac cones
appear at the K and K′ points in this case. The value γ > 0 refers to additional masses at
site a; on the contrary, the value γ < 0 refers to additional masses at site b. The degeneracy
would be lifted when γ 6= 0. The band structure with the valley Chern numbers labelled at
the K and K′ points is shown in Figure 3c. In this context, the topological boundary state
emerges at a line interface of the elastic plate by setting the value γ = 1 or γ = −1 on the
left or right side of the interface, as shown in Figure 3d.
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Figure 3. Analogue valley Hall insulators. (a) The experimental continuous elastic plate [76]. (b) The
hexagonal mass-spring lattices [76]. (c) The energy spectrum with γ = 0 (dashed black line) and
γ = +0.2 (solid red and blue lines). The valley Chern numbers are marked at the corresponding
energy extrema in momentum space [76]. (d) The elastic plate with line interface consists of the left
strip (γ = 1 ) and right strip (γ = −1 ). The red (cyan) dots represent two(zero) cylinders attached
to the plate [76]. (e) The bilayer phononic crystal slabs of a hexagonal lattice [74]. (f) The magnetic
fluid distribution in a unit cell [79]. (g) The measured displacement field for the Z-shaped interface
structure [79].

In 2019, Jiao et al. observed the topological valley transport of elastic waves in
numerical simulations based on the bi-layered lattices [74]. The structure is constructed
by two layers of snowflake plates connected by a honeycomb array of cylinders, as shown
in Figure 3e. In the same year, Zhang et al. proposed a programmable elastic valley
Hall insulator whose edge states could propagate along arbitrary interface routes by a
programmable magnet lifting array [79]. The unit cell consists of two cylindrical cavities
with a small arched channel connecting them. It is obvious that to gap the K-point (Dirac
cone), the inversion symmetry should first be broken. Hence, magnetic fluid with equal
volume as one cavity is injected into the unit cell, and the inversion symmetry is broken
by independently adjusting the magnetic fluid distribution in each unit cell (see Figure 3f).
The measured displacement field for the Z-shaped interface configurations is shown in
Figure 3g.

3. Mechanical Higher-Order Topological Insulators

The discovery of HOTIs provides a new platform for wave regulation in metamaterials.
The HOTIs have topologically protected corner states and/or hinge states and form a new
class of topological phases where the bulk-boundary correspondence does not apply. In
2017, Benalcazar et al. [11,12] solved a long-standing puzzle and firstly described higher
electric multipole moments of crystals in detail, such as the quadrupole and octupole
moments. In 2018, Schindler et al. [13] proposed the notion of HOTIs. So far, the HOTIs
have been realized experimentally in photonics [91–98], acoustics [99–104], mechanical
systems [105–112] and other classical waves systems [113–115] owing to their advantages in
manufacturing, spectral analysis and local signal detection [15]. Next, we try to summarize
the achievements in elastic systems from two categories of quantized multipole insulators
and Cn-symmetric HOTIs without quantized multipole moments.
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3.1. Quantized Multipole Insulators

Benalcazar et al. proposed quantized multipole insulators (QMIs) with generalized
berry phases in 2017 and mainly discussed the quantized quadrupole moment in a 2D crys-
tal and the quantized octupole moment in a 3D crystal (see Figure 4a,b) [11,12]. Specifically,
a 2D quadrupole TI has gapped first-order edge states and second-order corner states in
the gap; a 3D octupole TI has gapped first-order surface states, second-order hinge states
and third-order corner states in the gap. Importantly, there must be reflection and inversion
symmetries to realize QMIs, and there must be at least two or four occupied bands to
make the dipole moments or quadrupole moments vanish. In the following, we will clearly
illustrate the advances of QMIs in elastic wave systems.
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Figure 4. Quantized multipole insulators. (a) Bulk quadrupole moment qxy, edge dipole moments pi

and corner charges Q [11]. (b) Bulk octupole moment Oxyz, surface quadrupole moments qij, hinge
dipole moments pi, and corner charges Q [11]. (c) A 2D tight-binding model of quadrupole insulators.
Red (black) lines represent negative (positive) hopping terms. Thin (thick) lines indicate intracell
(intercell) hopping terms [105]. (d) Metamaterial structure. Dashed white lines represent the two
nodal lines of the out-of-plane modes which are coupled based on the bent beams [105]. (e) Photo of
the experimental sample [105]. (f) The spectrum for the quadrupole insulator [105]. (g) The schematic
of the Wannier bands [105].

In 2018, Serra-Garcia et al. proposed a mechanical configuration to realize a quadrupole
topological insulator [105]. A tight-binding model with positive and negative couplings
is shown in Figure 4c. The unit cell and experimental photo of the setup are, respectively,
shown in Figure 4d,e. The quantized quadrupole TIs can be realized by manipulating the
positive or negative couplings and the amplitudes of the intracell or intercell couplings.
Specifically, the amplitudes of the intracell hoppings γ or intercell hoppings λ are controlled
by the distance between the given beam and the nodal line, and the positive or negative
hoppings depend on which sides of the nodal lines are connected by the beams. The
amplitudes of the intracell or intercell hoppings controlling the emergence of the bandgap
between two pairs of degenerate bands. The positive or negative couplings emulate a
magnetic π flux per plaquette. The gapped edge states and in-gap corner states appear at
the single plate for γ < λ. The corresponding spectrum is shown in Figure 4f. Here, two
pivotal features of the quantized quadrupole phase should be focused on. The first feature
is that the response is located at around 72.92 kHz and 74.89 kHz, which represents the
gapped edge modes. The second feature is that there are strong corner resonances in the
middle of the gap, which is indicative of the in-gap corner states. To further confirm the TIs
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is quadrupole, the Wannier bands are calculated as shown in Figure 4g. The bulk-induced
edge polarization could be calculated using the eigenvectors of the Wilson loops since
the Wannier bands v±(ky) and v±(kx) are gapped. The value of the polarizations are
(pv−

x , pv−
y ) = (0.5, 0.56), which suggest the existence of in-gap states.

3.2. Cn-Symmetric HOTIs

Realizing that QMIs requires the aforementioned structure to satisfy noncommutative
reflection symmetries brings some difficulties to the structural design. Hence, numerous
researchers are exploring simpler methods to implement HOTIs. In 2018, Ezawa theoreti-
cally proposed HOTIs via breathing Kagome lattices and Pyrochlore lattices [116]. In 2019,
Benalcazar et al. systematically investigated the 2D second-order topological crystalline
insulators (TCIs) in class AI protected by Cn symmetry and proposed the topological indices
which could characterize the topological nature of the TCIs with corner or defect-bound
fractional charges [19]. Moreover, they analyzed the relationship between the locations of
the Wannier centers of the electrons and the topological nature of the TCIs on the premise
of the insulators that admit a Wannier representation. Specifically, the phase is trivial when
Wannier centers are located at the center of the unit cell, while the phase is nontrivial when
Wannier centers are located at the corners or edges of the unit cell. Then, we will summarize
the experimental achievements of Cn-symmetric HOTIs in elastic wave systems [105–112].

In 2019, Fan et al. constructed a HOTI with a 2D continuous elastic system via SSH
models [106]. The composite unit cell with six magnets attached to each side is shown in
Figure 5a, and the schematic of the honeycomb lattices is shown in Figure 5e. The intracell
and intercell couplings could be changed by turning the lengths of acrylic beams lintra
and linter. Then we fabricated three large experimental honeycomb-shaped samples with
37 expanded unit cells (lintra > linter), shrunken unit cells (lintra < linter) and shrunken
unit cells with defects, respectively, as shown in Figure 5b–d. The numerically evaluated
eigenfrequencies shown in Figure 5f–h correspond to Figure 5b–d, respectively. As we can
see, Figure 5f show that there are only bulk states outside the forbidden band, the Figure 5g
show that there are gapped edge states and in-gap corner states in the topological band gap,
since the honeycomb-shaped sample with shrunken unit cells in Figure 5c is a topological
structure. However, one type of corner states (marked by red in Figure 5g) in the band
gap is topological, and the other is trivial (marked by blue in Figure 5g) in the topological
structure. Figure 5h show that the eigenfrequencies of the trivial corner states are changed,
inducing the defects. The simulated displacement field distributions of the topological
structure are shown in Figure 5i–l. One of the simulated edge states (marked by green
in Figure 5g) is shown in Figure 5l; the displacement field is almost completely localized
along the boundaries of the sample except for the six corners. One of the topological
corner states is shown in Figure 5j, which has immunity to defects. One of the trivial
corner states is shown in Figure 5k, which is sensitive to defects and disorders. One of the
bulk states (marked by black in Figure 5g) is shown in Figure 5i, and the displacement
field is almost localized at the center of the sample. Combined with these diagrams, we
observed the gapped edge states and two kinds of corner states, one kind of corner state
is nontrivial whose partial vibration is located at the sharpest corner, while another kind
of corner state whose vibration does not locate at the sharpest corner is trivial. In order
to verify the relationship between corner states and corner points, we constructed a large
triangular-shaped model and found that there are no topologically protected corner states
in the regular triangle elastic phononic crystal plate, but only trivial corner states. Then we
induced a topological index N = N+ − N− (N+ and N− represent topological charges +1
and −1, respectively) to explain this phenomenon. Consequently, the trivial corner states
locate at the acute-angled corners of π/3 in the case of N = 0, while the nontrivial corner
states locate at the obtuse-angled corners of 2π/3 in the case of N 6= 0.
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Figure 5. Elastic hexagon-shaped Tis [106]. (a) A composite unit cell of the hexagonal lattice. (b–d)
Hexagon-shaped structures consisting of expanded unit cells (b), shrunken unit cells (c) and shrunken
unit cells with defects (d), respectively. The defects are realized through adding a magnet on six
nodes, respectively, at the upper side of 12 composite unit cells (marked by the red dashed box). (e)
The schematic of the honeycomb lattice model. The red (blue) beams whose lengths are denoted by
lintra < linter representing the intracell (intercell) hoppings. (f–h) The schematics of the simulated
state number responding to (b–d), respectively. (i–l) The simulated modes of bulk state at 1750.2 Hz
(i), topological corner state at 1555.8 Hz (j), trivial corner state at 1529.1 Hz (k) and gapped edge state
at 1600.1 Hz (l).

In 2020, Fan et al. proposed a pseudospin-valley-coupled HOTI and observed topo-
logical higher-states [109]. The topological higher-states are induced by combining the
coupling of lattice deformation and reflection symmetry breaking. The lattice deformation
can be induced by expanding or shrinking the composite unit cell, which will lead to the
pseudospin Hall effect. The reflection symmetry can be broken by varying the adjacent
additional masses in a composite unit cell, which will lead to the valley Hall effect. The
two perturbative composite unit cells are shown in Figure 6a. Here, the additional masses
on the A and B nodes are obtained by the formulas mA = m0 + ∆m and mB = m0 − ∆m.
The length of the intracell and intercell beam is lintra = (1− ∆γ)l and linter = (1 + 2∆γ)l
respectively. The elastic phononic crystal sample with the two kinds of structural perturba-
tions is shown in Figure 6b. Specifically, a valley-polarized edge state will emerge when
the value is ∆m 6= 0, and a pseudospin-dependent edge state will emerge when the value
∆γ 6= 0. The edge states and corner states will appear at domain walls and the central
position, respectively, arising from the topological phases transition. The diagram of the
corner state is shown in Figure 6c.
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Figure 6. Other experimental realizations of Cn-symmetric HOTIs. (a) Composite unit cells with
∆γ = 0.164, ∆m = 0.5 (top) and ∆γ = −0.2, ∆m = −0.5 (bottom) [109]. (b) The square elastic
phononic crystal sample. The black circles signal the locations of defects [109]. (c) The corner mode
at 1792 Hz [109]. (d) A composite unit cell consists of stainless-steel prisms(blue) and an aluminum
plate(red) [110]. (e) The squared metamaterial formed by the two phononic crystals θ = −25◦ and
θ = 50◦, respectively. (f) The corner state at 34.01 MHz [110]. (g) The photo of the fabricated sample
chip [111]. (h) The unit cell of the square lattice photonic crystal [111]. (i) One corner mode in the
experiment system [111].

In the same year, Wang et al. designed a HOTI with 2D elastic phononic plates
protected by C4 symmetry [110]. The unit cell consists of stainless steel prisms (blue), and a
squared aluminum plate (red), as shown in Figure 6d. This structure could generate much
stronger scattering because of the different acoustic impedance between stainless steel and
aluminum. The key to realizing higher-order states is to produce gapped edge states, and
the emergence of the bandgap is controlled by the rotation angle θ of atoms arising from
the glide and time-reversal symmetries. In this context, they designed a squared structure
formed by two parts of phononic crystals with θ = −25◦ and θ = 50◦, respectively, as
shown in Figure 6e. As expected, the 0D corner states and 1D edge states appeared at the
interface because the glide symmetry is broken at the interface. The diagram of the corner
state is shown in Figure 6f.

In 2021, there are also a few achievements on implementing higher-order states in
mechanics [107,111,112,117]. Recently, Wu et al. experimentally demonstrated that higher-
order topological states for elastic waves at MHz could emerge in an on-chip microme-
chanical metastructure [111]. The sample chip is constructed with two partial structures
referring to a HOTI surrounded by a normal insulator (NI), as shown in Figure 6g. The
unit cell with four elliptic pillars in a square lattice is shown in Figure 6h. Manipulating the
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rotation angle θ of the pillars could open the crystal bandgap and induce band inversion
at the Brillouin zone corners. Specifically, the topological nature can be characterized by
the topological index which can be calculated from the symmetry eigenvalues at high-
symmetry momenta of the bands below the bandgap and corner charges. The topological
index is χ = (−1,−1, 0) and the corner charge is Qc = 1/2 when −90◦ < θ < 0◦, while the
topological index is χ = (−1,−1,−2) and the corner charge is Qc = 0 when 0◦ < θ < 90◦.
Hence, the rotation angle of the pillars in the HOTI is −90◦ < θ < 0◦, the rotation angle of
the pillars in the NI is 0◦ < θ < 90◦. The topological corner mode localized at one corner of
the central square region is shown in Figure 6i.

4. Topological Pump

In parallel with the development of the QHE, a new perspective, a topological pump,
has been proposed to investigate topologically protected modes [20,118–123]. The topological
pump exploits synthetic dimensions mapped to time [123–127] or space [24,119,120,128–131],
controlling the generation and transition of topological states. The synthetic dimen-
sions refer to exploring higher-dimensional physics with virtual dimensions in lower-
dimensional systems. Up to now, the synthetic dimensions has been used to relate the 2D,
4D and 6D QHE with 1D pump, 2D pump and 3D pump via 1D [119,120,125,127,128,132],
2D [24,129,133] and 3D [21,22] lattices respectively. The topological nature of the 2D (4D)
quantum Hall systems are characterized by the first Chern number (the second Chern
number) [129,134]. The Chern number dictates a quantization of particle transport in
(meta)material during one cycle of an adiabatical pump.

Recently, the topological pump in elastic systems has been demonstrated theoretically
and experimentally [124,126,128,130,135–137]. In 2019, Rosa et al. firstly theoretically
demonstrated the topological pump in spatially modulated elastic lattices [128]. The 1D
elastic lattices connected by springs whose constant are defined by the sampling of a 2D
surface S(x, φ) = cos(2πτx + φ) at xn = n, where τ = p/q (p and q are co-prime) denotes
q masses in a unit cell, φ denotes the pump parameter. The schematics of the 1D elastic
lattices and the 2D surface is shown in Figure 7a,b. The value of φ controls the generation
of the nonzero gap. The dispersion surfaces as a function of µ (the nondimensional wave
number) and φ, and the band structure as the variation of φ about a finite chain of 60 masses
are shown in Figure 7c,d. Of note is the fact that the topological nature is characterized by
the Chern number:

C =
1

2πi

∫
D
∇× (u∗ · ∇u)dD, (3)

Here, u(µ, φ) signals the Bloch eigenmodes, (µ, φ) ∈ T2 = [0, 2π]2 space, D = T2,
∇ = (∂/∂µ)eµ + (∂/∂φ)eφ. In this context, the topological edge modes will emerge when
the Chern number Cg 6= 0. Specifically, Cg > 0 denotes a right-to-left transition for
increasing φ in the first band gap, while Cg < 0 denotes an opposite transition in the second
bandgap. The schematic of the topological mode in the second gap is shown in Figure 7e.
Figure 7f display an elastic structure designed based on the 1D elastic lattices model with
the adiabatic topological pump. Inspired by this work, Riva et al. firstly experimentally
realized the topological pump in a continuous elastic plate, as shown in Figure 7g. The
edge-to-edge transitions could be modulated by smoothly altering the phase along a second
spatial dimension [130].

In 2021, Xia et al. proposed an experimental demonstration of the adiabatic temporal
pump in an electromechanical system [135]. Specifically, the one-dimensional elastic beam
is modulated spatiotemporally by an array of piezoelectric patches glued on the upper
and lower surfaces and shunted through negative capacitance (NC) circuits, as shown in
Figure 8a. The boundary states depend on the spatial stiffness modulation with a fixed
phase φ, and the wave motion along the waveguide depends on the temporal modulation
of the phase φ(t). The left-to-right temporal pumping with the phase parameter φ varying
from φ1 = 1.6π to φ2 = 0.4π is shown in Figure 8b,c. Figure 8d show the edge-to-
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edge transitions that could be realized with tunable phase modulation speeds, which has
potential applications for the controlled transmission of information across the waveguide.
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k0[1+ α cos(2πnp/q+ φ)] [128]. (b) 2D surface S(x, φ) = cos(2πτx+ φ). The black lines denote stiffness
variation with φ at a lattice node, and the blue lines denote cross-sections at φr = (2πr/3)(r ∈ [0, 3]) [128].
(c) The dispersion surfaces with Chern numbers labeled on the gaps [128]. (d) The energy spectrum as a
function of φ. The red lines signals the edge modes [128]. (e) The transition of the edge wave across the
system from left to right as the variation of φ in he second gap. [128]. (f) The array of continuous beams:
the thick black lines signal the notional deformed beams, the thick red lines signal the undeformed beams,
and the thin black horizontal lines correspond to the distributed springs with coupling constant γn [128].
(g) The square wave modulated continuous elastic plate employed in experiments [130].
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with modulated bending stiffness Dn(φ(t)). (b) The schematic of the transient pump. (c) The dispersion
diagram in quasistatic conditions (top) or in the time domain (bottom). (d) The influence of different
phase modulation durations (top, 2 ms; middle, 1.5 ms; bottom, 1 ms) on edge-to-edge transitions.

5. Topological Defect States

Topological lattice defects [27] have been extensively studied in electronic systems [138–140]
and classical systems [141–148] over the past decade. The classification of topological lattice
defects depends on the holonomy along a closed path around the defect core [25,149]. At
present, the common achievements of topological defects are dislocations [138,149–152]
and disclinations [25,139,153]. The dislocations and disclinations are defined as a gauge
flux for translational symmetry and rotational symmetry, respectively [28]. Dislocations
and disclinations are mainly investigated on honeycomb lattices and square lattices [149],
and it has been demonstrated that they can serve as a bulk probe to detect the topologi-
cal nature which exhibits topological states [139–143,146–148,154–156] and/or fractional
charges [144,145,157,158] in TCIs protected by crystal symmetries. More recently, topolog-
ical defect states have been proposed in elastic materials [87,159–161], and then we will
discuss the related papers.

In 2021, Xia et al. experimentally realized valley-polarized edge states by introducing
disclinations into elastic phononic plates [160]. The original honeycomb lattices elastic plate
with two same cylindrical magnets attached to the top and bottom nodes of sublattices
A and B is protected by C6v symmetry, as shown in Figure 9a. Hence, the band could
degenerate at the K point of the Brillouin zone and produce a Dirac cone state. Then
changing the masses of sublattices A and B, the mirror symmetry of the unit cell will
be broken, and a gap will appear to arise from the lifting of the Dirac cone. In addition,
the modes at K point are inversed with each other. Furthermore, cutting a 2π/6 sector
and gluing two boundary beams, a pentagonal elastic plate is shown in Figure 9b. Of
note is the fact that the masses of the sublattices A and B above or below the interface
is inversed. The tight-binding Hamiltonians [141] of this pentagonal elastic plate are
H = −iv(τσ1∂′1 + σ2∂′2)−mσ3, where v is the Dirac velocity, τ and σi signal valley Pauli
matrices and sublattice Pauli matrices, respectively, m is the sublattice detuning and ∂′ i
denote the sublattice distortion. Consequently, a topological edge state will be accessed at
the interface attributed to the opposite valley polarizations of the two types of unit cells as
shown in Figure 9c. Moreover, we constructed a more complex structure with a straight
waveguide by inducing a disclination dipole on honeycomb lattices, as shown in Figure 9d.
As such, a topological edge state could be observed in this phononic plate, as shown in
Figure 9e.

In the same year, Xia et al. experimentally demonstrated the topological bound states
in elastic phononic plates by inducing disclinations [161]. The pentagonal plate is designed
by cutting a π/3 sector and reattaching the remaining boundary sides; the deformation
process is shown in Figure 10a–c. The topological features can be presented by modulating
the intensity of the intracell and intercell couplings. It was revealed that the pentagonal
plate with shrunken unit cells has topological nontrivial states, as shown in Figure 10d.
The distribution of the Wannier centers around the TCIs depend on the tight-binding
models and crystal symmetries [19]. The schematics of the distribution of Wannier centers
in topological nontrivial or trivial (expanded unit cells) plates are shown in Figure 10e,f.
Moreover, 1/2 fractional charge is trapped at the pentagonal core in topological nontrivial
elastic phononic plates. As expected, the localized states immunize against the finite sizes
and the moderate structural defects.
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Figure 9. Valley-polarized structure with disclinations. (a) The hexagonal lattices with a rhombic
(orange) unit cell. (b) The pentagonal elastic phononic plate with a pentagonal core and a new
interface (gray dashes). The red and blue circles signal two categories of magnets with different
heights (h1 = 1 mm and h2 = 3 mm ). The unit cell I and II are displayed by the red parallelogram
region. (c) One of the eigenmodes of the pentagonal elastic plate at 1510 Hz. (d) The composite elastic
structure with a disclination dipole (a disclination connecting a pentagonal and heptagonal core)
waveguide. (e) One of the eigenmodes of the composite elastic system at 1550 Hz.
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The lengths of the intercell (intracell) beams are denoted by linter and lintra. (b) The topological
nontrivial structure with a missing π/3 crystalline wedge. (c) The topological nontrivial structure
with a pentagonal core. (d) One of the eigenmodes of the elastic system with 30 unit cells. (e) The
distributions of Wannier centers (blue solid circles) of the topological nontrivial structure. (f) The
distributions of Wannier centers (red solid circles) of the topological trivial structure.
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6. Conclusions and Future Directions

In the previous sections, we have shown the breakthroughs in this research field made
in recent years. Now, we can regulate the elastic waves in different topological protection
methods. However, the development of topological physics in mechanical systems still lag
behind the electronic, photonic and acoustic systems. As a result, we will outline those
future developments of topological mechanics as follows:

(1) 3D higher-order topological insulators

Strikingly, 3D HOTIs have gapped surface and hinge states and corner states in the
gap. Even though implementing 3D HOTIs is a big challenge, it has been observed in
acoustics [100,102,162–165] and electric circuits [166,167] via the 3D tight-binding model
of octupole TIs or the generalization SSH models [15]. We can refer to these advances to
design 3D HOTIs in mechanics.

(2) Higher-order topological pump

More recently, the topological pump, the second central, has been observed in photon-
ics [23,129] and acoustics [133] in higher-order topological band theory. Phenomenologi-
cally, a higher-order topological pump could produce edge-to-edge and/or corner-to-corner
transport in certain metamaterial platforms. Physically, the higher-order topological pump
could be characterized by the second Chern numbers or the position of the Wannier centers
versus the centers of their assigned unit cells. Consequently, we can investigate how to
realize a higher-order topological pump in mechanics based on this discovery.

(3) Fractional charges

Fractional charges have been an important feature to recognize the topological crys-
talline insulators (TCIs), which offer another experimental identification when TCIs lack
robust spectral features [144]. Recently, fractional charges have been observed at cor-
ners [168] and disclinations [144,145] of the TCIs. Generally, fractional charges could be
found exploiting the real-space localized Wannier representation of TCIs [19]. In addition,
we can attempt to design elastic structures to trap fractional charges.

(4) Non-Hermitian topological states

The abovementioned achievements are investigated based on the hypothesis of the
Hermiticity of a Hamiltonian. Recently, topological phases of non-Hermitian systems have
attracted extensive research, whose exceptional points and complex-valued spectra can
produce many notable properties, including the non-Hermitian skin effects [169,170], bulk
Fermi arcs [171] and Weyl exceptional rings [172], to name a few. At present, HOTIs of
non-Hermitian systems have been realized in sonic crystals [173,174]. As such, we can
study how to connect the higher-order topological physics with non-Hermitian systems in
mechanics by inducing friction.

(5) Application implementation

Even though there are plenty of achievements about undulation control using TIs in
mechanics, the actual devices still have not appeared. We could explore how to apply these
advances in practice, such as shrinking the mechanical structures to a micro-scale, design-
ing low loss devices, manufacturing vibration sensors, signal processing, microparticle
manipulations and so on.
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