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Abstract

:

The major criteria that control pile foundation design is pile bearing capacity (Pu). The load bearing capacity of piles is affected by the various characteristics of soils and the involvement of multiple parameters related to both soil and foundation. In this study, a new model for predicting bearing capacity is developed using an extreme gradient boosting (XGBoost) algorithm. A total of 200 driven piles static load test-based case histories were used to construct and verify the model. The developed XGBoost model results were compared to a number of commonly used algorithms—Adaptive Boosting (AdaBoost), Random Forest (RF), Decision Tree (DT) and Support Vector Machine (SVM) using various performance measure metrics such as coefficient of determination, mean absolute error, root mean square error, mean absolute relative error, Nash–Sutcliffe model efficiency coefficient and relative strength ratio. Furthermore, sensitivity analysis was performed to determine the effect of input parameters on Pu. The results show that all of the developed models were capable of making accurate predictions however the XGBoost algorithm surpasses others, followed by AdaBoost, RF, DT, and SVM. The sensitivity analysis result shows that the SPT blow count along the pile shaft has the greatest effect on the Pu.
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1. Introduction


A pile is a long, structural element used to allow structural loads to be transferred to the soils at a depth below the structure’s base. Axial, lateral, and moment loads are examples of structural loads. The load transmission mechanism is based on pile toe and pile shaft resistances [1]. Deep foundations are another word for pile foundations that are often used in practice. Pile foundations are used to support structures that cannot be supported economically on shallow foundations. The most significant factor when designing a pile foundation is pile carrying capacity (Pu) [2]. Various ways to determine pile carrying capacity have been used during the years of research and development [3,4,5,6,7,8,9,10,11,12,13], including dynamic analysis, high strain dynamic test, pile load test, cone penetration test (CPT) and in situ tests. Some research, claims that the aforementioned connections exaggerate the bearing capability [14]. However, the pile load test is considered as one of the best methods to determine the pile bearing capacity, although this strategy is costly for small-scale projects and time-consuming [10], it is critical to find a more practical approach. As a result, many studies using in situ test data to assess pile carrying capacity have been performed [9].



Lopes and Laprovitera [15], and Decort [16] proposed different formulas for determining pile carrying capacity for several soils, including clay and sand. Conventional approaches have used numerous main parameters to determine the mechanical properties of piles, including the diameter of pile, length of pile, type of soil, and SPT blow counts of each layer. Nevertheless, the selection of relevant parameters, along with the failure in covering other parameters, have led to the disagreement of results given by various approaches [17]. As a result, the development of an optimal model for selecting an appropriate set of parameters is critical.



A recently developed approach based on data mining techniques has been increasingly employed to resolve real-world problems for the past half-decade, particularly in the field of civil engineering [18,19,20,21,22,23,24,25,26,27,28]. Several practical problems have already been effectively performed using machine learning algorithms, paving the way for new prospects in the construction industry. Furthermore, a variety of machine learning algorithms, for example, random forest, artificial neural network (ANN), decision tree, adaptive neuro-fuzzy inference system (ANFIS), AdaBoost, SVM, XGBoost have been developed for addressing technical issues, such as pile mechanical behavior prediction.



Goh et al. [29,30] produced an ANN-based algorithm of piles driven in clays to predict the capacity of friction, using on-field data records to train the algorithm. Furthermore, Shahin et al. [31,32,33,34] employed the ANN-based model for forecasting pile load capacity using data that included in situ load testing and cone penetration test (CPT) results. Similarly, Nawari et al. [35] published an ANN approach that uses SPT data and shaft geometry to measure the settling of drilled shafts. Pham et al. [17] produced an ANN and RF to predict driven pile’s capacity. Momeni et al. [36] created an ANN model modified with Genetic Algorithm (GA) which select appropriate biases and weights for predicting pile bearing capacity. Based on CPT data, Kordjazi et al. [37] employed an SVM model to forecast the pile ultimate load-bearing capability. Liu et al. [21] developed XGBoost, Backpropagation Neural Network (BPNN) and RF algorithm to estimate driven piles bearing Capacity. Liang et al. estimated stability of hard rock pillars applying XGBoost, gradient boosting decision tree (GBDT), and light gradient boosting machine (LightGBM) Algorithms [23]. Pham et al. [38] has also developed Deep Learning Neural Network to estimate the carrying capacity of piles.



In addition to machine learning (ML) techniques mentioned above, the GBDT method demonstrates excellent results in a variety of disciplines [39,40,41]. It uses the boosting strategy to incorporate many DTs into a strong classifier as one of the ensemble learning algorithms [42]. DTs belong to the ML approach which employs a tree-like framework to handle a wide range of input types while tracing each path to the prediction outcomes [43]. DTs, on the other hand, are easy to overfit and sensitive to dataset noise because errors of the DTs were offset by one another, the total prediction performance of GBDT improves with the integration of DTs. XGBoost [44] and LightGBM [45] have recently been proposed in the context of GBDT. They have also attracted a lot of attention as a result of their outstanding performances. These three techniques, in particular, operate well with tiny datasets. To some extent, overfitting, which occurs when results match existing data very closely but fail to correctly estimate future trends, can also be prevented [43].



The aim of the present study is to develop a robust model to estimate axial pile bearing capacity using the XGBoost algorithm based on reliable pile load test results. The scope of the present research includes the following:




	
To develop a model that is able to learn the complex relationship among axial pile bearing capacity and its influencing factors with reasonable precision.



	
To validate the proposed model by comparing the efficacy with prominent modeling techniques, such as AdaBoost, RF, DT, and SVM in terms of performance measure metrics.



	
To conduct sensitivity analyses for the determination of the effect of each input parameter on Pu.








The framework of the paper is as follows: In Section 2, data collection and preparation are presented. Section 3 describes the machine learning approaches. The construction of the prediction model is presented in Section 4. Results and discussion are given in Section 5. Lastly, there are some closing remarks.




2. Data Collection and Preparation


2.1. Dataset


In this study, the dataset of 200 reinforced concrete piles at the test site in Ha Nam province–Vietnam (the complete database is available in Table A1) was used to train and test the model. As a first step, all known parameters affecting Pu were taken into account. Furthermore, it was discovered that the majority of traditional methods utilized three categories of parameters: geometry of pile, pile material quality, and soil attributes [3]. To achieve the measurements, hydraulic pile presses were used to drive pre-cast square-section piles with closed tips to the ground at a constant rate of penetration. The testing began at least seven days after the piles were driven, and the experimental setup is shown in Figure 1. The load increased gradually in each pile test, as can be observed. The load might be increased up to 200 percent of the pile load design depending on the design requirements. The time it takes to achieve 100 percent, 150 percent, and 200 percent of the load could take from around 6 to 12 h or 24 h, depending on the load [38]. These two principles were used to determine pile bearing capacity:




	(i)

	
the pile bearing capacity was taken as the failure load when the settlement of pile top at the current load level was five times or higher than the settlement of pile top at the previous load level;




	(ii)

	
when the load–settlement curve became linear at the last test load, condition (i) would not be used. In such a case, the test load at which progressive movement occurs or the total settlement exceeds 10 % of the pile diameter or width would be taken as the pile bearing capacity.









As a result, previous studies (e.g., [38]) show that pile bearing capacity (Pu) is a function of (1) diameter of the pile (D); (2) depth of the first layer of soil embedded (X1); (3) depth of the second layer of soil embedded (X2); (4) depth of the third layer of soil embedded (X3); (5) pile top elevation (Xp); (6) ground elevation (Xg); (7) extra pile top elevation (Xt); (8) pile tip elevation (Xm); (9) SPT blow count at pile shaft (NS) and (10) SPT blow count at pile tip (Nt) as shown in Figure 2. Therefore, in the current study, these input variables were used to develop the proposed models.



Collected data were divided into training and testing sets, researchers have used a different percentage of the available data as the training set for different problems. For instance, Pham et al. [38] used 60%; Liang et al. [23] used 70%; while Ahmad et al. [28] used 80% of the data for training. The statistical consistency of training and testing datasets has a substantial impact on the results when using soft computing techniques which improves the performance of the model and helps in evaluating them better [22,46]. To choose the most consistent representation, statistical studies of input and output variables of the training and testing data were performed. It was accomplished through the use of a trial-and-error strategy. For training and testing datasets, the best statistically consistent combination was selected. The data division was performed in such a way that 140 (70%) samples were used for training, and 60 (30%) samples were used for testing the models considered in this study. The results of the statistical analysis of the finally selected combinations are shown in Table 1, which includes minimum, mean, maximum and standard deviation of the input and output variables.




2.2. Correlation Analysis


Correlation (ρ) was used to verify the intensity of correlation between different parameters (see Table 2). Given pair of random variables (m, n), the following equation for ρ is used:


   ρ  (  m ,   n  )  =   c o v  (  m ,   n  )     σ m   σ n        



(1)




where cov denotes covariance,     σ m     denotes the standard deviation of m, and       σ n     denotes the standard deviation of n. |  ρ  | > 0.8 represents a strong relationship among m and n, values between 0.3 and 0.8 represents medium relationship, while |  ρ  | < 0.30 represents weak relationship [47]. According to Song et al. [48], correlation is considered as “strong” if |  ρ  | > 0.8. Table 2 displays the correlations between input and output characteristics. The correlation coefficient has a maximum absolute value of 0.989, as shown in Table 2. There is a “strong to weak” relationship among various variable combinations so none of the input variables was removed.





3. Machine Learning Methods


3.1. Extreme Gradient Boosting Algorithm


Chen and Guestrin [44] suggested the XGBoost algorithm, which is based on the GBDT structure. It has attracted a lot of attention as a result of its outstanding results in Kaggle’s ML competitions [49]. Unlike GBDT, the XGBoost goal function includes a regularization term to avoid overfitting. The main objective function is described as follows:


   O =   ∑   i = 1  n  L  (   y i  , F (  x i  )  )  +   ∑   k = 1  t  R (  f k  ) + C   



(2)




where    R (  f k  )      represents the regularization term at iteration k, and C being a constant that can be removed selectively.



Regularization term    R (  f k  )    written as,


   R (  f k  ) = α H +  1 2  η   ∑   j = 1  H   w j 2    



(3)




where   α   is the complexity of leaves, H denotes the number of leaves, η signifies penalty variable, and     ω j     represents output results in each leaf node. Leaves denote the expected categories based on classification criteria, whereas the leaf node denotes the tree node which cannot be divided.



Furthermore, unlike GBDT, XGBoost employs a second-order Taylor series of main functions rather than the first-order derivative. If the loss function is the mean square error (MSE), then the main function may be written as:


   O =   ∑   i = 1  n   [   p i   ω  q  (   x i   )    +  1 2   (   q i   ω  q  (   x i   )   2   )   ]  + α H +  1 2  η   ∑   j = 1  H   ω j 2    



(4)




where    q  (   x i   )     is a function that maps data points to leaves,     g i     and     h i     represents loss function’s first and second derivatives, respectively.



The final loss value is calculated by adding all of the loss values together. Because samples in the DT corresponds to nodes of leaf, the ultimate loss value can be calculated by adding loss values of the leaf nodes. As a result, the main function can be written as:


   O =   ∑   j = 1  T   [   P j   ω j  +  1 2   (   Q j  + η )  ω j 2   )   ]  + α H     



(5)




where     P j  =   ∑   i ϵ  I j     p i    ,     Q j  =   ∑   i ϵ  I j     q i    , and     I j     are the total number of samples in leaf node j.



To summarize, the challenge of optimizing the main function is reduced to identifying the minimum of a quadratic function. Due to the addition of regularization phenomena, XGBoost has a stronger capability to avoid overfitting. The structure of XGBoost can be seen in Figure 3.




3.2. Random Forest (RF) Algorithm


Because of its simplicity and diversity, RF is the most applied ML method. Breiman in 2001, developed this supervised learning approach for classification and regression analysis [50]. RF is an integrated learning strategy that collects data from a single DT and improves prediction accuracy by using majority voting or mean findings, depending on the task.



Assume you have an input data set with the following values Q = q1, q2, q3, …, qn where n is the number of datasets. An RF model would be a set of T trees T1(Q), T2(Q), T3(Q) …, Tn(Q).       R 1   ^  ,    R 2   ^  … …    R n   ^     is the predicted outcome of these decision-making trees. The eventual output of the RF model for the regression problem will be the average of all the above trees’ prediction outcomes. The concept of splitting initial training sets into smaller sets, with only a few predictive elements picked at random in each split, has been used to construct tree-growing algorithms. Because the programmer fails to prune decision trees according to predetermined stopping criteria, they continue to grow indefinitely. Tree growth stops such as the Gini Diversity Index, RMSE and MSE are frequently utilized. Trees with appropriate predictions are picked in the final RF model, and trees with low predictive outcomes are excluded. The overfitting problem of the single DT model is eliminated by randomly selecting predictor parameters and the final set of DTs [50,51]. Figure 4 illustrates the random forest’s structure.




3.3. AdaBoost Algorithm


AdaBoost or adaptive boosting is a sequential ensemble technique which is based on the principle of developing several weak learners using different training sub-sets drawn randomly from the original training dataset [52,53]. During each training, weights are assigned which are used when learning each hypothesis. The weights are used for computation of the error of the hypothesis on the dataset and are an indicator of the comparative importance of each instance. The weights are recalculated after every iteration, such that incorrectly classified instances by the last hypothesis receive higher weights. This enables the algorithm to focus on more difficult-to-learn instances. Assigning revised weights to the incorrectly classified instances is the most vital task of the algorithm. Unlike in classification, in regression, the instances are not correct or incorrect, rather they constitute a real-value error. By comparing the computed error to a predefined threshold prediction error, it can be labeled as an error or not an error and thus, the AdaBoost classifier can be used. Instances with larger errors on previous learners are more likely (i.e., higher probability) to be selected for training the subsequent base learner. Finally, weighted average or median is used to provide an ensemble prediction of the individual base learner predictions [54].




3.4. Support Vector Machine (SVM) Algorithm


Vapnik invented the SVM in 1995 [55], and it is a popular and successful learning algorithm for the classification of linear and nonlinear regression problems. The SVM algorithm delivers reliable prediction outcomes and is practicable for high-dimensional feature spaces, is robust and has good noise resistance [56,57]. In many disciplines, many effective SVM implementations with classification and regression issues have been documented [58,59,60]. The following is a summary of SVM’s basic theory.



As illustrated in Figure 5, a training set {(uk, vk), k = 1,2, … …, n} is chosen for an SVM model, where uk = [u1k, u2k, … …, unk] ∈     R   n h       is the input data, vk ∈     R   n m       is the output data corresponding to uk, and n is the number of training samples. The goal of the SVM is to identify an optimal hyperplane function f(x) (defined by the weight vector w and the offset b), that passes through all data items with the insensitive loss coefficient ε (based on two supporting hyperplanes, w.u – b = ε and w.u – b = −ε).



The function f(u) in nonlinear regression is determined as follows:


   f  ( u )  =   ∑   i = 1  n   (   α i  −  α i ∗   )  K  (   u i  ,  u j   )  + b )   



(6)




with


     ∑   i = 1  n   (   α i  −  α i ∗   )  = 0 ,     C ≥  α i  ,    α i ∗  ≥ 0 , ∀ i   



(7)







The penalty constant C is used to manage the penalty error,     α i  ,    α i ∗     are the Lagrange multipliers, and K (ui, uj) is the kernel function defined as follows:


   K  (   u i  ,  u j   )  = < Φ  (   u i   )  , Φ  (   u j   )  =     



(8)







The mapping function F is a nonlinear mapping function. The most often used kernel functions are linear, polynomial, sigmoid, and Gaussian functions:



Linear kernel function:


   K  (   u i  ,  u j   )  =  u i  ⋅  u j    



(9)







Polynomial kernel function:


   K  (   u i  ,  u j   )  =    (  γ  u i  ⋅  u j  + c  )   d        



(10)







Sigmoid kernel function:


   K  (   u i  ,  u j   )  = t a n h      (  γ  u i  ⋅  u j  + c  )   d      



(11)







Gaussian kernel function:


   K  (   u i  ,  u j   )  = e x p    (  − γ    (   u i  −  u j   )   2   )   d    



(12)








3.5. Decision Tree (DT) Algorithm


A decision tree is a tool with a tree-like structure that predicts likely outcomes, resource costs, utility costs, and potential consequences. One of the benefits of the machine learning approach over traditional statistical approaches such as regression is that they can handle more than two-dimensional data. For data-driven prediction analysis of diverse geotechnical problems, many researchers have adopted the tree-based approach [20,61,62]. As a result, tree-based ML techniques, such as DT, were used to build models and identify the key predictors of pile–soil friction in this work. DT can be seen graphically, showing specific decision requirements as well as the complicated branching that occurs in a constructed decision. This is one of the most popular and commonly used supervised learning techniques for forecasting model accuracy.



DT is capable of performing all tasks including recognition, classification, and prediction. DT is a “tree”-shaped structure made up of a succession of questions, each of which is described by a set of parameters. Roots, branches, and leaves comprise a real tree. Similarly, the graph for DT is comprised of nodes, which are leaves, and branches, which represent connections between nodes [63]. A variable is chosen as a root, also known as the initial node, during the DT process. By reference to the appointed features, the initial node is divided into many internal nodes. DT is a top-down tree, meaning the roots are at the very top. Roots, branches, and nodes are the end products of the branches [64]. Each node can be divided into two branches and each node has a relationship to a specific characteristic and branches that have been specified by a specific range of input. Figure 6 depicts a flowchart linked to the DT approach.





4. Construction of Prediction Models


Orange software was used to create the proposed models for predicting pile bearing capacity. Orange is an open-source software package. Machine learning, preprocessing, and visualization methods are included in the default installation, which is divided into six widget sets i.e., Data, Visualize, Classify, Regression, Evaluate and Unsupervised. Orange is visual programming software for machine learning, visualization, data mining, data analysis.



The predictor variables were provided via an input set (x) defined by x = {D, X1, X2, X3, Xp, Xg, Xt, Xm, NS and Nt}, while the target variable (y) is Pu. The most important task in every modeling step is to pick the right number of training and testing datasets. As a result, 70% of the whole data was chosen to generate the models in this study, with the developed models being tested on the remaining data. On the other way, 140 and 60 sets were utilized for creating and testing the models, respectively. All models (XGBoost, AdaBoost, RF, DT, and SVM) were tweaked to optimize the Pu prediction using the trial-and-error process. Figure 7 shows how the prediction models were built.



4.1. Hyperparameter Optimization


ML algorithms have parameters that must be tuned. The optimization procedure seeks to find ideal settings for XGBoost, AdaBoost, RF, DT, and SVM to achieve accurate prediction. This study tunes various critical parameters in the XGBoost, AdaBoost, RF, DT and SVM, as well as clarifies the definitions of these hyperparameters. The tuning parameters for the models were chosen and then changed in the trials until the best metrics shown in Table 3 were achieved.




4.2. Model Evaluation Indexes


The results of the proposed models are evaluated using R2, MAE, RMSE, MARE, NSE and RSR, as more commonly used criteria in the literature. The following equations are used to calculate these metrics:


    R 2  = 1 −     ∑   i = 1  n     (   x i  −   x ^  i   )   2      ∑   i = 1  n     (   x i  −  x ^   )   2      



(13)






   M A E =  1 n    ∑   i = 1  n   (   x i  −   x ^  i   )    



(14)






   R M S E =    1 n    ∑   i = 1  n     (   x i  −   x ^  i   )   2      



(15)






   M A R E =  1 n    ∑   i = 1  n   |     x i  −   x ^  i     x i    × 100  |    



(16)






   N S E = 1 −     ∑   i = 1  n     (   x i  −   x ^  i   )   2      ∑   i = 1  n     (   x i  −  x ¯   )   2      



(17)






   R S R =       ∑   i = 1  n     (   x i  −   x ^  i   )   2          ∑   i = 1  n     (   x i  −  x ¯   )   2        



(18)




where n denotes the number of points,     x i     and      x ^  i     denotes the actual and expected outputs of i-th sample, respectively;    x ¯    is data averaged actual output. R2 is a number that ranges from 0 to 1, a higher R2 value indicates a more efficient model. The model is considered effective when R2 is more than 0.8 and close to 1 [22]. The mean squared difference between projected outputs and targets is the criterion RMSE, and the mean magnitude of errors is the criterion MAE, RMSE and MAE are similar in that the closer these criterion values of these errors are to 0, the better the model’s performance. In circumstances where the MAE and RMSE are minimal, the model’s accuracy is greater. Models yielded the lowest MARE value, indicating that the model has superior predictive power. The RSR ranges from 0 to a considerable positive number. Lower RSR indicates lower RMSE, indicating that the model is more productive. RSR and NSE categorization ranges as very good, good, satisfactory, and unsatisfactory with ranges    0   ≤ R S R ≤   0.5   ,    0.5 < R S R   ≤   0.6   ,    0.6 < R S R   ≤   0.7   ,    R S R > 0.7    and    0.75 < N S E   ≤   1   ,    0.65 < N S E   ≤   0.75   ,    0.5 < N S E   ≤   0.65   , and    N S E   ≤   0.5   , respectively [65].



In addition, the Taylor diagram was used to compare the model’s performance visually [66]. Taylor diagram shows how similar patterns are and how closely a model pattern relates to reference. The standard deviation (σ), R2, and the RMSE are three equivalent model performance statistics that can be shown on a two-dimensional plot using the law of cosines. Taylor diagram is the best method for comparing the performance of various models in particular.





5. Result and Discussion


5.1. Comparison of Models


This section evaluates the model’s efficacy. Figure 8 and Figure 9 depict the training and testing dataset’s prediction performance in regression form, respectively, while Table 4 and Table 5 provide a summary of the relevant data.



In terms of training, the XGBoost model produced the best prediction results (i.e., R2 = 0.971, MAE = 47.518 and RMSE = 66.844) compared to AdaBoost (i.e., R2 = 0.957, MAE = 56.671 and RMSE = 82.495), RF (i.e., R2 = 0.952, MAE = 58.366 and RMSE = 79.240), DT (i.e., R2 = 0.932, MAE = 68.912 and RMSE = 94.304) and SVM (i.e., R2 = 0.887, MAE = 88.801 and RMSE = 123.375). This is also confirmed by the results of MARE, NSE and RSR in Table 4. In training part, XGBoost produced lesser MARE, NSE and RSR values compared to AdaBoost, RF, DT and SVM.



In the testing part, the XGBoost model had the best prediction results with respect to R2, MAE, RMSE, MARE, NSE and RSR (i.e., R2 = 0.955, MAE = 59.929, RMSE = 80.653, MARE = 6.6, NSE = 0.950, and RSR = 0.225) compared to AdaBoost (i.e., R2 = 0.950, MAE = 70.383, RMSE = 90.665, MARE = 8.252, NSE = 0.936, and RSR = 0.253), RF (i.e., R2 = 0.945, MAE = 69.030, RMSE = 86.348, MARE = 8.014, NSE = 0.942, and RSR = 0.241), DT (i.e., R2 = 0.0.925, MAE = 74.450, RMSE = 99.822, MARE = 8.775, NSE = 0.923, and RSR = 0.278) and SVM (i.e., R2 = 0.878, MAE = 98.320, RMSE = 128.027, MARE = 10.991, NSE = 0.873, and RSR = 0.357) as shown in Table 5.



Comparing the above performance measures the proposed XGBoost model performed better than the AdaBoost, RF, DT and SVM. From these statistical analysis and prediction capabilities, we can state that the XGBoost model has good accuracy prediction for pile bearing capacity.



The sensitivity results of the XGBoost model were assessed using Yang and Zang’s [67] method for assessing the impact of input variables on Pu. This approach, which has been used in several investigations [22,28,68,69,70], is as follows:


    r  i j   =     ∑   k = 1  n   (   x  i m   ×  x  o m    )        ∑   k = 1  n   x  i m     2    ∑   k = 1  n   x  o m     2          



(19)




as n represents the number of values (i.e., 140);     x  i m      and     x  o m      denotes input and output variables, respectively. For each input parameter, the     r  i j      value ranges from zero to one, with the greatest     r  i j      values indicating the efficient output variable (i.e., Pu).



Figure 10 shows the     r  i j      scores for all input variables. Figure 10 demonstrates that SPT blow count at pile shaft (NS) (    r  i j      = 0.985) has the greatest effect on the Pu.



With the use of the Taylor diagram (see Figure 11), we investigated the model’s efficiency further. The better the performance, the closer each produced model’s point is to the observed point location. The models demonstrated the best predictive capability, while the XGBoost method had a greater correlation and a lesser RMSE.




5.2. Comparison with Other Researchers


Table 6 shows some findings from a study on machine learning applications on pile bearing capacity. On the test data set, the expected efficiency of ML algorithms in foundation engineering having predictive outcomes of foundation load is mostly ranging R2 from 0.71 to 0.918, according to the results of previous studies while in the present study it is 0.955. However, due to the use of different datasets, a comparison between these results is unwarranted. A project that uses different datasets is needed to give a generalized model to foundation engineering.





6. Conclusions


Pile bearing capacity values were estimated in this paper using five models. The prediction model was built with ten input parameters and one output parameter. The modeling results show that the XGBoost model has the best capability for accurate prediction of Pu when compared to other models such as AdaBoost, RF, DT and SVM. The following are some of the major findings of this study:




	
In testing phase, the XGBoost model (R2 = 0.955, MAE = 59.929, RMSE = 80.653, MARE = 6.6, NSE = 0.950, and RSR = 0.225) has the highest performance capability as compared to other soft computing techniques considered in this study i.e., AdaBoost, RF, DT and SVM as well as the models used in the literature.



	
Sensitivity analysis results show that SPT blow count at pile shaft (NS) was the most important parameter in predicting pile bearing capacity.



	
Taylor diagram also verified that all the models are good but the predictive power of the XGBoost algorithm had a higher correlation and lower RMSE.



	
Based on the results and analysis the XGBoost model can also be applied to solve a variety of geotechnical engineering problems.








Furthermore, the XGBoost technique has the advantage of being easily updated, it is obvious that the proposed model is open to further development, and that the collection of more data will result in significantly stronger prediction capability, avoiding the requirement for expertise and time to update an existing design aid or equation.
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Abbreviation




	Symbol
	Explanation



	Pu
	Pile bearing capacity



	ML
	Machine learning



	XGBoost
	Extreme gradient boosting



	AdaBoost
	Adaptive boosting



	RF
	Random forest



	DT
	Decision tree



	SVM
	Support vector machine



	ANN
	Artificial neural network



	ANFIS
	adaptive neuro-fuzzy inference system



	GA
	Genetic algorithm



	BPNN
	Backpropagation neural network



	GBDT
	Gradient boosting decision tree



	LightGBM
	Light gradient boosting machine



	DLNN
	Deep Learning Neural Network



	PSO-ANN
	Particle swarm optimization—ANN



	GPR
	Gaussian process regression



	R2
	Coefficient of determination



	MAE
	Mean absolute error



	MSE
	Mean square error



	RMSE
	Root mean square error



	MARE
	Mean absolute relative error



	NSE
	Nash–Sutcliffe model efficiency



	RSR
	Relative strength ratio



	SPT
	Standard penetration test



	CPT
	Cone penetration test



	D
	Diameter



	X1
	Depth of first layer of soil embedded



	X2
	Depth of second layer of soil embedded



	X3
	Depth of third layer of soil embedded



	Xp
	Pile top elevation



	Xg
	Ground elevation



	Xt
	Extra pile top elevation



	Xm
	Pile tip elevation



	NS
	SPT blow count at pile shaft



	Nt
	SPT blow count at pile tip
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Table A1. Data Catalog.






Table A1. Data Catalog.





	S. No.
	D
	X1
	X2
	X3
	Xp
	Xg
	Xt
	Xm
	Ns
	Nt
	Pu





	Unit
	mm
	m
	m
	m
	m
	m
	m
	m
	-
	-
	kN



	1
	400
	3.45
	8
	0.3
	2.95
	3.65
	2.95
	14.7
	11.75
	7.59
	1017.9



	2
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1152



	3
	400
	4.25
	8
	1.02
	2.15
	3.58
	2.16
	15.42
	13.27
	7.68
	1344



	4
	400
	4.25
	8
	0.1
	2.15
	3.58
	3.08
	14.5
	12.35
	7.14
	1551



	5
	400
	4.35
	8
	1.06
	2.05
	3.55
	2.09
	15.46
	13.41
	7.66
	1321



	6
	300
	3.4
	5.25
	0
	3.4
	3.49
	3.44
	12.05
	8.65
	6.75
	559.8



	7
	400
	4.25
	8
	1.02
	2.15
	3.58
	2.16
	15.42
	13.27
	7.68
	1248



	8
	300
	3.4
	5.18
	0
	3.4
	3.36
	3.38
	11.98
	8.58
	6.73
	559.8



	9
	400
	4.75
	7.25
	0
	2.05
	3.62
	3.57
	14.05
	12
	6.73
	1425



	10
	300
	3.4
	5.25
	0
	3.4
	3.47
	3.42
	12.05
	8.65
	6.75
	559.8



	11
	300
	3.4
	5.2
	0
	3.4
	3.42
	3.42
	12
	8.6
	6.73
	660.6



	12
	400
	3.45
	5.24
	0
	3.35
	3.44
	3.4
	12.04
	8.69
	6.72
	1240



	13
	400
	4.35
	8
	1.07
	2.05
	3.52
	2.05
	15.47
	13.42
	7.67
	1425



	14
	400
	4.1
	2.17
	0
	2.7
	3.7
	2.73
	8.97
	6.27
	4.92
	661.6



	15
	400
	3.55
	5.39
	0
	3.25
	3.44
	3.25
	12.19
	8.94
	6.72
	1083



	16
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1152



	17
	400
	3.4
	7.3
	0
	3.4
	3.61
	3.51
	14.1
	10.7
	7.28
	1115.2



	18
	300
	3.4
	5.2
	0
	3.4
	3.43
	3.43
	12
	8.6
	6.73
	610.7



	19
	300
	3.4
	5.2
	0
	3.4
	3.42
	3.42
	12
	8.6
	6.73
	661.6



	20
	400
	4.1
	1.8
	0
	2.7
	3.39
	2.79
	8.6
	5.9
	4.64
	620



	21
	400
	3.45
	8
	0.3
	2.95
	3.66
	2.96
	14.7
	11.75
	7.59
	960



	22
	300
	3.4
	5.27
	0
	3.4
	3.49
	3.42
	12.07
	8.67
	6.75
	559.8



	23
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1248



	24
	400
	4.65
	7.4
	0
	2.15
	3.59
	3.39
	14.2
	12.05
	6.80
	1551



	25
	400
	4.1
	2
	0
	2.7
	3.56
	2.76
	8.8
	6.1
	4.80
	620



	26
	400
	4.35
	8
	0.3
	2.05
	3.45
	2.75
	14.7
	12.65
	7.22
	1473



	27
	400
	4.35
	8
	1.03
	2.05
	3.48
	2.05
	15.43
	13.38
	7.65
	1318



	28
	400
	4.35
	8
	1.01
	2.05
	3.46
	2.05
	15.41
	13.36
	7.64
	1473



	29
	400
	4.1
	1.72
	0
	2.7
	3.27
	2.75
	8.52
	5.82
	4.57
	423.9



	30
	400
	3.4
	7.28
	0
	3.4
	3.48
	3.4
	14.08
	10.68
	7.27
	1318



	31
	400
	4.35
	8
	1.05
	2.05
	3.55
	2.1
	15.45
	13.4
	7.66
	1221.5



	32
	300
	3.4
	5.2
	0
	3.4
	3.43
	3.43
	12
	8.6
	6.73
	559.8



	33
	400
	4.25
	8
	0.96
	2.15
	3.53
	2.17
	15.36
	13.21
	7.65
	1344



	34
	400
	4.65
	7.35
	0
	2.15
	3.55
	3.4
	14.15
	12
	6.79
	1392



	35
	400
	3.85
	7.5
	0
	2.95
	3.68
	3.38
	14.3
	11.35
	7.13
	1425



	36
	300
	3.4
	5.35
	0
	3.4
	3.57
	3.42
	12.15
	8.75
	6.78
	661.6



	37
	400
	4.75
	7.5
	0
	2.05
	3.6
	3.3
	14.3
	12.25
	6.79
	1425



	38
	400
	4.35
	8
	0.95
	2.05
	3.41
	2.06
	15.35
	13.3
	7.60
	1323.2



	39
	400
	4.25
	8
	0.9
	2.15
	3.57
	2.27
	15.3
	13.15
	7.61
	1473



	40
	400
	4.35
	8
	0.96
	2.05
	3.42
	2.06
	15.36
	13.31
	7.61
	1244



	41
	400
	4.35
	8
	1.05
	2.05
	3.5
	4.35
	15.45
	13.4
	7.66
	1297.8



	42
	400
	4.65
	7.4
	0
	2.15
	3.59
	3.39
	14.2
	12.05
	6.80
	1551



	43
	400
	4.65
	7.2
	0
	2.15
	3.58
	3.58
	14
	11.85
	6.75
	1551



	44
	400
	4.1
	2
	0
	2.7
	3.5
	2.7
	8.8
	6.1
	4.80
	610.7



	45
	400
	4.35
	8
	0.95
	2.05
	3.44
	2.09
	15.35
	13.3
	7.60
	1152



	46
	400
	4.05
	8
	0.66
	2.35
	3.46
	2.4
	15.06
	12.71
	7.56
	1318



	47
	400
	3.5
	8
	0.2
	2.9
	3.51
	2.91
	14.6
	11.7
	7.50
	960



	48
	400
	4.35
	8
	0.98
	2.05
	3.48
	2.1
	15.38
	13.33
	7.62
	1224.8



	49
	400
	4.65
	7.5
	0
	2.15
	3.59
	3.29
	14.3
	12.15
	6.82
	1551



	50
	400
	4.65
	7.46
	0
	2.15
	3.56
	3.3
	14.26
	12.11
	6.81
	1551



	51
	400
	4.25
	8
	0.2
	2.15
	3.55
	2.95
	14.6
	12.45
	7.20
	1392



	52
	400
	4.25
	8
	1.02
	2.15
	3.58
	2.16
	15.42
	13.27
	7.68
	1344



	53
	400
	3.4
	7.24
	0
	3.4
	3.44
	3.4
	14.04
	10.64
	7.26
	967



	54
	400
	4.25
	8
	0.99
	2.15
	3.54
	2.15
	15.39
	13.24
	7.66
	1248



	55
	400
	4.65
	7.2
	0
	2.15
	3.58
	3.58
	14
	11.85
	6.75
	1392



	56
	400
	4.1
	2
	0
	2.7
	3.54
	2.74
	8.8
	6.1
	4.80
	712.5



	57
	400
	4.65
	6.3
	0
	2.15
	3.55
	4.45
	13.1
	10.95
	6.53
	1440



	58
	300
	3.4
	5.2
	0
	3.4
	3.45
	3.45
	12
	8.6
	6.73
	559.8



	59
	300
	3.4
	5.3
	0
	3.4
	3.5
	3.4
	12.1
	8.7
	6.76
	661.6



	60
	400
	4.25
	8
	0.96
	2.15
	3.54
	2.18
	15.36
	13.21
	7.65
	1395



	61
	400
	4.25
	8
	1.02
	2.15
	3.58
	2.16
	15.42
	13.27
	7.68
	1344



	62
	400
	4.65
	7.4
	0
	2.15
	3.59
	3.39
	14.2
	12.05
	6.80
	1551



	63
	400
	3.4
	7.35
	0
	3.4
	3.56
	3.41
	14.15
	10.75
	7.29
	1052.4



	64
	400
	4.35
	8
	1.07
	2.05
	3.52
	2.05
	15.47
	13.42
	7.67
	1082.3



	65
	400
	4.75
	7.6
	0
	2.05
	3.44
	3.04
	14.4
	12.35
	6.81
	1473



	66
	400
	4.25
	8
	0.9
	2.15
	3.56
	2.26
	15.3
	13.15
	7.61
	1395



	67
	300
	3.4
	5.35
	0
	3.4
	3.57
	3.42
	12.15
	8.75
	6.78
	661.6



	68
	400
	3.5
	8
	0.18
	2.9
	3.5
	2.92
	14.58
	11.68
	7.49
	1032.4



	69
	300
	3.4
	5.2
	0
	3.4
	3.42
	3.42
	12
	8.6
	6.73
	559.8



	70
	400
	3.4
	7.33
	0
	3.4
	3.55
	3.42
	14.13
	10.73
	7.28
	1094.25



	71
	400
	4.25
	8
	1
	2.15
	3.55
	2.15
	15.4
	13.25
	7.67
	1248



	72
	400
	3.45
	8
	0.2
	2.95
	3.52
	2.92
	14.6
	11.65
	7.52
	967



	73
	400
	3.5
	8
	0.17
	2.9
	3.47
	2.9
	14.57
	11.67
	7.48
	960



	74
	400
	3.45
	8
	0.14
	2.95
	3.52
	2.98
	14.54
	11.59
	7.48
	885



	75
	400
	3.45
	8
	0.07
	2.95
	3.42
	2.95
	14.47
	11.52
	7.44
	1240



	76
	400
	5.4
	6.3
	0
	2.15
	3.52
	1.06
	13.1
	14.7
	5.50
	1056



	77
	300
	3.4
	5.2
	0
	3.4
	3.43
	3.43
	12
	8.6
	6.73
	600.7



	78
	300
	3.4
	5.3
	0
	3.4
	3.52
	3.42
	12.1
	8.7
	6.76
	508.9



	79
	400
	3.55
	5.36
	0
	3.25
	3.41
	3.25
	12.16
	8.91
	6.71
	930



	80
	400
	4.35
	8
	1.18
	2.05
	3.66
	2.08
	15.58
	13.53
	7.73
	1056



	81
	400
	4.1
	2
	0
	2.7
	3.52
	2.72
	8.8
	6.1
	4.80
	610.7



	82
	300
	3.4
	5.25
	0
	3.4
	3.49
	3.44
	12.05
	8.65
	6.75
	610.7



	83
	400
	4.25
	8
	1
	2.15
	3.55
	2.15
	15.4
	13.25
	7.67
	1344



	84
	300
	3.4
	5.2
	0
	3.4
	3.38
	3.38
	12
	8.6
	6.73
	610.7



	85
	400
	4.25
	8
	0.9
	2.15
	3.59
	2.29
	15.3
	13.15
	7.61
	1473



	86
	400
	4.1
	1.85
	0
	2.7
	3.35
	2.7
	8.65
	5.95
	4.68
	508.9



	87
	300
	3.4
	5.2
	0
	3.4
	3.43
	3.43
	12
	8.6
	6.73
	661.6



	88
	400
	4.25
	8
	0.94
	2.15
	3.54
	2.2
	15.34
	13.19
	7.64
	1395



	89
	400
	4.25
	8
	0.9
	2.15
	3.59
	2.29
	15.3
	13.15
	7.61
	1551



	90
	400
	4.75
	7.25
	0
	2.05
	3.65
	3.6
	14.05
	12
	6.73
	1425



	91
	400
	4.25
	8
	1.02
	2.15
	3.58
	2.16
	15.42
	13.27
	7.68
	1152



	92
	400
	4.35
	8
	1.05
	2.05
	3.53
	2.08
	15.45
	13.4
	7.66
	1473



	93
	400
	3.45
	8
	0.14
	2.95
	3.52
	2.98
	14.54
	11.59
	7.48
	885



	94
	400
	4.1
	1.9
	0
	2.7
	3.43
	2.73
	8.7
	6
	4.72
	620



	95
	400
	4.35
	8
	0.97
	2.05
	3.42
	2.05
	15.37
	13.32
	7.61
	1317



	96
	400
	4.65
	6.49
	0
	2.15
	3.59
	4.3
	13.29
	11.14
	6.58
	1551



	97
	400
	3.4
	7.31
	0
	3.4
	3.56
	3.45
	14.11
	10.71
	7.28
	1032.4



	98
	300
	3.4
	5.25
	0
	3.4
	3.48
	3.43
	12.05
	8.65
	6.75
	610.7



	99
	400
	3.45
	8
	0.19
	2.95
	3.56
	2.97
	14.59
	11.64
	7.52
	1318



	100
	400
	3.45
	6.29
	0
	3.35
	3.44
	3.35
	13.09
	9.74
	7.02
	1240



	101
	300
	3.4
	5.24
	0
	3.4
	3.49
	3.45
	12.04
	8.64
	6.75
	610.7



	102
	400
	4.25
	8
	0.7
	2.15
	3.58
	2.48
	15.1
	12.95
	7.50
	1392



	103
	300
	3.4
	5.25
	0
	3.4
	3.47
	3.42
	12.05
	8.65
	6.75
	585.4



	104
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1152



	105
	400
	4.1
	1.8
	0
	2.7
	3.32
	2.72
	8.6
	5.9
	4.64
	559.8



	106
	400
	3.4
	7.3
	0
	3.4
	3.49
	3.39
	14.1
	10.7
	7.28
	1068.8



	107
	400
	4.35
	8
	1
	2.05
	3.45
	2.05
	15.4
	13.35
	7.63
	1119.7



	108
	400
	3.4
	7.31
	0
	3.4
	3.54
	3.43
	14.11
	10.71
	7.28
	1032.8



	109
	400
	3.45
	8
	0.1
	2.95
	3.54
	3.04
	14.5
	11.55
	7.46
	1017.9



	110
	300
	3.4
	5.2
	0
	3.4
	3.48
	3.48
	12
	8.6
	6.73
	611.6



	111
	400
	4.75
	7.6
	0
	2.05
	3.49
	3.09
	14.4
	12.35
	6.81
	1473



	112
	400
	4.35
	8
	1.04
	2.05
	3.52
	2.08
	15.44
	13.39
	7.65
	1321



	113
	400
	3.5
	8
	0.21
	2.9
	3.48
	2.87
	14.61
	11.71
	7.51
	1032.4



	114
	400
	4.65
	7.2
	0
	2.15
	3.55
	3.55
	14
	11.85
	6.75
	1392



	115
	400
	4.35
	8
	1.08
	2.05
	3.53
	2.05
	15.48
	13.43
	7.67
	1248



	116
	300
	3.4
	5.25
	0
	3.4
	3.46
	3.41
	12.05
	8.65
	6.75
	661.6



	117
	300
	3.4
	5.2
	0
	3.4
	3.41
	3.41
	12
	8.6
	6.73
	610.7



	118
	400
	4.35
	8
	1.1
	2.05
	3.55
	2.05
	15.5
	13.45
	7.69
	1425



	119
	400
	4.35
	8
	0.05
	2.05
	3.58
	3.13
	14.45
	12.4
	7.07
	1344



	120
	400
	4.1
	2.08
	0
	2.7
	3.63
	2.75
	8.88
	6.18
	4.86
	432



	121
	300
	3.4
	5.25
	0
	3.4
	3.48
	3.43
	12.05
	8.65
	6.75
	559.8



	122
	400
	3.85
	7.35
	0
	2.95
	3.64
	3.49
	14.15
	11.2
	7.09
	1425



	123
	300
	3.4
	5.25
	0
	3.4
	3.48
	3.43
	12.05
	8.65
	6.75
	508.9



	124
	400
	4.65
	7.5
	0
	2.15
	3.59
	3.29
	14.3
	12.15
	6.82
	1551



	125
	300
	3.4
	5.3
	0
	3.4
	3.5
	3.4
	12.1
	8.7
	6.76
	559.8



	126
	300
	3.4
	5.32
	0
	3.4
	3.55
	3.43
	12.12
	8.72
	6.77
	661.6



	127
	300
	3.4
	5.25
	0
	3.4
	3.48
	3.43
	12.05
	8.65
	6.75
	559.8



	128
	400
	3.5
	8
	0.16
	2.9
	3.48
	2.92
	14.56
	11.66
	7.47
	960



	129
	400
	4.65
	7.5
	0
	2.15
	3.55
	3.25
	14.3
	12.15
	6.82
	1551



	130
	400
	4.75
	7.5
	0
	2.05
	3.45
	3.15
	14.3
	12.25
	6.79
	1297.8



	131
	300
	3.4
	5.2
	0
	3.4
	3.42
	3.42
	12
	8.6
	6.73
	610.7



	132
	400
	4.35
	8
	1.01
	2.05
	3.46
	2.05
	15.41
	13.36
	7.64
	1550



	133
	300
	3.4
	5.2
	0
	3.4
	3.41
	3.41
	12
	8.6
	6.73
	610.7



	134
	400
	3.4
	7.3
	0
	3.4
	3.54
	3.44
	14.1
	10.7
	7.28
	967



	135
	400
	4.25
	8
	1.03
	2.15
	3.58
	2.15
	15.43
	13.28
	7.69
	1248



	136
	300
	3.4
	5.25
	0
	3.4
	3.46
	3.41
	12.05
	8.65
	6.75
	559.8



	137
	300
	3.4
	5.3
	0
	3.4
	3.51
	3.41
	12.1
	8.7
	6.76
	661.6



	138
	400
	4.25
	8
	0.4
	2.15
	3.55
	2.75
	14.8
	12.65
	7.32
	1392



	139
	400
	4.35
	8
	0.95
	2.05
	3.41
	2.06
	15.35
	13.3
	7.60
	1110.6



	140
	300
	3.4
	5.2
	0
	3.4
	3.4
	3.4
	12
	8.6
	6.73
	559.8



	141
	400
	3.85
	7.3
	0
	2.95
	3.68
	3.58
	14.1
	11.15
	7.08
	1440



	142
	400
	4.1
	2.08
	0
	2.7
	3.58
	2.7
	8.88
	6.18
	4.86
	480



	143
	400
	4.45
	8
	1.18
	1.95
	3.58
	2
	15.58
	13.63
	7.69
	1032.4



	144
	300
	3.4
	5.2
	0
	3.4
	3.4
	3.4
	12
	8.6
	6.73
	559.8



	145
	300
	3.4
	5.2
	0
	3.4
	3.43
	3.43
	12
	8.6
	6.73
	661.6



	146
	300
	3.4
	5.25
	0
	3.4
	3.46
	3.41
	12.05
	8.65
	6.75
	407.2



	147
	400
	3.45
	8
	0.22
	2.95
	3.57
	2.95
	14.62
	11.67
	7.53
	1318



	148
	400
	4.25
	8
	1.01
	2.15
	3.57
	2.16
	15.41
	13.26
	7.68
	1248



	149
	400
	3.4
	7.3
	0
	3.4
	3.5
	3.4
	14.1
	10.7
	7.28
	958



	150
	400
	4.1
	2.2
	0
	2.7
	3.72
	2.72
	9
	6.3
	4.94
	610.7



	151
	400
	4.35
	8
	1.02
	2.05
	3.47
	4.05
	15.42
	13.37
	7.64
	1318



	152
	400
	4.25
	8
	0.9
	2.15
	3.53
	2.23
	15.3
	13.15
	7.61
	1395



	153
	400
	4.25
	8
	0.4
	2.15
	3.59
	2.79
	14.8
	12.65
	7.32
	1551



	154
	300
	3.4
	5.24
	0
	3.4
	3.48
	3.44
	12.04
	8.64
	6.75
	559.8



	155
	400
	4.25
	8
	0.4
	2.15
	3.55
	2.75
	14.8
	12.65
	7.32
	1392



	156
	300
	3.4
	5.25
	0
	3.4
	3.46
	3.41
	12.05
	8.65
	6.75
	661.6



	157
	400
	4.05
	8
	0.7
	2.35
	3.47
	2.37
	15.1
	12.75
	7.58
	1318



	158
	300
	3.4
	5.23
	0
	3.4
	3.44
	3.41
	12.03
	8.63
	6.74
	585.35



	159
	400
	4.35
	8
	0.7
	2.05
	3.49
	2.39
	15.1
	13.05
	7.46
	1392



	160
	400
	4.25
	8
	1
	2.15
	3.57
	2.17
	15.4
	13.25
	7.67
	1248



	161
	400
	4.25
	8
	1
	2.15
	3.58
	2.18
	15.4
	13.25
	7.67
	1395



	162
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1395



	163
	400
	4.25
	8
	1.01
	2.15
	3.57
	2.16
	15.41
	13.26
	7.68
	1248



	164
	400
	4.25
	8
	0.1
	2.15
	3.53
	3.03
	14.5
	12.35
	7.14
	1551



	165
	400
	3.5
	8
	0.17
	2.9
	3.48
	2.91
	14.57
	11.67
	7.48
	1056



	166
	400
	4.25
	8
	1.02
	2.15
	3.58
	2.16
	15.42
	13.27
	7.68
	1248



	167
	300
	3.4
	5.25
	0
	3.4
	3.46
	3.41
	12.05
	8.65
	6.75
	532.4



	168
	400
	4.35
	8
	0.8
	2.05
	3.45
	2.25
	15.2
	13.15
	7.52
	1392



	169
	300
	3.4
	5.2
	0
	3.4
	3.45
	3.45
	12
	8.6
	6.73
	610.7



	170
	400
	4.25
	8
	0.98
	2.15
	3.54
	2.16
	15.38
	13.23
	7.66
	1344



	171
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1344



	172
	400
	3.45
	8
	0.25
	2.95
	3.6
	2.95
	14.65
	11.7
	7.55
	960



	173
	400
	4.65
	7.24
	0
	2.15
	3.54
	3.5
	14.04
	11.89
	6.76
	1551



	174
	400
	4.25
	8
	0.9
	2.15
	3.58
	2.28
	15.3
	13.15
	7.61
	1395



	175
	400
	3.4
	7.3
	0
	3.4
	3.5
	3.4
	14.1
	10.7
	7.28
	900



	176
	400
	3.4
	7.4
	0
	3.4
	3.61
	3.41
	14.2
	10.8
	7.30
	1088.8



	177
	400
	4.25
	8
	0.1
	2.15
	3.54
	3.04
	14.5
	12.35
	7.14
	1551



	178
	400
	3.4
	7.23
	0
	3.4
	3.43
	3.4
	14.03
	10.63
	7.26
	960



	179
	300
	3.4
	5.3
	0
	3.4
	3.52
	3.42
	12.1
	8.7
	6.76
	610.7



	180
	400
	4.1
	2
	0
	2.7
	3.55
	2.75
	8.8
	6.1
	4.80
	610.7



	181
	400
	4.25
	8
	1.03
	2.15
	3.58
	2.15
	15.43
	13.28
	7.69
	1248



	182
	400
	3.45
	8
	0.12
	2.95
	3.47
	2.95
	14.52
	11.57
	7.47
	1318



	183
	400
	4.25
	8
	1
	2.15
	3.58
	2.18
	15.4
	13.25
	7.67
	1395



	184
	400
	4.35
	8
	1.11
	2.05
	3.56
	2.05
	15.51
	13.46
	7.69
	1128.6



	185
	400
	4.45
	7.21
	0
	2.35
	3.41
	2.4
	14.01
	11.66
	6.83
	1318



	186
	400
	4.65
	7.38
	0
	2.15
	3.58
	3.4
	14.18
	12.03
	6.79
	1551



	187
	400
	4.25
	8
	1
	2.15
	3.56
	2.16
	15.4
	13.25
	7.67
	1248



	188
	400
	4.25
	8
	0.2
	2.15
	3.58
	2.98
	14.6
	12.45
	7.20
	1551



	189
	400
	4.65
	7.6
	0
	2.15
	3.58
	3.18
	14.4
	12.25
	6.84
	1446



	190
	300
	3.4
	5.22
	0
	3.4
	3.44
	3.42
	12.02
	8.62
	6.74
	617



	191
	400
	4.75
	7.4
	0
	2.05
	3.52
	3.32
	14.2
	12.15
	6.76
	1425



	192
	400
	4.65
	7.4
	0
	2.15
	3.59
	3.39
	14.2
	12.05
	6.80
	1392



	193
	400
	3.4
	7.3
	0
	3.4
	3.61
	3.51
	14.1
	10.7
	7.28
	1115.2



	194
	300
	3.4
	5.25
	0
	3.4
	3.49
	3.44
	12.05
	8.65
	6.75
	559.8



	195
	300
	3.4
	5.25
	0
	3.4
	3.46
	3.41
	12.05
	8.65
	6.75
	559.8



	196
	400
	4.25
	8
	1
	2.15
	3.58
	2.18
	15.4
	13.25
	7.67
	1395



	197
	300
	3.4
	5.18
	0
	3.4
	3.38
	3.4
	11.98
	8.58
	6.73
	559.8



	198
	400
	4.25
	8
	0.91
	2.15
	3.56
	2.25
	15.31
	13.16
	7.62
	1473



	199
	400
	4.05
	8
	0.7
	2.35
	3.48
	2.38
	15.1
	12.75
	7.58
	1238



	200
	400
	4.1
	2.01
	0
	2.7
	3.53
	2.72
	8.81
	6.11
	4.80
	528
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Figure 1. Schematic layout of pile load test. 
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Figure 2. Diagram for stratigraphy and pile parameters [38]. 
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Figure 3. Structure of XGBoost Algorithm. 
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Figure 4. Random Forest structure. 
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Figure 5. SVM for a regression problem. 
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Figure 6. Decision tree structure. 
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Figure 7. The flowchart for applying a data-driven technique to anticipate pile bearing capacity. 
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Figure 8. Measured Pu versus Estimated Pu for training models using (a) XGBoost, (b) AdaBoost, (c) RF, (d) DT, and (e) SVM. 
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Figure 9. Measured Pu versus predicted Pu for testing models using (a) XGBoost, (b) AdaBoost, (c) RF, (d) DT, and (e) SVM. 
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Figure 10. Sensitivity analysis of input variables. 
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Figure 11. Taylor diagram of the models. 
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Table 1. Statistical study of inputs and output data.
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Dataset

	
Statistical

Parameters

	
Input and Output Parameters




	
D (mm)

	
X1 (m)

	
X2 (m)

	
X3 (m)

	
Xp (m)

	
Xg (m)

	
Xt (m)

	
Xm (m)

	
Ns

	
Nt

	
Pu (kN)






	
Training

	
Minimum

	
300

	
3.4

	
1.8

	
0

	
1.95

	
3.32

	
2

	
8.6

	
5.9

	
4.64

	
432




	
Average

	
378.57

	
4.002

	
6.43

	
0.377

	
2.615

	
3.517

	
2.834

	
13.425

	
10.811

	
6.908

	
1064.739




	
Maximum

	
400

	
4.75

	
8

	
1.18

	
3.4

	
3.7

	
4.45

	
15.58

	
13.63

	
7.69

	
1551




	
Standard Deviation

	
41.179

	
0.455

	
2.039

	
0.467

	
0.552

	
0.069

	
0.609

	
2.207

	
2.550

	
0.914

	
363.681




	
Testing

	
Minimum

	
300

	
3.4

	
2.08

	
0

	
2.05

	
3.38

	
2.05

	
8.88

	
6.18

	
4.86

	
407.2




	
Average

	
371.667

	
3.85

	
6.774

	
0.307

	
2.77

	
3.522

	
2.987

	
13.702

	
10.932

	
7.087

	
1023.266




	
Maximum

	
400

	
4.75

	
8

	
1.18

	
3.4

	
3.72

	
4.05

	
15.58

	
13.53

	
7.73

	
1551




	
Standard Deviation

	
45.442

	
0.472

	
1.594

	
0.438

	
0.585

	
0.078

	
0.549

	
1.719

	
2.123

	
0.636

	
362.003
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Table 2. Correlation between parameters.
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Parameters

	
D

	
X1

	
X2

	
X3

	
Xp

	
Xg

	
Xt

	
Xm

	
Ns

	
Nt

	
Pu






	
D

	
1.000

	

	

	

	

	

	

	

	

	

	




	
X1

	
0.641

	
1.000

	

	

	

	

	

	

	

	




	
X2

	
0.462

	
0.329

	
1.000

	

	

	

	

	

	

	




	
X3

	
0.421

	
0.448

	
0.564

	
1.000

	

	

	

	

	

	




	
Xp

	
−0.714

	
−0.935

	
−0.515

	
−0.672

	
1.000

	

	

	

	

	

	




	
Xg

	
0.436

	
0.357

	
0.333

	
0.203

	
−0.377

	
1.000

	

	

	

	

	




	
Xt

	
−0.481

	
−0.469

	
−0.331

	
−0.810

	
0.628

	
−0.135

	
1.000

	

	

	

	




	
Xm

	
0.474

	
0.378

	
0.989

	
0.672

	
−0.571

	
0.334

	
−0.422

	
1.000

	

	

	




	
Ns

	
0.577

	
0.572

	
0.947

	
0.719

	
−0.732

	
0.371

	
−0.533

	
0.969

	
1.000

	

	




	
Nt

	
0.197

	
0.050

	
0.923

	
0.619

	
−0.289

	
0.198

	
−0.303

	
0.931

	
0.827

	
1.000

	




	
Pu

	
0.735

	
0.706

	
0.785

	
0.474

	
−0.780

	
0.460

	
−0.336

	
0.785

	
0.846

	
0.558

	
1.000
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Table 3. Hyperparameters optimal results.
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Algorithm

	
Hyperparameters

	
Meanings

	
Optimal Values






	
XGBoost

	
n estimators

	
Number of trees

	
133




	
Learning rate

	
Shrinkage coefficient of tree

	
0.03




	
Maximum depth

	
Maximum depth of a tree

	
4




	
RF

	
n estimators

	
Number of trees in forest

	
500




	
Minimum split

	
Minimum samples of split for nodes

	
5




	
Maximum depth

	
Maximum depth of a tree

	
5




	
Minimum leaf

	
Minimum samples of nodes for leaf

	
8




	
AdaBoost

	
n estimators

	
Number of trees

	
500




	
Learning rate

	
Shrinkage coefficient of tree

	
1




	
SVM

	
C2

	
Regularization parameter

	
2.5




	
DT

	
Minimum split

	
Minimum samples of split for nodes

	
4




	
Maximum depth

	
Maximum depth of a tree

	
100




	
Minimum leaf

	
Minimum samples of nodes for leaf

	
7
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Table 4. Summary of Training model.
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Training Set




	
Model

	
R2

	
MAE (kN)

	
RMSE (kN)

	
MARE (%)

	
NSE

	
RSR






	
XGBoost

	
0.971

	
47.518

	
66.844

	
4.355

	
0.966

	
0.184




	
AdaBoost

	
0.957

	
56.671

	
82.495

	
5.252

	
0.948

	
0.228




	
RF

	
0.952

	
58.366

	
79.240

	
5.739

	
0.952

	
0.219




	
DT

	
0.932

	
68.912

	
94.304

	
6.911

	
0.932

	
0.260




	
SVM

	
0.887

	
88.801

	
123.375

	
8.507

	
0.884

	
0.340
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Table 5. Summary of Testing model.
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Testing Set




	
Model

	
R2

	
MAE (kN)

	
RMSE (kN)

	
MARE (%)

	
NSE

	
RSR






	
XGBoost

	
0.955

	
59.929

	
80.653

	
6.600

	
0.950

	
0.225




	
AdaBoost

	
0.950

	
70.383

	
90.665

	
8.252

	
0.936

	
0.253




	
RF

	
0.945

	
69.030

	
86.348

	
8.014

	
0.942

	
0.241




	
DT

	
0.925

	
74.450

	
99.822

	
8.775

	
0.923

	
0.278




	
SVM

	
0.878

	
98.320

	
128.027

	
10.991

	
0.873

	
0.357
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Table 6. Comparison with other studies.
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Author

	
Model

	
Foundation Type

	
Number of Samples

	
R2

	
RMSE






	
Momeni et al. [71]

	
ANFIS

	
Thin-walls

	
150

	
0.875

	
0.048




	
ANN

	
0.71

	
0.529




	
Momeni et al. [72]

	
GPR

	
Piles

	
296

	
0.84

	
-




	
Kulkarni et al. [73]

	
GA-ANN

	
Rock-socketed piles

	
132

	
0.86

	
0.0093




	
Armaghani et al. [74]

	
ANN

	
0.808

	
0.135




	
PSO-ANN

	
0.918

	
0.063




	
Pham et al. [38]

	
GA-DLNN

	
Piles

	
472

	
0.882

	
109.965




	
Present study

	
XGBoost

	
Piles

	
200

	
0.955

	
80.653
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