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Abstract: The classical least-squares migration (LSM) translates seismic imaging into a data-fitting
optimization problem to obtain high-resolution images. However, the classical LSM is highly depen-
dent on the precision of seismic wavelet and velocity models, and thus it suffers from an unstable
convergence and excessive computational costs. In this paper, we propose a new LSM method
in the imaging domain. It selects a spatial-varying point spread function to approximate the ac-
curate Hessian operator and uses a high-dimensional spatial deconvolution algorithm to replace
the common-used iterative inversion. To keep a balance between the inversion precision and the
computational efficiency, this method is implemented based on the strategy of regional division, and
the point spread function is computed using only one-time demigration/migration and inverted
individually in each region. Numerical experiments reveal the differences in the spatial variation of
point spread functions and highlight the importance to use a space-varying deconvolution algorithm.
A 3D field case in Northwest China can demonstrate the effectiveness of this method on improving
spatial resolution and providing better characterizations for small-scale fracture and cave units of
carbonate reservoirs.

Keywords: least-squares migration; imaging domain; point spread function; global space-varying
deconvolution

1. Introduction

High-resolution seismic imaging is a critical tool to acquire information on under-
ground structures from observed seismic data [1,2]. Reverse time migration (RTM) has no
assumption for the high-frequency approximation in traditional ray methods and shows
good performance in lateral velocity varying media [3,4]. However, as the real data may
have limited borehole diameter for observation, irregular observation systems, and limited
wavelet frequency band, and thus images obtained from RTM have limited resolution and
poor amplitude fidelity, providing inaccurate estimates of underground reflectivity [5].

By using the reverse Hessian operator on the conventional migration, the least-squares
migration (LSM) allows for higher resolution, fewer migration artifacts, and better fi-
delity [6]. Since the Hessian matrix is too large in scale and the direct inversion process is
not realistic, the LSM method is always recast as a data-driven linear optimization prob-
lem. Due to the good performance on improving resolution, it has been investigated in
seismic imaging for acoustic-wave single component data [7–18] and elastic-wave multiple
component data [19–22]. Besides, the elastic least-squares migration is extended to obtain
multiparameter images, such as P- and S-wave velocity and density, to cope with the
trade-off effects [23,24]. However, since this data-domain LSM has a high dependency on
the accuracy of wavelet and velocity, most achievements for LSM are mainly obtained in
theoretical experiments. Furthermore, in 3D data processing in practice, this data-domain
LSM always suffers from unstable convergence and excessive computational cost, which
make it quite difficult in practical applications.
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In contrast, the imaging-domain LSM aims to find a reasonable approximation for the
Hessian instead of performing the expensive iterative data-fitting process. The diagonal
Hessian operator is commonly used to enhance the amplitude balance by considering the
illumination for observation, providing similar results as the classical amplitude-preserving
migration [25]. In horizontally layered media, the Green function for migration can be also
used as a deconvolution operator, thus processing the results from migration [26,27]. An
unsteady-phase filter can be estimated using the images from the front and rear iterations
in data-domain LSM thus replacing the inversion in Hessian matrix to calibrate and filter
the migration results [28–31]. Point spread function (PSF) from one scattering point is
consistent with a row of elements in the Hessian matrix, which physically describes the
impact of single-point-scattered energy on underground media, including local illumination
characteristics of the observation geometry, the space variation in velocity model, and the
band-limiting effect in seismic wavelet and received data [32,33]. These approximations for
Hessian in imaging domain LSM can be also used as preconditioners for the data domain
LSM, which, after multiple iterations, can more quickly approximate the real reflection
coefficient [34–37].

However, as PSFs are of significant space-varying characters, it is rough to apply a
space-invariant PSF from a single scattering point on the whole area. The novelty of our
method is that it introduces a regional division strategy in the image-domain least-squares
migration based on a global space-varying PSF. As a result, it can divide the global PSF
into sub-blocks, use a high-dimensional space-varying deconvolution in each sub-block,
and eventually perform the data reduction for all the sub-blocks. Since the continuity of
velocity model and illumination is much better in local sub-blocks, the proposed method
can provide high-resolution images and have computation efficiency.

2. Methodology and Principle
2.1. Basic Theory on LSM

The forward problem in the classical migration imaging can be expressed as:

d = Lm, (1)

where, L is the linear operator in the linear Born simulation, which expresses the relation
between underground reflectivity model m and seismic scattering data d. The migration
images can be obtained by projecting the adjoint Born operator LT into the seismic scattering
data d:

I = LTd. (2)

The adjoint Borning operators LT can correctly reverse the propagation effects on the
travel time and phase. However, due to problems such as limited observation apertures
and limited data frequency band, the adjoint operator is not a good approximation for the
inverse Born operators, which leads to unpreserved amplitude and low spatial resolution.

The LSM enables to provide high-fidelity images by minimizing the difference between
synthetic and observed data, and the misfit function of the least-squares migration can be
defined as,

C(m) =
1
2
||Lm− dobs||22. (3)

When the objective function reaches the minimum, the reflectivity model m satisfies
the following equation:

I =
(

LT L
)
= Hm. (4)

In this equation, H is the Hessian operator, which is the second derivative of the
misfit function (3). This equation is always named as the Newton normal equation, which
establishes the basic principle for the LSM in the imaging domain and physically reveals
that the migration image obtained by the conventional migration method is the Hessian-
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blurring version of the subsurface reflectivity model m. Thus, the seeking reflectivity model
can be realized using the generalized inverse under the sense of the norm L2.

m =
(

LT L
)−1

I = H−1 I. (5)

2.2. LSM in Imaging Domain
2.2.1. The Global Space-Varying Point Spread Function

According to the acoustic-wave equation, Hessian can be expressed in the frequency
domain as:

H(x1, x2, ω) = L(x1, ω; xs, xr)
T L(x2, ω; xs, xr), (6)

where xs, xr are the positions of shots and receivers, and L denotes the sensitivity kernel,
satisfying

L(x, ω; xs, xr) = f (ω)G(x, xs, ω)G(x, xr, ω), (7)

where, f (ω) is a seismic wave, G(x1, xs, ω) is the Green function excited from the shot
position xs.

The PSF is commonly used as the approximation for Hessian, including a row of
elements in the Hessian matrix x0.

K(x2, x0, ω) = L(x2, ω; xs, xr)
T [L(x0, ω; xs, xr)δ(x− x0)]. (8)

Here, K(x2, x0, ω) reflects the PSF of the perturbation at the point x0.
Substitute Equation (8) into Equation (6), mark the point spread function at xi as Ki,

and Hessian can be expressed as,

H =
[

K1 · · · Ki · · · Km
]T . (9)

Substitute the above equation into Equation (4) to obtain:

Ii = Kim. (10)

The reflectivity model can be obtained by

m =
Ii

(Ki + α)
, (11)

where α is the regularization parameter. The Equations (10) and (11) can be also expressed
in the space domain as:

Ii = Ki ∗m, (12)

and:
m = Ii ⊗Ki, (13)

where, ∗ and ⊗ represent the operation of convolution and deconvolution, respectively. It
reveals that, the migration image at xi is the superposition of the convolution of the global
reflectivity model and the point spread function at xi; on the contrary, the reflectivity model
at xi can be computed within a high-dimensional deconvolution of the corresponding point
spread functions.

2.2.2. Global Space-Varying Deconvolution

Equation (8) shows that the point spread function is exactly the image of the scattered
wave radiated from the scattering point, which has a limited distribution in the space. Thus,
the image-domain LSM can be based on the framework of the region division strategy,
where the global point spread function can be divided into n blocks and the real impact of
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each point spread function is constrained within local neighborhoods sn to the scattering
point xi, i = 1, . . . , sn,

K(xn, xi, ω) = L(xn, ω; xs, xr)
T [L(xi, ω; xs, xr)δ(x− xi)]. (14)

Furthermore, within the neighborhood, the media velocity and illumination conditions
are slowly varied, thus the PSFs for each position in sn can be assumed to be the same, and
the reflectivity model for the neighborhood can be expressed as

mn = ∑
i∈sn

Ii ⊗Ki = In ⊗Ki. (15)

Equation (15) means the regional reflectivity model for the neighborhood sn can
be obtained by performing local deconvolution of the regional RTM image and the point
spread function. The entire model can be obtained by stacking all the regional parts, and the
global space-varying PSF can be computed using only one-time demigration and migration.

3. Analysis of Numerical Experiments

This section focuses on analyzing the physical characteristics of the point spread
function. Figure 1 shows the global point spread function for the 2D Marmousi model.
We can find the variations of observation illumination, wave propagation, and limited
wavelet frequency-band at different positions. The propagation effect is mainly reflected in
amplitude performance. Compared to the PSFs in the shallow model, those in the deep
show much worse focusing with increasing attenuation radius. Since the RTM and PSF
results are computed under the same observation system, the deconvolution can remove
the influence of limited illumination angles in RTM results. Moreover, the seismic wavelets
should match the one in RTM as they may have a great influence on point spread functions
with respect to phase, amplitude, and attenuation radius.
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Figure 1. The global point spread function in the 2D Marmousi model.

Figure 2 displays the inverted images using different point spread functions (red and
blue circles in Figure 1). Even with the same wavelet, the images using the PSFs show
significant variations in the space. The PSF at grid (26, 1) has wider illumination angles
and better focusing than the one at grid (26, 11), and thus it can more accurately reflect the
illumination characteristics of shallow structures in the model. As a consequence, the above
PSF allows for better descriptions of the shallow structures but provides inaccuracy in
the deep model. In contrast, due to limited illumination angle and wavefield propagation
effect, the image obtained by the PSF at grid (26, 11) is much closer to an RTM result.
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4. Numerical Experiment

The method is tested on the 3D Overthrust model. The model is 16 km, 5 km, and 3 km
in size, and the migration velocity is obtained by Gaussian smoothing with a window of
40 m. The Ricker wavelet with the main frequency of 30 Hz is used in this experiment. As
shown in Figure 3, the RTM result has an insufficient spatial resolution, and the amplitude
of the reflectors attenuates rapidly as the depth increases.
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Figure 3. The 3D data volume of RTM in the 3D Overthrust model.

Then we compute the PSF using the same wavelet. Based on the migration velocity, the
sampling interval (400 m, 400 m, 400 m) of the global PSF is set for the scattering model. To
give intuitive insight into PSF, we present the X-Z tangent plane for point spread functions
in Figure 4. As the geological structure and the illumination condition change, we can
easily find that the difference of global PSFs in morphology is not negligible.

Figure 5 shows the results from the proposed imaging-domain LSM. Compared with
the RTM results, the LSM results show higher resolution, fewer migration noise, more
balanced amplitude in deep and better focusing on diffracted structures (as shown in
Figure 6). To compare the spatial resolution between these results, we compute the vertical
wavenumber spectrum of Figures 3 and 5 for the whole model and present them in Figure 7.
From the vertical wavenumber spectrum, we can find that the result from the LSM method
has a broader frequency-band, especially for mid-high wave numbers. It means that the
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proposed LSM method can estimate the Hessian operator and remove those Hessian effects
on the RTM results, which thus provides a more accurate reflectivity model.
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5. Field Case

The target area is a part of the Tarim oil field in Northwest China, which is located in
the middle of the North Tarim Uplift Belt to the east of the Halahatang depression. It has a
large span, the target layer is deeply buried, the physical properties of the matrix are poor,
and the type and scale of fracture caves are seriously affected by karst weathering. From
the current development stage, the positioning accuracy of small and medium-sized karst
cave cannot meet the requirements of resolution analysis of venting leakage around the
well. In this work area, the geophone array recorded 33,000 shots at 5 m depth covering
an area of 81 km2. The main conundrum to be tackled in this work area is high-resolution
imaging of Ordovician carbonate fracture-cavity reservoirs, with the depth ranging from
5.5 to 8 km. The migration velocity is built by a 3D travel time tomography as shown in
Figure 8. The maximum cut-off frequency of the wavelet is 70 Hz.
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Figure 9 shows the results from RTM and LSM at the inline index of 200. Compared
with the RTM results (Figure 9a), the LSM results (Figure 9b) provide higher spatial
resolution, finer reflection events, more balanced amplitude, better focus ability, and more
accurate fractured-cavity imaging. Figure 10 shows the zoomed region in Figure 9. We can
find that the LSM result provides finer descriptions of fractured-cavity imaging and the
boundaries between adjacent fractured-cavities, and the fractured-cavity bodies with small
sizes in Ordovician carbonatite can be presented with higher resolution. Moreover, the
deep fracture in the LSM result (Figure 10b) is better retrieved, which demonstrates that
the proposed method is effective in fracture description. Figure 11 shows the vertical wave-
number spectrum corresponding to the imaging results. The wave-number distribution
of the LSM result is much broader, which lifts up at the low and mid-high sides of wave
numbers. Besides, LSM can clearly provide information on cavities in the fracture zones,
provide a high-quality scientific basis to analyze the development of fracture-controlled
fractured-cavities and give guidance to the interpretation of reservoirs. To give an intuitive
sight of the caves in Figure 10 denoted by red arrows, we compute the amplitude attributes
from the RTM and LSM results and present a regional transverse section at the depth of
these caves in Figure 12. We can find that the LSM results can distinguish the adjacent
caves and provide better focusing, highlighting the proposed method can provide a high
resolution in the horizontal direction and give a great help for reservoir interpretation and
development. However, due to the limited observation aperture and shallow desert area,
conventional RTM cannot provide correct images. The logging result located at the arrows
in Figure 12 can also support the migration results, highlighting the effectiveness of the
proposed method.
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Figure 12. Comparison between results of amplitude attributes. (a) zoomed results from RTM;
(b) zoomed results from LSM. The target caves are corresponding to the ones marked by red arrows
in Figure 10.

6. Conclusions

Utilization of the point spread function and the global space-varying high-dimension
deconvolution algorithm effectively solves the demand of excessive computation in the
iterative data-fitting process of classical least-squares migration and alleviates the high
dependency on the accuracy of seismic wavelet and velocity model. Both the theoreti-
cal analysis and the model experiment demonstrate that the global space-varying point
spread function can effectively approximate the Hessian and the high-dimensional spa-
tial deconvolution algorithm can replace the deburring effects from the Hessian operator.
The application on a field 3D data suggests that the method is effective in improving the
imaging resolution, especially for caves and fractures, and provide higher-quality seismic
images for ultra-deep fractured-cavity reservoirs.



Appl. Sci. 2022, 12, 2361 11 of 12

Author Contributions: Conceptualization, B.L.; methodology, M.S., Y.B.; software, M.S., C.X. and
B.L.; validation, M.S., C.X.; formal analysis, B.L., Y.B.; investigation, M.S., B.L.; resources, M.S., C.X.
and B.L.; writing—original draft preparation, M.S.; writing—review and editing, M.S., C.X. and B.L.;
supervision, B.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (No. 2017YFB0202900), and China Postdoctoral Science Foundation (Grant No. 2020M671539).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moreno, W.; Galeano, I. Solution of high velocity anomalies imperceptible to seismic resolution, by means of synthetic models,

Penobscot Field, Canada. Rud. Geološko-Naft. Zb. 2019, 34, 71–82. [CrossRef]
2. Moreno, W.; Galeano, I. Identification of high velocity anomalies, imperceptible to seismic resolution, by integration of seismic

attributes, in the Penobscot Field, Canada. Rud. Geološko-Naft. Zb. 2019, 34, 13–26. [CrossRef]
3. Baysal, E.; Dan, D.K.; Sherwood, J.W.C. Reverse time migration. Geophysics 1983, 48, 1514–1524. [CrossRef]
4. McMechan, G.A. Migration by extrapolation of time-dependent boundary values. Geophys. Prospect. 1983, 31, 413–420. [CrossRef]
5. Nemeth, T.; Wu, C.; Schuster, G.T. Least-squares migration of incomplete reflection data. Geophysics 1999, 64, 208–221. [CrossRef]
6. Schuster, G.T. Least-Squares Cross-Well Migration. SEG Tech. Program Expand. Abstr. 1993, BG 4.6, 110–113.
7. Tang, T.B. Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian. Geophysics 2009, 74,

WCA95–WCA107. [CrossRef]
8. Mandy, W.; Shuki, R.; Biondo, B. Least-squares reverse time migration/inversion for ocean bottom data: A case study. SEG Tech.

Program Expand. Abstr. 2011, 2369–2373.
9. Dai, W.; Fowler, P.; Schuster, G.T. Multi-source least-squares reverse time migration. Geophys. Prospect. 2012, 60, 681–695.

[CrossRef]
10. Dai, W.; Schuster, G.T. Plane-wave least-squares reverse-time migration. Geophysics 2013, 78, S165–S177. [CrossRef]
11. Dai, W.; Wang, X.; Schuster, G.T. Least-squares migration of multisource data with a deblurring filter. Geophysics 2011, 76,

R135–R146. [CrossRef]
12. Dutta, G.; Schuster, G.T. Wave-equation Q tomography. Geophysics 2016, 81, R471–R484. [CrossRef]
13. Dutta, G.; Schuster, G.T. Attenuation compensation for least-squares reverse time migration using the visco acoustic-wave

equation. Geophysics 2014, 79, S251–S262. [CrossRef]
14. Zhang, S.; Luo, Y.; Schuster, G.T. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Synthetic and

field data examples. Geophysics 2015, 80, U47–U59. [CrossRef]
15. Zhang, S.; Luo, Y.; Schuster, G.T. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory.

Geophysics. Geophysics 2015, 80, S79–S92. [CrossRef]
16. Zhang, Y.; Biondi, B. Moveout-based wave-equation migration velocity analysis. Geophysics 2013, 78, U31–U39. [CrossRef]
17. Zhang, Y.; Duan, L.; Xie, Y. A stable and practical implementation of least-squares reverse time migration. Geophysics 2015, 80,

V23–V31. [CrossRef]
18. Zhang, Y.; Ratcliffe, A.; Roberts, G.; Duan, L. Amplitude-preserving reverse time migration: From reflectivity to velocity and

impedance inversion. Geophysics 2014, 79, S271–S283. [CrossRef]
19. Duan, Y.; Guitton, A.; Sava, P. Elastic least-squares reverse time migration. Geophysics 2017, 82, 4152–4157. [CrossRef]
20. Feng, Z.; Schuster, G.T. Elastic least-squares reverse time migration. Geophysics 2017, 82, S143–S157. [CrossRef]
21. Ren, Z.; Liu, Y.; Sen, M.K. Least-squares reverse time migration in elastic media. Geophys. J. Int. 2017, 208, 1103–1125. [CrossRef]
22. Chen, K.; Sacchi, M.D. Elastic least-squares reverse time migration via linearized elastic full waveform inversion with pseudo-

Hessian preconditioning. Geophysics 2017, 82, 1–89. [CrossRef]
23. Sun, M.; Dong, L.; Yang, J.; Huang, C.; Liu, Y. Elastic least-squares reverse time migration with density variations. Geophysics

2018, 83, 1–62. [CrossRef]
24. Sun, M.; Jin, S.; Yu, P. Elastic least-squares reverse-time migration based on a modified acoustic-elastic coupled equation for OBS

four-component data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9772–9782. [CrossRef]
25. Chavent, G.; Clément, F.; Gómez, S. Automatic determination of velocities via migration-based traveltime waveform inversion: A

synthetic data example. SEG Tech. Program Expand. Abstr. 1994, 13, 1179–1182.
26. Hu, J.X.; Schuster, G.T. Poststack migration deconvolution. Geophysics 2001, 66, 939–952. [CrossRef]
27. Yu, J.H.; Schuster, G.T. Migration deconvolution vs. least squares migration. SEG Tech. Program Expand. Abstr. 2003, 1047–1050.
28. James, E.R. Illumination-based normalization for wave-equation depth migration. Geophysics 2003, 68, 1371–1379.

http://doi.org/10.17794/rgn.2019.1.7
http://doi.org/10.17794/rgn.2019.1.2
http://doi.org/10.1190/1.1441434
http://doi.org/10.1111/j.1365-2478.1983.tb01060.x
http://doi.org/10.1190/1.1444517
http://doi.org/10.1190/1.3204768
http://doi.org/10.1111/j.1365-2478.2012.01092.x
http://doi.org/10.1190/geo2012-0377.1
http://doi.org/10.1190/geo2010-0159.1
http://doi.org/10.1190/geo2016-0081.1
http://doi.org/10.1190/geo2013-0414.1
http://doi.org/10.1190/geo2014-0178.1
http://doi.org/10.1190/geo2014-0223.1
http://doi.org/10.1190/geo2012-0082.1
http://doi.org/10.1190/geo2013-0461.1
http://doi.org/10.1190/geo2013-0460.1
http://doi.org/10.1190/geo2016-0564.1
http://doi.org/10.1190/geo2016-0254.1
http://doi.org/10.1093/gji/ggw443
http://doi.org/10.1190/geo2016-0085.1
http://doi.org/10.1190/geo2017-0213.1
http://doi.org/10.1109/TGRS.2020.3047117
http://doi.org/10.1190/1.1444984


Appl. Sci. 2022, 12, 2361 12 of 12

29. Antoine, G. Amplitude and kinematic corrections of migrated images for nonunitary imaging operators. Geophysics 2004, 69,
1017–1024.

30. Symes, W.W. Migration velocity analysis and waveform inversion. Geophys. Prospect. 2008, 56, 765–790. [CrossRef]
31. Fletcher, R.P.; Nichols, D.; Bloor, R.; Coates, R.T. Least-squares migration—Data domain versus image domain using point spread

functions. Lead. Edge 2016, 35, 157–162. [CrossRef]
32. Chen, C.; Hansen, H.H.G.; Hendriks, G.A.G.M.; Menssen, J.; Lu, J.-Y.; De Korte, C.L. Point Spread Function Formation in

Plane-Wave Imaging: A Theoretical Approximation in Fourier Migration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2020, 67,
296–307. [CrossRef] [PubMed]

33. Jensen, K.; Lecomte, I.; Gelius, L.J.; Kaschwich, T. Point-spread function convolution to simulate prestack depth migrated images:
A validation study. Geophys. Prospect. 2021, 69, 1571–1590. [CrossRef]

34. Alejandro, A.V.; Biondo, B.; Antoine, G. Target-oriented wave-equation inversion. Geophysics 2006, 71, A35–A38.
35. Ren, H.R.; Wu, R.S.; Wang, H.Z. Least square migration with Hessian in the local angle domain. SEG Tech. Program Expand. Abstr.

2009, 3010–3014.
36. Ren, H.R.; Wu, R.S.; Wang, H.Z. Frequency domain wave equation based angular Hessian for amplitude correction. SEG Tech.

Program Expand. Abstr. 2010, 3145–3314.
37. Bai, J.; Yilmaz, O. Image-domain least-squares reverse-time migration through point spread functions. SEG Tech. Program Expand.

Abstr. 2020, 3063–3067.

http://doi.org/10.1111/j.1365-2478.2008.00698.x
http://doi.org/10.1190/tle35020157.1
http://doi.org/10.1109/TUFFC.2019.2944191
http://www.ncbi.nlm.nih.gov/pubmed/31581079
http://doi.org/10.1111/1365-2478.13132

	Introduction 
	Methodology and Principle 
	Basic Theory on LSM 
	LSM in Imaging Domain 
	The Global Space-Varying Point Spread Function 
	Global Space-Varying Deconvolution 


	Analysis of Numerical Experiments 
	Numerical Experiment 
	Field Case 
	Conclusions 
	References

