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Abstract: Flexible pavement deterioration due to moisture intrusion and aging is the key concern
worldwide for highway engineers. However, this damage has not been properly investigated in detail
due to lack of appropriate experimental and modeling techniques. Such lacking hinders the design
of long-lasting pavements, as the effects of environmental damages are unknown, especially for
modified asphalt. Therefore, the current study aims at determining a better approach for modeling
asphalt adhesion damage using Artificial Neural Networks (ANNs). The Atomic Force Microscopy
(AFM) test was deployed to determine the adhesion and cohesion forces of asphalt samples with
varying contents of polymer and Antistripping Agents (ASAs). Two types of ANN models, namely
multilayer perceptions (MLPs) and radial basis function neural network (RBFNN), were used in this
effort. Two popular modifications, namely ensemble learning and hierarchical modeling, were also
engaged to achieve convenient and accurate damage models. The analysis found that RBFNN was
better suited for hierarchical models than MLP. RBFNN is preferred for aged and moisture-damaged
samples which have less variation in their datasets. Hierarchical models are convenient to apply as
they can be applied to any type of asphalt sample. However, they produced a small reduction in
accuracy (less than 10%) as compared to other models. The accuracy of the hierarchical model was
found to be satisfactory. The ensemble learning approach showed slight improvement in accuracy for
all models ranging between 1–3%, i.e., 6–8 nN. This study recommends the use of hierarchical models,
developed with ensemble learning, for prediction of asphalt damage. The results of the study will be
helpful for researchers and practitioners working on pavement materials for developing prediction
models to prepare a better mix design of polymer modified asphalt.

Keywords: prediction; asphalt; adhesion; artificial neural networks; ensembles

1. Introduction

The harmful effects of the presence of moisture on the extent and severity of most road
surface damage in the world are beyond doubt [1]. In the UK alone, billions of Euros are
spent annually to overhaul the damage to the roads and paving, which is partly caused
by the effects of the existing moisture on asphalt mixes [2]. Similar consequences have
also been reported for other parts of the world as well [3]. Due to the moisture intrusion
in the asphalt pavements, it loses the adhesion between the aggregate and bitumen as
well as cohesion strength between the bitumen and/or bitumen-filler mastic [4–6]. Due to
such losses, the bond between the aggregate and asphalt breaks off by stripping action. It
was discovered by Lottman [7] that the key drawback of asphalt pavements occurs due
to stripping, which is experienced by at least 50 state highway agencies in the USA. In
addition, it reduces the stiffness and strength of the asphalt in the practical fields as well [8].

Appl. Sci. 2022, 12, 2379. https://doi.org/10.3390/app12052379 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052379
https://doi.org/10.3390/app12052379
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3878-0829
https://orcid.org/0000-0002-5069-0447
https://doi.org/10.3390/app12052379
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052379?type=check_update&version=2


Appl. Sci. 2022, 12, 2379 2 of 15

However, the realistic reason for moisture causing damage is not yet construed and
developed. It is suspected to be ruled in part by the physio-chemical relations between
mastic and aggregates in the existence of moisture/water. According to Nguyen et al. [9], a
major cause of adhesion loss is due to build-up of an intermediate moisture layer which
affects several mono layer thicknesses (35–45 nm) at the aggregate–asphalt interface. In
addition, the chemical and mineralogical composition of aggregate particles may have a
more fundamental role in the creation of moisture damage than asphalt properties such as
penetration grade, molecular size distribution, acid types and percentages [5].

Chemical additives such as Antistripping Agents (ASAs) are used to chemically
improve the adhesion force between the asphalt and the aggregate particles to resist the
water-stripping action [10]. Currently, almost all the State Departments of Transportation
(DOTs) in the USA use a nominal percentage of Antistripping Agents in asphalt. Laboratory
tests have been performed to assess the effect of ASAs on the adhesion and cohesion
bonds of asphalt [11–14]. A nano level experiment was performed in the laboratory with
Atomic Force Microscopy (AFM) to determine the effects of ASAs in terms of adhesive
and cohesive forces [15,16]. The study simulated adhesion and cohesion of asphalt by
using functionalized tips to probe the asphalt sample. The test data suggested that the
existing relationship between the test variables is very complicated and to some extent
beyond explanation. Another study showed that the performance of ASAs is complex and
non-linear in nature because of the various mix properties of asphalt [17], type and dose
of ASA, and moisture condition of asphalt [12]. Hence, it is difficult to assess and predict
the enhancement of resistivity of moisture damage by laboratory tests, which opens the
arena for determining the best modeling technique for predicting asphalt adhesion under
various conditions.

Machine learning (ML) is a field of modeling which has become popular due to its
adaptability and robustness. Techniques which come under the discipline of ML deal with
the modeling of different aspects of given datasets without assuming any prior information
about them [18]. ML techniques have been adopted in various fields due to their ability to
capture complex non-linear structures and relationships [19]. Artificial Neural Networks
(ANNs) are one of the ML techniques which have been preferred for prediction problems
due to the fact that they provide a convenient method to map the relationship between
input and output parameters. Researchers have used them as a standalone method, as well
as with integration with other ML techniques, such as fuzzy logic [20].

Artificial Neural Networks (ANNs) have lately become important and alternative
analytic tools to conventional methods for modeling complex and non-linear relation-
ships [21] and can be used as an instrument for the development of models to predict
the effect of ASAs. The ANN tools and approaches have been used with great success to
model structural damage detection [22], material behavior modeling [23], and structural
optimization [24]. Mohammadhassani [25] used an ANN to predict deflections of a deep
beam at mid span with high level of confidence as compared to other available methods.
This approach has also been used to model the nitrogen dioxide dispersion from vehicular
types of exhaust emissions [26], and to simulate pollutant dispersion [27].

In the context of predicting characteristics of asphalt, few studies have been found in
which ANNs have been used for this purpose, including Shafabakhsh [28] and Hu and
Qian [29]. However, these studies do not cover predicting the adhesion force of asphalt
modified with Carbon Nanotubes (CNT). Moreover, modeling adhesion force obtained
from Atomic Force Microscopy (AFM) has also not been carried out in the current literature.
With this motivation, this paper attempts to evaluate the performance of the two most
popular types of ANNs. Another novelty of the current research is the attempt to increase
the practical convenience and accuracy of the models by employing hierarchical modeling
and ensemble learning approaches on the ANNs. AFM laboratory test data were used to
assess and predict the performance of different ASAs on adhesion and cohesion behavior
for varying properties and moisture condition of asphalt. The literature does not agree
on the use of any particular type of ANN for prediction problems. Hence, two common
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types of ANNs were used for the development of models in this study and their prediction
performance was compared to investigate their suitability for the available dataset. This
was necessary since there are no studies found on the use of ANNs for predicting adhesion
of modified asphalt samples.

The specific objective of this study includes developing and comparing hierarchical
ANN models for prediction of the adhesion force of modified asphalt, with different
polymer and ASA contents, under moisture-damaged and aged conditions. Moreover,
performance of single models is also compared with ensembles which are developed using
simple average methods. Materials used and modeling approach applied in this study are
described in Section 2. Results are discussed in Section 3. Section 4 concludes the paper.

2. Materials and Methods

In this study, Styrene-Butadiene (SB) and Styrene-Butadiene-Styrene (SBS) types of
polymers were utilized in order to modify the base binder. A total of two different percent-
ages (4% and 5% by weight) of polymers were used. The polymer modified binders were
further modified with single wall and double wall Carbon Nanotubes (CNT) (0.5%, 1.0%
and 1.5% by weight). CNTs are nanometric scale forms with high strength and rigidity [30].
AASHTO T-283 method was used to simulate moisture damage effect in laboratory. The
aging simulation was performed in the laboratory with the draft oven. The samples were
placed inside the convection oven for continuous seven (7) days with an elevated temper-
ature to accelerate the field aging. Thus, the derived samples are called aged samples in
this study. In these experiments, a total of 290 AFM laboratory tests were accomplished. A
detailed description of the whole testing and procedures can be found in Tarefder et al. [15].

2.1. Statistical Analysis and Selection of Modeling Approach

One-way ANOVA tests were performed to check statistical significance of the variables
listed in the Table 1. In order to perform one-way ANOVA, it was necessary to confirm the
normality assumption of the observed data for adhesion forces. The observed data were
transformed using 10 base logarithm and plotted as shown in Figure 1. It was found that
the observed data transformed well, as the R2 value was found as 0.988. Then, the one-way
ANOVA test was performed and shown in Table 2.

Figure 1. Normal Q-Q plot confirming normality of adhesion forces (R2 = 0.989).
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Table 1. Details of variables.

Variable Description

Y Adhesion force of asphalt in nN

Fresh Binary variable; 1 if sample was fresh, used in hierarchical model

Moisture damaged Binary variable; 1 if sample was moisture damaged, used in hierarchical model

Aged Binary variable; 1 if sample was aged, used in hierarchical model

SB % of SB polymer; 4% and 5%

SBS % of SBS polymer; 4% and 5%

SWNT % of single wall Carbon Nanotube (CNT); 0.5%, 1.0% and 1.5%

MWNT % of multi wall CNT; range: 0.5%, 1.0% and 1.5%

K Stiffness of AFM cantilever

Si3N4 Binary variable; 1 if Silicon nitrate (Si3N4) tip was used

NH3 Binary variable; 1 if Ammonia (NH3) tip was used

OH Binary variable; 1 if Hydroxide (OH) tip was used

COOH Binary variable; 1 if Carboxylic (COOH) tip was used

CH3 Binary variable; 1 if Methyl (CH3) tip was used

The one-way ANOVA test showed that there was no significant effect in the adhesion
forces in using (i) different percentage of CNT, (ii) different percentage of SBs and SBSs, and
(iii) SWNT and MWNT since the p-values are more than 0.05. However, some significant
results were found for the different sample status, i.e., fresh, aged and moisture-damaged
samples and different chemical compositions, namely Silicon Nitrate (Si3N4), Ammonia
(NH3), Hydroxide (OH), Carboxylic (COOH) and Methyl (CH3). Nonetheless, such statisti-
cal analysis does not yet confirm and reveal inherent relations among variables with the
adhesion forces which can predict the adhesion forces with satisfactory accuracy. Thus, it
was necessary to devise a different approach for modeling adhesion forces. Hence, Artificial
Neural Network technique was deployed with two widely used modifications namely
ensemble learning and hierarchical modeling.

2.2. AFM Test Results for ANN Feed

In this study the laboratory generated AFM data for different conditioned (fresh,
moisture damaged and aged) asphalt samples were obtained using tips made up of five
different compounds. The results were then used to develop the prediction models. The
details of the variables used in modeling are given in Table 1.

ANNs were used to develop hierarchical models as well as models for specific sample
types (moisture damaged and aged) in this study. Hierarchical models were developed to
predict the asphalt adhesion force for all types of data samples by introducing a classifying
variable, for denoting the type of sample, in the model. Hence, the same model could be
applied to fresh or damaged samples. Further details about ANN models used in this study
can be found in the proceeding section.
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Table 2. Results of One-Way ANOVA tests.

Variables Sample Size Mean Standard Deviation p-Value Statistical
Significance

CNT 0.5% 135 2.2020 0.20468

0.586 Not SignificantCNT 1.0% 135 2.2185 0.19242

CNT 1.5% 135 2.2258 0.18412

Base Case 45 2.2585 0.18749

0.182 Not Significant

SB 4% 90 2.2062 0.15290

SB 5% 90 2.2003 0.17912

SBS 4% 90 2.1909 0.21714

SBS 5% 90 2.2429 0.21839

SWNT 225 2.2183 0.19404
0.745 Not Significant

MWNT 180 2.2119 0.19376

Si3N4 81 2.1442 0.13702

0.00 Significant

NH3 81 2.4040 0.16257

OH 81 2.0385 0.11166

CH3 81 2.1755 0.13600

COOH 81 2.3151 0.16967

Fresh 135 2.1970 0.17861

0.00 SignificantAged 135 2.2965 0.17533

Moisture damaged 135 2.1528 0.19893

2.3. Artificial Neural Networks

ANN can be defined as a computer-based program which uses special tools for
simulation tasks. A very widespread and popular type of ANN is known as multilayer
perceptions (MLPs), which satisfactorily received a good reputation and acceptance in
major engineering investigations and development areas such as: petroleum engineering,
classification and speech recognition, pattern recognition and identification, control systems
as well as computer vision applications.

These networks utilize input layer with an output layer. Moreover, for processing
units, it uses one or more layers, known as hidden layers. These networks can be trained
into carrying a precise type of work by re-adjusting the ideal forms of the nodal connections
among several parts. The MLPs are trained in a professional manner such that any kind of
individual input parameter leads to a target/result value. For this kind of model, all the
nodal connections (weights) are changed uninterruptedly for accomplishing the targeted
value. Normally, several trials are required for training of network before reaching an
acceptable difference (error) between actual and target value.

In addition to MLPs, radial basis function neural networks (RBFNNs) were also used
in this study. Both these types have been frequently used in prediction problems in various
studies including the following: Karlik and Olgac [31], Yilmaz and Kaynar [32], and Zare
et al. [33]. Some of these studies also presented a comparison between the performances of
these models. Yilmaz and Kaynar [32] showed higher performance of RBFNN, while it was
the opposite for Zare et al. [33]. However, it was observed that the difference in performance
of these models was not substantial in both cases for validation of the dataset. The basic
structure of ANN and the difference in the processing units of both types of ANNs were
given by Yilmaz and Kaynar [32] as shown in Figure 2 along with Equations (1) and (2).

f (x) = f
{
∑((W)X

)
, b} (1)

f (x) = f {(X− µ), W} (2)

where:
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X = Input vector;
W = Weight vector;
b = Biasness factor;
µ = Center of neuron.

Figure 2. ANN Model. * Refer to Table 2 for details of variables in input layer.

A Gaussian function is applied to the processing unit for RBFNN, while MLP adopts a
generalized regression function. Hence, the applicability of each type of model depends
upon the nature of problem to be addressed and it cannot be generalized for all cases. Hence,
comparison of these types for prediction of modified asphalt adhesion force is justified.

Three performance measures were used in this study to evaluate the accuracy of
ANN models, namely root mean square error (RMSE), mean absolute percentage error
(MAPE), and correlation coefficient (CC). These measures focus on different aspects of
accuracy. RMSE has a squaring mechanism to magnify large errors while suppressing
smaller errors, MAPE relates the magnitude of error to the magnitude of the observed value,
and lastly, CC evaluates the closeness of predicted values’ trend to that of the observed
ones. These measures have been used in different studies to evaluate accuracy of ANN
models [15,32,34]. They were calculated as per Equations (3)–(5).

RMSE =

√
∑n

i=1(P−O)2

n
(3)

MAPE =
∑n

i=1|P−O|/O
n

× 100 (4)

CC =
n ∑n

i=1 P(O)− (∑n
i=1 P)(∑n

i=1 O)√
n(∑n

i=1 P2)− (∑n
i=1 P)2

√
n(∑n

i=1 O2)− (∑n
i=1 O)2

(5)

where:

P = Predicted values;
n = Number of samples;
o = Observed values.
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It is also important to use appropriate sampling technique for training and validation
dataset to avoid bias in accuracy because of specific data samples. This issue was addressed
by using the bootstrap sampling in this study. This sampling technique adopts replacing
the samples with the appropriate values based upon functional distribution for parameters,
consequently removing outliers [35,36].

ANNs have been reported to have problem of convergence on local minima. Ensemble
learning approach has been adopted in this study to address this issue, in which ANNs
of slightly inferior performance can be combined synergistically to achieve better perfor-
mance [37]. In this study, the ensembles were developed using the averages of outputs
from MLP and RBFNN models.

3. Results

All networks were tried with a different number of neurons until the optimum values
were reached. For each trial with a different number of neurons, the performance measures
of RMSE, MAPE and CC were observed for the test set. The number of neurons with the best
values of above-mentioned performance measures was selected for further comparisons.
Table 3 shows the number of neurons for each case with different types of ANNs. The
number for neurons for RBFNN is generally higher than that for MLP. This trend could be
attributed to the algorithms of these types, wherein RBFNN applies a more complicated
approach of calculating the center of each neuron and applying a Gaussian function to it.
On the other hand, MLP applies a relatively simplistic function to each neuron resembling
to generalized regression. The combined dataset was used for the development of a
hierarchical model. It was found that less than 5 neurons were sufficient for MLP, while
more than 10 neurons were required for RBFNN in all cases. The calculated number
of neurons in the input layer is exactly equivalent to the number of input variables (or
independent), whereas the output layer containing one neuron as a single output is desired
from the model.

Table 3. Type of ANNs and number of neurons.

Type of Sample
Number of Neurons

MLP RBFNN

Combined 2 34

Moisture-Damaged 2 12

Aged 4 15

Data presented in Tables 4–6 depict the comparison of performance measures for
MLP and RBFNN models for different types of samples. Models were calculated only
for moisture damaged and aged samples since they are more critical as compared to
fresh samples for pavement design. The scatterplots for all these models are shown in
Figures 3–8.

Table 4. Performance measures for hierarchical ANNs of combined samples.

Type of ANN Dataset RMSE MAPE CC

MLP
Training 49.54 23.02 0.82

Test 52.31 30.06 0.80

RBFNN
Training 44.68 20.07 0.84

Test 51.49 22.64 0.80
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Table 5. Performance measures for ANNs of moisture-damaged samples.

Type of ANN Dataset RMSE MAPE CC

MLP
Training 35.58 13.84 0.89

Test 36.20 17.98 0.88

RBFNN
Training 43.27 16.40 0.88

Test 44.74 17.79 0.85

Table 6. Performance measures for ANNs of aged samples.

Type of ANN Dataset RMSE MAPE CC

MLP
Training 31.39 15.63 0.92

Test 31.74 22.52 0.84

RBFNN
Training 36.57 19.58 0.90

Test 38.88 25.31 0.58

Figure 3. Scatterplot for hierarchical MLP.

Figure 4. Scatterplot for hierarchical RBFNN.
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Figure 5. Scatterplot for MLP of moisture-damaged samples.

Figure 6. Scatterplot for RBFNN of moisture-damaged samples.

Figure 7. Scatterplot for MLP of aged samples.
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Figure 8. Scatterplot for RBFNN of aged samples.

It can be observed that RBFNN performs better than MLP for the hierarchical model,
while MLP had better accuracy for moisture-damaged and aged sample models. Hence, it
can be said that the use of RBFNN is more suitable for relatively complex problems while
MLP should be preferred for simpler problems. The results of this study also point to the
fact that complex models may not always provide better models, and rather they should be
selected based upon the nature of problem. This in conformance with the results from Stein
and Looby [38] in their study related to Quantitative Systems Pharmacology (QSP) models.

The superior performance of RBFNN and MLP in different cases can be attributed to
their processing mechanisms, as shown in Figure 2. MLP uses a non-linear regression-like
approach for calculating weights, which is useful for data items with less variability. On
the other hand, RBFNN calculates the centroid for each node and takes the difference from
the input parameters, in which case each node can act as a classifier, where the centroid
is calculated to be closer to a specific class of dataset. Therefore, RBFNN becomes more
suitable for a hierarchical model.

The accuracy of the hierarchical model was found to be less than the models for
moisture-damaged and aged samples. This is understandable because the samples for
the hierarchical model contain a lot more variation than the other models. However,
the accuracy of the hierarchical (RBFNN) model was not totally unacceptable, as the CC
value was found to be 0.8 or more and the MAPE values were close to 20%. Considering
the convenience offered by using the hierarchical model, these accuracy levels can be
considered sufficient, and its use can be recommended. Further improvements can be made
in this model with a larger dataset.

The performance for ensembles for each case is shown in Tables 7–9, while their
scatterplots are shown in Figures 9–11. Their accuracy was compared with individual
models with the best accuracy in each case, which were RBFNN for the hierarchical model
compared with MLP for moisture-damaged and aged samples. It can be observed that
ensemble learning resulted in a small improvement in the accuracy, compared to the
respective best ANN model, in all the cases.
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Table 7. Performance measures for ensemble and RBFNN for hierarchical models.

Model Dataset RMSE MAPE CC

RBFNN
Train 44.68 20.07 0.84

Test 51.49 22.64 0.79

Simple average ensemble
Train 42.06 21.21 0.84

Test 42.33 21.70 0.82

Table 8. Performance measures for ensembles and MLP for models of moisture-damaged samples.

Model Dataset RMSE MAPE CC

MLP
Train 35.58 13.84 0.89

Test 46.20 17.98 0.88

Simple average ensemble
Train 39.11 13.16 0.95

Test 40.30 14.99 0.88

Table 9. Performance measures for ensembles and MLP for models of aged samples.

Model Dataset RMSE MAPE CC

MLP
Train 31.39 15.63 0.92

Test 31.74 22.52 0.84

Simple average ensemble
Train 25.80 19.07 0.86

Test 25.84 19.53 0.85

Figure 9. Scatterplot of hierarchical ensemble.
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Figure 10. Scatterplot for ensemble of moisture-damaged samples.

Figure 11. Scatterplot for ensemble of aged samples.

The test accuracies of this study were compared with another similar study carried out
by Hassan et al. [39]. In doing so, it was found that the accuracies of this study’s models
on test datasets for aged and moisture-damaged samples were slightly better. CC values
obtained in the above study were 0.8 or less while in this study they are well above this
value for the respective cases. Moreover, the MAPE for said study went as high as 26% in
some cases, while it does not go above 22.52% in this study for aged or moisture-damaged
samples. Hierarchical modeling was applied for the first time in this study, hence it could
not be compared with any previous study.

4. Conclusions

The prediction of adhesive forces in asphalt, modified with Antistripping Agents
(ASAs) and polymers, was studied in this research work. The fresh asphalt samples were
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mixed with polymers and Antistripping Agents to investigate the moisture damage and ag-
ing perspectives. The test results obtained from Atomic Force Microscopy (AFM) laboratory
testing were used to model ANN to predict the adhesive forces. Two types of ANN models,
namely multilayer perceptions (MLPs) and radial basis function neural network (RBFNN),
were used. The conclusions drawn from the current study are summarized as follows.

Hierarchical modeling proved to be a convenient approach for predicting asphalt
adhesion force, although it was found to be less accurate, as the CC and MAPE values
were close to those of MLP models for moisture-damaged and aged samples. This could be
attributed to the lower complexity of samples in the moisture-damaged and aged datasets.

Compared to MLP, RBFNN was found to be more suitable for developing hierarchical
models, with a decrease in error of 8% for the test dataset.

However, MLP was found generally more suitable than RBFNN for the prediction
of adhesion force in moisture-damaged and aged asphalt samples. In particular, for
the test dataset of aged asphalt samples, the MLP model showed an increase of 0.26
in CC, a decrease in MAPE by 3%, and a decrease in RMSE by 7 nN, as compared to the
RBFNN model.

The application of ensemble learning, using the simple average of both ANN mod-
els, was found to be useful in improving prediction accuracy. The ensemble showed an
approximate increase in CC value of 0.03, a decrease in MAPE by approximately 1%, and a
decrease in RMSE by 8 nN for the test dataset of the hierarchical model. It improved the
prediction accuracy of the moisture-damaged and aged samples model by reducing MAPE
approximately 3% and RMSE approximately 6 nN in the test dataset.

On the basis of the findings of this study, it is recommended to use the ensemble
hierarchical model to design longer-lasting pavements with modified asphalt.
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