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Abstract: The characteristics of transmitted acoustic field have important significance to the leakage
detection and the acoustic metasurface technology. When the additional leak holes are present, the
conventional single neck Helmholtz resonator will naturally become the one with multiple necks.
Based on such a background, in this paper, the effects of leakages on the transmission properties of a
Duct Helmholtz Resonator (DHR) device is investigated both analytically and numerically. A set of
closed-form formulas are derived to analytically predict the transmission spectra of the DHR device
with leakages. The theoretical results are compared with COMSOL predictions. The simulation
results show that the number and width of leak holes have significant influences on the amplitude,
phase shift of the transmitted wave, and resonance frequency of the DHR system.

Keywords: Duct-Helmholtz-Resonator; leakage; acoustic transmission; multi-neck Helmholtz
resonator; closed-form formulas

1. Introduction

Duct-Helmholtz-Resonator (DHR) structure, which consists of a resonance cavity
connecting with the main duct through a neck, has wide applications in engineering.
Depending on the designed structural parameters and the operating frequency band, it can
realize different functions.

DHR device with one resonance peak have been widely used for sound absorption.
Since the single resonator has a narrow resonance peak, combining several resonators
with different resonant frequencies is a popular way to obtain a broader band of noise
attenuation [1–3]. In recent years, DHR has often been used as a wavefront-shaping device
in metasurface structure to manipulate the transmitted wave. By introducing the discrete
phase variations from 0 to 2π across the DHR-based metasurface, full control of the phase of
the transmitted acoustic field can be achieved [4–7]. By using the DHR-based metasurface
with transversal gradient phase, various unique phenomena or properties have been
revealed, such as anomalous refraction/reflection [8], acoustic focusing [9], zero/negative
refraction [10], and sound cloaking [11], etc. Besides, metamaterials with negative mass or
negative modulus of elasticity can also be achieved by DHR elements [12–14].

Most of the DHR-based studies that adopted the assumption of perfect duct and cavity
shells had no leakage considered. However, there may be unwanted leakages in the DHR
device for different reasons, such as incomplete welding in shells, the corrosion of pipe
walls [15], aging of the pipes [16], and so on. Although leakages may greatly affect the
acoustic performance of the structures, limited research has been presented regarding this
subject. Selamet et al. (2009) designed a Helmholtz resonator prototype with varying levels
of intentional leakage due to holes in the baffle [17]. The results showed that the leak holes
are found to have a significant impact on transmission loss. Lee et al. (2013) investigated
the effect of leakage on the acoustic performance of reactive silencers, such as expansion
chambers, Helmholtz resonators, and quarter-wave resonators, through theoretical analysis
and experiment [18]. They found that the impact of the leakage on the cavity is significant
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near the resonance, and the transmission loss is almost independent of the locations of
the leakage.

When the leakages are present, the cavity will have one or more additional channels
(leak holes) to communicate with the main duct. In this case, the original Helmholtz
resonator naturally becomes the one with multiple necks. Up to now, only a few results
have been reported on the acoustic characteristics of the multi-neck Helmholtz resonator.
Langfeldt et al. (2019) developed an analytical model to calculate the resonance frequency
and the input impedance of a Helmholtz resonator with multiple necks [19]. The results
show that small additional holes in the Helmholtz resonator have significant influences
on the resonance frequency and the absorption performance. Zhao et al. (2019) designed
a dual-tube Helmholtz resonator-based triboelectric nanogenerator (TENG) for efficient
harvesting of acoustic energy [20]. Based on the coupling mechanisms of TENG and acous-
tic propagation, they provided a theoretical guideline for improving energy output and
broadening the frequency band. These limited studies provide a basis for understanding
the effect of multiple necks on the acoustic characteristics of Helmholtz resonators.

Since the transmitted wave carries physical information of the leakage, the acous-
tic transmission properties of the DHR device with multiple necks are of great signifi-
cance for the leakage detection and localization of gas pipeline system or metasurface
structures [21–23]. To examine the effects of leakages on the acoustic performance of the
DHR device, in this paper, a set of explicit formulas were derived. The effects of the number
and the size of leak holes, and the distance between the leak hole and the main neck on
the transmission properties of DHR were predicted. Compared with the COMSOL finite
element (FE) simulations, the developed theoretical formulas can be employed to better
understand and quickly estimate the impact of leakage on the transmission properties of
the DHR device, and thus have significant meaning in the field of oil and gas pipelines, as
well as acoustic metasurface engineering.

2. Acoustic Transmission of the DHR Device
2.1. Impedance Formulas

As stated in Section 1, the investigation of the leakage effect of a single neck Helmholtz
resonator can be attributed to the prediction of the transmission spectrum of a correspond-
ing multi-neck resonator. A DHR device, that is a duct loaded by a Helmholtz resonator
with n necks, is shown Figure 1. Of all the necks, we assumed that one was the main neck
and the rest were the leak holes. In Figure 1, the height of the duct was w1. The total length
and height of the resonator were h and w, respectively. The height of each neck was w2 and
the width of the necks were h21, h22, . . . , h2n, respectively. The height and the length of the
cavity are w3 and h3, respectively. The distance between the inlet of DHR to the midpoint
of the first neck was a1, the distance between the midpoints of the ith neck and the (i + 1)th
neck (1 ≤ i ≤ n− 1) was ai+1, and the distance between the outlet of DHR to the midpoint
of the nth neck was an+1. pi, pr, and pt were acoustic pressure of incident, reflected and
transmitted waves, respectively.

If we assume that the size of DHR is much smaller than the wavelength of the acoustic
wave, then the air in the neck and the cavity can be treated as the lumped mechanical
elements. In this way, the governing equations of the Helmholtz resonator with n necks
can be written as

Mmi
..
ξ i = pih2i − Kmi

n

∑
m=1

ξm, 1 ≤ i ≤ n (1)

where, Mmi is the mass of the air in the ith neck, Kmi is the equivalent spring stiffness of
the cavity, and pi is the average acoustic pressure acting on the ith neck. ξi and

..
ξ i are the

displacement and the acceleration of the air column in the ith neck, respectively.
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Based on the analogy of electro-mechanics-acoustics, the acoustic mass of the ith neck
Mai, and the acoustic capacity of the cavity Ca can be written as

Mai =
Mmi

h2
2i

, Ca =
h2

2i
Kmi

(2)
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Figure 1. Schematic diagram of a DHR system.

Under the assumption of simple harmonic motion, the volume velocity Ui of the air
column in the ith neck can be expressed as

Ui =

..
ξ ih2

jω
= jωξih2 (3)

where, j is the imaginary unit, ω is the angular frequency of the acoustic wave.
Substitution of Equations (2) and (3) in Equation (1) yields the following acoustic

relation between the ith neck and the cavity

jωMaiUi +

n
∑

m=1
Um

jωCa
= pi (4)

It will be seen from the end of this subsection that the relation described by Equation (4)
is not accurate enough. Therefore, in what follows, a set of more accurate analytical
formulas that reflect the acoustic characteristics of the system will be derived.

The acoustic impedance of the ith neck is

Zni =
ρ0c0

h2i
(5)

The acoustic pressure in the cavity can be expanded in terms of normal modes [24],
given by

p(x, z) = ∑
s

φs(z)[B+
s e−jkxs(x−w2) + B−s ejkxs(x−w2−w3)] (6)

where
φs(z) =

√
2− δ0s cos[kzs(z−

h3

2
)], s = 0, 1, 2, · · · , ∞ (7)

is the sth normal mode, and satisfies the following orthogonal condition∫
σ

φs(z)φt(z)dz = σδst (8)
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where δst is Kronecker delta, and σ is the cross-sectional area of the cavity. B+
s and B−s

are the modal amplitudes corresponding to the components traveling in the positive and
negative x directions, respectively. Kxs and Kzs are the wave number components in the x
and z directions, respectively. They can be expressed as

kzs = sπ/h3, kxs =
√

k2 − kzs2, s = 0, 1, 2, · · · , ∞ (9)

where k is the wave number, k = ω/c0, c0 is the sound speed.
Only the plane wave component is considered. In this case, substitute s = 0 into

Equation (9), the wave number components in the z and x directions can be written as
kz0 = 0 and kx0 = k, respectively. From Equation (8), we have δ00 = 1 and φ0(z) = 1. Now,
Equation (6) can be recast as

p(x, z) = B+
0 e−jk(x−w2) + B−0 ejk(x−w2−w3) (10)

For the time-harmonic wave, the velocity u and the acoustic pressure p are related by

u =
j

kρ0c0
∇p (11)

where ρ0 is the air density, and ρ0c0 is the characteristic impedance of the air.
Substituting Equation (10) into Equation (11), the particle velocity can be obtained as

u(x, z) =
1

ρ0c0
[B+

0 e−jk(x−w2) − B−0 ejk(x−w2−w3)] (12)

Considering rigid wall boundary condition u = 0 at x = w2 + w3, we have

B+
0 e−jkw3 − B−0 = 0 (13)

The average velocity of the air column in the ith neck at x = w2 can be written as

ui(x)|x=w2
=

Ui(w2)

h2i
(14)

where Ui(x) is the volume velocity of the air column in the ith neck.
At x = w2, the velocity distribution given by Equation (12) should be equal to that gen-

erated by the motions of the air columns in the necks. Therefore, substituting Equation (14)
into Equation (12), and integrating along the z direction, we obtain

n

∑
m=1

[∫ h2m/2+zm

−h2m/2+zm

Um(w2)

h2m
dz
]
=

1
ρ0C0

∫ h3/2+zC

−h3/2+zC

(B+
0 − B−0 e−jKw3)dz (15)

where zm is the z coordinate of the midpoint of the mth neck, and zC is the z coordinate of
the midpoint of the cavity.

According to Equation (15), the second relation between B+
0 and B−0 is of the form

B+
0 − B−0 e−jKw3 = ρ0C0

n
∑

m=1
[Um(w2)]

h3
(16)

Based on Equations (13) and (16), we can solve B+
0 and B−0 , given by

B+
0 = ρ0C0

n
∑

m=1
[Um(w2)]

h3(1− e−2jkw3)
, B−0 = B+

0 e−jkw3 (17)
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The average acoustic pressure field pi(x) at the junction of the ith neck and cavity can
be defined as

pi(x) =
1
h2

∫ h2i/2+zi

−h2i/2+zi

pdz (18)

After substituting Equation (17) into Equation (10), the average acoustic pressure field
at x = w2 can be obtained from Equation (18), given by

pi(w2) = ρ0c0

n
∑

m=1
[Um(w2)](1 + e−2jkw3)

h3(1− e−2jkw3)
(19)

After obtaining the relation between pi(x) and Ui(x) at x = w2, the acoustic impedance
of the cavity corresponding to the ith neck can be written as

Zci =
pi(w2)

Ui(w2)
= ρ0c0

(1 + e−2jkw3)

h3(1− e−2jkw3)

n
∑

m=1
[Um(w2)]

Ui(w2)
= −j

ρ0c0

h3
cot(kw3)

n
∑

m=1
Um(w2)

Ui(w2)
(20)

According to the impedance transfer formula, the effective acoustic impedance at the
midpoint of the duct can be expressed as

Zi

∣∣∣∣x=w1/2 = Zni
Zci + jZni tan(kw̃2i)

Zni + jZCi tan(kw̃2i)
(21)

where w̃2i = w2 +> αhh2i is the corrected height of the ith neck [25] and αh is the correction
coefficient, which is dependent on the geometric parameters of the neck.

Substituting Equation (20) into Equation (21), we obtain

Zi|x=w1/2 =
ρ0c0

h2i

−j 1
h3

cot(kw3)

n
∑

m=1
Um(w2)

Ui(w2)
+ j 1

h2
tan(kw̃2i)

1
h2i

+ 1
h3

cot(kw3) tan(kw̃2i)

n
∑

m=1
Um(w2)

Ui(w2)

(22)

In order to predict the transmission coefficient more accurately, the radiation impedance
due to vibration of the air column in the neck should be considered. In fact, the neck plays
the role of acoustic capacity as well as acoustic mass. The imaginary part of the radiation
impedance of the ith neck [24] can be written as

jIm(Zdi) = j
ρ0c0

w1h2i
2

sin(kh2i)− kh2i
k2 (23)

The overall acoustic impedance at the intersection between the duct and the ith neck is
the superposition of the transfer impedance at the midpoint of the duct and the imaginary
part of the radiation impedance, given by

Zhi =
ρ0c0

h2i

−j h2i
h3 tan(kw3)

n
∑

m=1
Um(w2)

Ui(w2)
+ j tan(kw̃2i)

1 + h2i tan(kw̃2i)
h3 tan(kw3)

n
∑

m=1
Um(w2)

Ui(w2)

+ j
ρ0c0

w1h2
2i

sin(kh2i)− kh2i
k2 (24)

Since the size of the neck is much smaller than the cavity, Equation (24) can be
approximated as

zhi =
ρ0c0

h2i
[−j

h2i
h3 tan(kw3)

n
∑

m=1
Um(w2)

Ui(w2)
+ j tan(kw̃2i)] + j

ρ0c0

w1h2
2i

sin(kh2i)− kh2i
k2 (25)
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For kw̃2i, kw3, kh2i << 1, we have tan(kw̃2i) ≈ kw̃2i, tan(kw3) ≈ kw3, and
sin(kh2i) ≈ kh2i. Multiplying both sides of Equation (25) by Ui(w2), we can obtain

pi = jω
ρ0w̃2

h2i
Ui(w2)− j

ρ0c2
0

ωw3h3

n

∑
m=1

Um(w2) (26)

Note that Equation (26) is the same as Equation (4), if we define

Mai =
ρ0w̃2i

h2i
, Ca =

w3h3

ρ0c2
0

(27)

Obviously, acoustic relation given by Equation (4) is a simplified version of Equation (25).
In order to improve the prediction accuracy of transmittance, in what follows, the acoustic
impedance given by Equation (25) is adopted.

2.2. Acoustic Transfer Relations in the Duct

Acoustic pressure and volume velocity at the junction between the ith neck and the
duct satisfy the following equation

pi
Ui(0)

= Zhi (28)

Substituting Equation (25) into Equation (28), we have

pi = −j
ρ0c0

h3 tan(kw3)

n

∑
m=1

Um(0) + j
ρ0c0

h2i
tan(kw̃2i)Ui(0) + j

ρ0c0

w1h2
2i

sin(kh2i)− kh2i
k2 Ui(0) (29)

Equation (29) can be simplified as

pi = r2iUi(0) + r1

n

∑
m=1

Um(0) (30)

where

r1 = −j
ρ0c0

h3 tan(kw3)
, r2i = j

ρ0c0

h2i
tan(kw̃2i) + j

ρ0c0

w1h2
2i

sin(kh2i)− kh2i
k2 (31)

Writing Equation (30) into the matrix form, we obtain
p1
p2
...

pn

 = R


U1(0)
U2(0)

...
Un(0)

 (32)

where R is a matrix of order n× n, given by

R =


r1 + r21 r1 · · · r1

r1 r1 + r22 · · · r1
...

...
. . .

...
r1 r1 · · · r1 + r2n

 (33)

Let R1 = R−1, Equation (32) can be reduced to
U1(0)
U2(0)

...
Un(0)

 = R1


p1
p2
...

pn

 (34)



Appl. Sci. 2022, 12, 2402 7 of 16

where

Ui(0) =
n

∑
m=1

R1(i, m)pm (35)

Now, consider the case that the incident acoustic wave enters the duct at the entrance
z = 0. Let pin and Uin denote the incident acoustic pressure and volume velocity, respec-
tively. Similarly, let pout and Uout denote the acoustic pressure and volume velocity at the
exit z = a1 + a2 + · · ·+ an+1, respectively.

For 0 ≤ z ≤ a1, acoustic pressure and volume velocity can be expressed as

pA1(z) = A+
1 e−jkz + A−1 ejkz , UA1(z) =

A+
1 e−jkz − A−1 ejkz

Rw1

(36)

where A+
1 and A−1 are, respectively, the transfer coefficients of the acoustic wave along the

+z and −z direction. Rw1 is the acoustic impedance of the duct, given by

Rw1 =
ρ0c0

w1
(37)

For
i−1
∑

m=1
am ≤ z ≤

i
∑

m=1
am(2 ≤ i ≤ n), acoustic pressure and volume velocity can be

written as

pAi (z) = A+
i e
−jk(z−

i−1
∑

m=1
am)

+ A−i e
jk(z−

i−1
∑

m=1
am)

, UAi (z) =
A+

i e
−jk(z−

i−1
∑

m=1
Am)
− a−i e

jk(z−
i−1
∑

m=1
am)

Rw1
(38)

Similarly, for
n
∑

m=1
am ≤ z ≤

n+1
∑

m=1
am, we have

pAn+1(z) = A+
n+1e

−jk[z−
n
∑

m=1
am ]

+ A−n+1e
jk[z−

n
∑

m=1
am ]

, UAn+1(z) =
A+

n+1e
−jk[z−

n
∑

m=1
am ]
− A−n+1e

jk[z−
n
∑

m=1
am ]

Rw1

(39)

The continuity conditions of acoustic pressure and volume velocity at z = 0 are

pin = pA1(0), Uin = UA1(0) (40)

Substituting Equation (36) into Equation (40), we obtain[
A+

1
A−1

]
= M1

[
pin
Uin

]
(41)

where

M1 =

[
1
2

Rw1
2

1
2

Rw1
2

]
(42)

Similarly, at the exit z =
n+1
∑

m=1
am, we have

pAn+1

(
n+1

∑
m=1

am

)
= pout, UAn+1

(
n+1

∑
m=1

am

)
= Uout (43)

Substituting Equation (39) into Equation (43), we obtain[
pout
Uout

]
= M3

[
A+

n+1
A−n+1

]
(44)
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where

M3 =

[
e−jkan+1 ejkan+1

e−jkan+1
Rw1

− ejkan+1
Rw1

]
(45)

At the midpoint of the first neck z = a1, we have the following relation

pA1(a1) = pA2(a1) = p1, UA1(a1) = UA2(a1) + U1(0) (46)

Similarly, at the midpoint of the ith neck z =
i

∑
m=1

ai(2 ≤ i ≤ n), the following

conditions hold true

pAi

(
i

∑
m=1

am

)
= pAi+1

(
i

∑
m=1

am

)
= pi , UAi

(
i

∑
m=1

ai

)
= UAi+1

(
i

∑
m=1

ai

)
+ Ui(0) (47)

Based on Equations (35), (36), (38), (39), (46) and (47), the 2n equations can be obtained,
from which the transfer matrix from the first neck to the nth neck M2 can be solved, see
Appendix A.

Finally, we obtain the transfer relation between the transmitted and the incident state
parameters, given by [

pout
Uout

]
= M

[
pin
Uin

]
(48)

in which, the total transfer matrix M is the form

M = M3M2M1 (49)

2.3. Reflection and Transmission Coefficients

The reflected and transmitted waves can be expressed as [26]

pr = ∑
s

rse−jkβsx+kαsz(z < 0), pt = ∑
s

tse
−jkβsx−kαs(z−

n+1
∑

m=1
am)

(z >
n+1

∑
m=1

am) (50)

where pr and pt are the reflected and transmitted acoustic pressure, respectively. rs and
ts are the reflection and transmission coefficients of the plane wave in s modes. kαs and
kβs are the wave number components in the vertical and horizontal directions, which
satisfy kβs = k sin θi + 2πs/w and −jkαs = k

√
1− β2

s , where, θi is the incidence angle of
the acoustic wave.

In this paper, we take s = 0 and θi = 0. In this case, we have β0 = 0 and α0 = j. Now,
Equation (50) can be reduced to

pr = r0ejkz(z < 0), pt = t0e
−jk(z−

n+1
∑

m=1
am)

(z >
n+1

∑
m=1

am) (51)

At z = 0, by the continuity of velocity, we can get

ui + ur =

{
ua −w1 ≤ x ≤ 0
0 others

(52)

where ui, ur, and ua are acoustic velocities of incident wave, reflected wave and wave in
the duct, respectively.

Considering Equations (51) and (11), and the momentum conservation law, Equation (52)
can be reduced to

jkr0 = −jρ0c0

{
ua −w1 ≤ x ≤ 0
0 others

(53)
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Integrating Equation (53) along x direction, we obtain∫ w−w1

−w1

jkr0dx = −jρ0c0

∫ 0

−w1

uadx (54)

According to Equation (54), the reflection coefficient can be solved as follows

r0 = 1− RwUin (55)

where Rw = ρ0c0/w.

At z =
n+1
∑

m=1
am, the transmission coefficient can be derived as

t0 = −RwUout (56)

Substituting Equation (55) into Equation (51), the average acoustic pressure at z = 0
can be written as

pin = pi(x, 0) + pr(x, 0) = 2− RwUin (57)

In a similar way, the average acoustic pressure at z =
n+1
∑

m=1
am can be written as

pout = −RwUout (58)

Using Equations (48), (57) and (58) we can obtain Uin and Uout as

Uin =
2(m21Za −m11)

m21R2
w − (m11 + m22)Rw + m12

, Uout =
2(m12m21 −m11m22)

m21R2
w − (m11 + m22)Rw + m12

(59)

where mij represents the corresponding element in the matrix M.
Substituting Equation (59) into Equations (55) and (56), the reflection r0 and transmis-

sion coefficients t0 are written as

r0 = 1− 2(m21Za −m11)Rw

m21R2
w − (m11 + m22)Rw + m12

, t0 =
2(m12m21 −m11m22)Rw

m21R2
w − (m11 + m22)Rw + m12

(60)

The modulus and the argument of complex number t0 represent amplitude and phase
shift of the transmission coefficient, respectively.

3. Results and Discussions

In this section, the developed theoretical formulas are verified by commercial FE
package COMSOL Multiphysics 5.2. The effects of leakage on the transmission properties
of DHR device are investigated theoretically and numerically.

The baseline parameters of DHR device in simulations are as follows. Referring to
Figure 1, the total length and the height of DHR are taken as h = 40 mm and w = 40 mm,
respectively. The height of the duct is w1 = 17 mm. The height of each neck is w2 = 2 mm
and the widths of the main neck and the leak hole are h2m = 3 mm and h2l = 2 mm,
respectively. The height and the length of the cavity are w3 = 17 mm and h3 = 32 mm,
respectively. In the case of no leak hole, the distance from the inlet or the outlet to the main
neck is a1 = a2 = 20 mm. For the case of one leak hole, the position of the main neck is
unchanged, and the distance between the leak hole and the main neck is 10 mm. For the
case of two leak holes, the location of the main neck is unchanged, while the two leak holes
are placed on both sides of the main neck with a distance of 10 mm. The positions of the
main neck and the leak holes are shown in Figure 2. The amplitude and the frequency
range of the incident acoustic wave are 1 Pa and 300∼3000 Hz, respectively.
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Figure 2. The locations of the main neck and the leak holes used in simulations; (a) No leak hole;
(b) One leak hole; (c) Two leak holes.

The transmittance predictions are performed to capture the influences of leakage by
using the developed theoretical formulas. The results are compared with those obtained by
COMSOL software. In COMSOL simulations, the pressure acoustic module is used, and the
acoustic FEM mesh is shown in Figure 3. All the walls are taken as hard boundaries, and the
periodic boundary condition is applied in the direction perpendicular to the incident wave.
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Figure 3. COMSOL acoustic finite element model (FEM) of the DHR device with two leak holes.

As shown in Figure 4, the theoretical results (solid lines) from Equation (60) are in
very good agreement with the COMSOL predictions (circle lines), which confirms the good
accuracy of the theoretical formulas. In Figure 4, the frequency corresponding to the point
with zero transmittance represents the resonance frequency of the DHR system, which is the
key parameter in the design of the acoustic absorbers. Since all the holes share one cavity,
the DHR device exhibits only one non-zero resonance frequency, at which the transmission
phase undergoes an abrupt jumping. From the perspective of sound absorption, when the
frequency of transmitted wave approaches the resonance point, nearly perfect reflection
appears with a significant decrease of transmittance. It can be seen from Figure 4 that
the resonance frequency of the system increases with the number of leak holes. This
means that additional leak holes in the Helmholtz resonator always leads to an increase of
resonance frequency of the system. Obviously, the change of the resonance frequency can
be used as an important criterion for acoustic leak detection. In Figure 4, the region below
the resonance frequency is called the high transmission band, which is usually utilized
to control the transmitted wavefront of the acoustic metamaterials, so that anomalous
refraction, acoustic focusing, and other functions can be realized.

In fact, the influence of leakage on resonance frequency can be explained by the theory
of acoustic impedance. Note that all the neck impedances can be considered as parallel, so
the reciprocal of the overall impedance rneck of the necks can be written as the sum of the
reciprocal of impedance of each neck, given by

rneck = 1/
n

∑
i=1

(1/r2i) (61)
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where r2i is the impedance of the ith neck given in Equation (31). Thus, the overall
impedance Zh (unit Pa · s/m2, same as below) of the DHR device can be written as

Zh = rneck + r1 (62)

where r1 is impedance of the cavity given in Equation (31).
As shown in Figure 5, the imaginary part of the overall impedance Zh changes with

frequency and number of leak holes. With the increase of the number of leak holes,
the slope of the impedance curve decreases, which will lead to an increase in frequency
corresponding to the point with Im(Zh) = 0. Therefore, we can conclude that the existence
of the leak holes always results in an increase in resonance frequency of the DHR system.
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Next, the DHR device with one leak hole (see Figure 2b) is used to investigate the
influences of different width of the leak hole on the transmission properties of the DHR
device, the results are shown in Figure 6. In simulations, the width of the leak hole is taken
as 1.5 mm, 2 mm, and 2.5 mm, respectively. The other parameters are the same as those
in Figure 2b. As can be seen from Figure 6a,b, the amplitude and the phase shift of the
transmitted wave predicted by the theoretical formulas are consistent with the COMSOL
results. The increase of the width of the leak hole will lead to an increase of resonance
frequency of the system. The resonance frequency of the system will shift to higher values
with the increase of the width of the leak hole.
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Figure 6. Effects of the width of leak hole h21 on transmission properties of the DHR device with
one leak hole (see Figure 2b). The solid lines correspond to theoretical results, while the circle lines
correspond to COMSOL predictions. (a) Amplitude vs. frequency; (b) Phase shift vs. frequency;
(c) Impedance of the leak hole vs. frequency; (d) Overall impedance of the DHR device vs. frequency.

Figure 6c shows the variations of the imaginary part of the impedance of the leak hole
Im(Zm) with frequencies for different width of the leak hole. According to Equation (31),
we can see that Im(Zm) increases with frequency and decreases with the width of leak
hole. The reduction of Im(Zm) results in a decrease of the imaginary part of the overall
impedance Im(Zh), which increases the resonance frequency, as shown in Figure 6d.

The results shown in Figure 7 are obtained by adjusting the distance between the
leak hole and the main neck a2 and keeping the position of the main neck unchanged.
In simulations, the distance a2 is taken as 7 mm and 14 mm, respectively, and the other
parameters used are the same as those in Figure 2b. As a contrast, one neck whose width is
the sum of the main hole and the leak hole is also calculated in Figure 7, which is drawn
in red lines. As shown in Figure 7, the distance between the necks has an effect on the
amplitude and phase shift of the transmission wave. As the distance between the necks
increases, the amplitude curves and the phase shift curves move right, and the resonance
frequency of the system increases, as shown in Figure 7a,b. Although in traditional theory,
the distance between the necks has no effect on the resonance frequency, both the theory in
this paper and the simulation results do not accord with this conclusion. As the distances
between the necks become coalescent neck, 7 mm and 14 mm, the resonance frequencies
become 1878 Hz, 2224 Hz, and 2396 Hz, respectively, which is a substantial difference that
cannot be ignored. From Appendix A, we can see that the distance between the necks
affects the value of the transfer matrix M2 and finally affects the amplitude and phase shift.
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So, the theory in this paper can be used to calculate the transmission properties of DHR
device in multi-neck condition more accurately comparing with traditional methods.
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4. Conclusions

In this paper, the analytical formulas to predict the acoustic transmission properties of
a DHR device with leak holes are developed, which is based on the derived impedances
of the holes and the cavity, and the coupling effects among these holes. Once transfer
relations of acoustic wave from inlet to outlet of the duct are established, the transmission
properties of the DHR device can be easily predicted. The accuracy and the effectiveness
of developed theoretical formulas are verified by COMSOL simulations. The numerical
results show that the number and the size of leak holes have important effects on the
transmission properties of the DHR structure. The increase of the number and the width of
the leak holes always shift the resonance to higher frequencies. In addition to the resonance
frequency, the analytical method established in this paper can also quickly predict the
amplitude and the phase characteristics of the transmission, which is of great significance
for the leakage detection and localization of the gas pipeline system and DHR-based
metasurface applications.
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Appendix A

Based on Equations (35), (36), (38), (39), (46) and (47), the following 2n equations can
be obtained

A+
1 e−jka1 + A−1 ejka1 = A+

2 + A−2 (A1)

A+
2 e−jka2 + a−2 ejka2 = A+

3 + A−3
... (A2)
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A+
i e−jkai + A−i ejkai = A+

i+1 + A−i+1(2 ≤ i ≤ n)
... (A3)

A+
n e−jkan + A−n ejkan = A+

n+1 + A−n+1 (A4)

A+
1 e−jka1 − A−1 ejka1 = A+

2 − A−2 + Rw1

n

∑
m=1

R1(1, m)pm (A5)

A+
2 e−jka2 − A−2 ejka2 = A+

3 − A−3 + Rw1

n

∑
m=1

R1(2, m)pm
... (A6)

A+
i e−jkai − a−i ejkai = A+

i+1 − A−i+1 + Rw1

n

∑
m=1

R1(i, m)pm (2 ≤ i ≤ n) (A7)

A+
n e−jkan − A−n ejkan = A+

n+1 − A−n+1 + Rw1

n

∑
m=1

R1(n, m)pm (A8)

Equations (A1)–(A8) can be rewritten as the matrix form

T [A+
2 A−2 A+

3 A−3 · · · A+
n+1 A−n+1 ]T = NT (A9)

where N is a vector of length 2n, whose elements are

N(1) = A+
1 e−jka1 + a−1 ejka1 (A10)

N(n + 1) = A+
1 e−jka1 − A−1 ejka1 (A11)

The rest elements in vector N are zero. T is a matrix of order n× n, whose elements are

T(s, t) = −e−jkas , 2 ≤ s ≤ n, t = 2s− 3 (A12)

T(s, t) = −ejkas , 2 ≤ s ≤ n, t = 2s− 2 (A13)

T(s, t) = 1, 1 ≤ s ≤ n, 2s− 1 ≤ t ≤ 2s (A14)

T(s, t) = 0, 1 ≤ s ≤ n, t < 2s− 3 or t > 2s (A15)

T(s, t) = Rw1R1(s− n,
t + 1

2
)− e−jkas−n , n + 2 ≤ s ≤ 2n, t = 2s− 2n− 3 (A16)

T(s, t) = Rw1R1(s− n,
t
2
) + ejkas−n , n + 2 ≤ s ≤ 2n, t = 2s− 2n− 2 (A17)

T(s, t) = Rw1R1(s− n,
t + 1

2
) + 1, n + 1 ≤ s ≤ 2n, (A18)

T(s, t) = Rw1R1(s− n,
t
2
)− 1, n + 1 ≤ s ≤ 2n, t = 2s− 2n (A19)

T(s, t) = Rw1R1(s− n,
⌊

t + 1
2

⌋
), n + 1 ≤ s ≤ 2n, t < 2s− 2n− 3or t > 2s− 2n (A20)

where symbol bcmeans round down.
From Equations (A12)–(A20), we can obtain

[ A+
2 A−2 A+

3 A−3 · · · A+
n+1 A−n+1 ]

T
= T−1NT (A21)

From Equation (A21), A+
n+1 and A−n+1 can be written as

A+
n+1 = T1(2n− 1, :)NT = T1(2n− 1, 1)(A+

1 e−jka1 + A−1 ejka1)+T1(2n− 1, n + 1)(A+
1 e−jka1 − A−1 ejka1) (A22)

A−n+1 = T1(2n, :)NT = T1(2n, 1)(A+
1 e−jka1 + A−1 ejka1) + T1(2n, n + 1)(A+

1 e−jka1 − A−1 ejka1) (A23)

where T1 = T−1.
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From Equations (A22) and (A23), the transfer relation from the first neck to the nth
neck can be written in the form [

A+
n+1

A−n+1

]
= M2

[
A+

1
A−1

]
(A24)

where M2 is a 2× 2-dimensional matrix, whose elements are

M2(1, 1) = [T1(2n− 1, 1)− T1(2n− 1, n + 1)]e−jka1 (A25)

M2(1, 2) = [T1(2n− 1, 1)− T1(2n− 1, n + 1)]ejka1 (A26)

M2(2, 1) = [T1(2n, 1)− T1(2n, n + 1)]e−jka1 (A27)

M2(2, 2) = [T1(2n, 1)− T1(2n, n + 1)]ejka1 (A28)
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