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Abstract: This paper investigates the issues of iterative learning algorithm-based robust thruster fault
reconstruction and reconfigurable fault-tolerant control for spacecraft formation flying systems subject
to space perturbations. Motivated by sliding mode methodology, a novel iterative learning observer
(ILO) was developed to robustly reconstruct the thruster faults. Based on the fault signals obtained
from the ILO, a learning output–feedback fault-tolerant control (LOF2TC) approach was explored such
that the closed-loop spacecraft formation configuration was accurately maintained in the presence
of space perturbations and thruster faults. Numerical simulations were employed to demonstrate
the effectiveness and superiority of the proposed ILO-based fault-reconstructing approach and
LOF2TC-based configuration maintenance approach for spacecraft formation flying systems.

Keywords: spacecraft formation; fault reconstruction; iterative learning observer; fault-tolerant
control; learning output–feedback control

1. Introduction

As the research hotspot in the field of spaceflight technology, which has been inten-
sively studied in the past decade, spacecraft formation flying has been a key technology for
lots of space missions, such as distributed aperture radar, earth monitoring, and deep space
observation [1,2]. Compared with a large and complex spacecraft, a spacecraft formation
flying system provides a multitude of benefits in space missions, including higher reconfig-
uration performance, higher reliability and redundancy, and low dependence on ground
stations. Spacecraft formation control is regarded as the core technology for spacecraft for-
mation flying with the diversification of space missions [3]. Therefore, spacecraft formation
control techniques have been increasingly attracting the attention of scholars during the
past two decades; many research results have been developed in the literature [4,5].

In on-orbit spacecraft formation flying systems, various perturbations, including
solar radiation pressure, atmospheric drag, and the earth’s oblateness from the space
environment, will result in drifts in both the formation configuration and the formation
center. On the other hand, a spacecraft formation control system unavoidably manifests
various types of unexpected anomalies and faults during on-orbit mission operations [6,7].
Faults may dramatically degrade the control performance properties to the point that
formation configurations may be unsatisfactory for space missions, and could even result
in the loss of control of an entire spacecraft formation control system. To guarantee the
high control performance, reliability, and safety of spacecraft formation flying systems,
fault diagnosis and fault-tolerant control (FTC) are challenging problems that need to be
handled urgently for spacecraft formation flying systems in practice. In view of these, fault
diagnosis and FTC for spacecraft formation control systems have attracted considerable
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attention in both research and practical applications during the past decade, and great
progress has been achieved in recently published work in the literature [8–16].

In [8], fuzzy rule-based fault diagnosis approaches were proposed for the leader–
follower spacecraft formation architecture. In [9], a fault detection and diagnosis approach,
based on the Lur’e differential inclusion theory and fuzzy wavelet neural network, was
proposed for the propulsion subsystem of spacecraft formation. In [10], based on the linear
parameter varying technique, nonlinear observers were respectively explored to detect,
isolate, and estimate actuator faults in a multi-satellite formation system, and less conserva-
tive linear matrix inequality (LMI) conditions were provided for observer design. In [11],
a new sub-observers-based distributed cooperative state and fault estimation framework
was proposed for a formation flight of satellites with unreliable relative state determination
information resulting from external disturbances and actuator faults. In this framework, a
series of sub-observers were selected and configured by a decision-making supervisor that
cooperatively estimated the relative states and actuator faults. In [12], considering model
uncertainties, time-varying disturbances and faults in spacecraft sensors and thrusters,
a traditional sliding mode control algorithm, and a non-singular terminal sliding mode
control algorithm were proposed for accurate formation configuration maintenance based
on variable-structure control theory. To solve the fault-tolerant precise control problem of
a satellite formation flying system with various uncertainties and external disturbances,
the minimum sliding mode error feedback control approach was proposed based on the
concept of equivalent control error to offset the J2 perturbation and smooth out the effect
of the nonlinear switching control in [13]. In [14], a reconfigurable spacecraft formation
FTC approach was designed based on a super-twisting sliding mode observer, which had
strong robustness to measurement noise and J2 orbital perturbation. The reconfigurable
FTC approach in different failure modes could effectively maintain the spacecraft formation
configuration. In [15], a decentralized FTC algorithm was proposed for the three-inline
array tethered spacecraft formation system. In [16], two new adaptive FTC algorithms were
developed to estimate the effectiveness of the actuator, spacecraft masses, and the upper
bound of external disturbances for spacecraft formation control systems that are subject
to time-varying communication delays. It is noteworthy that robust fault reconstruction
observer-based reconfigurable spacecraft formation FTC has not been considered in the
existing literature, although fault reconstruction and spacecraft formation FTC have been
separately addressed.

During the past decade, fault diagnosis and FTC based on iterative learning algorithms
have been widely studied in time-delay systems, Takagi–Sugeno fuzzy systems, etc., [17–19],
and applied in robotics and spacecraft systems [6,7]. Recently, iterative learning algorithms
have been attracting much attention from aerospace scholars mainly because they can
be applied to robust fault reconstruction and reconfigurable FTC for spacecraft systems.
In [20], an ILO was designed to estimate the torque deviation for rigid spacecraft attitude
stabilization in the presence of external disturbances and actuator faults. In [21], a novel
ILO that could simultaneously reconstruct actuator faults and disturbances was developed
for the attitude control of spacecrafts against actuator faults. In [22], two new non-linear
ILO were suggested in order to robustly reconstruct effectiveness factors and bias faults of
reaction wheels for spacecraft attitude control systems (ACSs) subject to space disturbance
torques. In [23], a new fault diagnosis observer was proposed based on the iterative
learning methodology to reconstruct actuator failures in real time for spacecraft ACSs in
the presence of actuator failures, external disturbances, and actuator saturation. In [24],
a novel Barrier Function-based ILO was designed to reconstruct the lumped disturbance,
including multiple disturbances and failure torque, for spacecraft attitude stabilization.
However, so far few research results on iterative learning algorithms have been focused
on spacecraft formation flying systems. In addition, in comparison with the existing
integrator-based adaptive algorithm, the algebraic iterative learning algorithm required
less computation and no existence of derivatives at some time instants [21,22,25]. Therefore,
the iterative learning algorithm was easier to implement in practice, especially when
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considering the limited storage and computing power for on-board computers in the
spacecraft formation flying system. In light of these, there was a strong incentive for us to
investigate iterative learning algorithm-based fault reconstruction and reconfigurable FTC
for spacecraft formation flying systems.

Based on the above discussions, this paper investigates the issues of robust thruster
fault reconstruction and reconfigurable fault tolerant control for a spacecraft formation
flying system based on the iterative learning algorithms. Considering space perturbations
and thruster faults, the relative orbital dynamics of spacecraft formation control systems
are established. Considering the drawback in robustness of the existing ILOs [21,22,25] and
the robustness of fault reconstruction against space perturbations in spacecraft formation
flying systems, a novel ILO was proposed to robustly reconstruct thruster bias faults based
on sliding mode methodology, and partial ILO-gain matrices could be conveniently solved
by using LMI optimization techniques. Based on two iterative learning algorithms, a
learning output–feedback fault-tolerant control (LOF2TC) scheme was explored so that
accurate formation configuration maintenance could be fulfilled for spacecraft formation
flying systems. Finally, simulation studies were provided to illustrate the effectiveness and
superiority of the proposed robust fault reconstruction and reconfigurable fault tolerant
control for spacecraft formation flying systems. In this paper, the main contributions that
are worth emphasizing are summarized in the following three points.

(1) Motivated by sliding mode methodology, a new ILO was designed for robust thruster
bias fault reconstruction for spacecraft formation flying systems, subject to space
perturbations. In addition, compared with the existing ILOs, a new ILO stability
analysis methodology was provided in detail.

(2) Based on two iterative learning algorithms, a new LOF2TC approach was explored
for accurate spacecraft formation configuration maintenance in presence of space
perturbations and possible uncertainties.

(3) It is worth noting that iterative learning algorithms were not developed for spacecraft
formation control systems. Therefore, the proposed ILO-based robust thruster fault
reconstruction and LOF2TC approach provide an extension for spacecraft application.

The rest of this paper is organized as follows. In Section 2, the considered spacecraft
formation control system model is established and the main problems are formulated. In
Section 3, a new ILO is constructed to reconstruct actuator faults and estimate system states
simultaneously, and the stability analysis for the proposed ILO is also derived in detail. In
Section 4, the LOF2TC approach is presented for configuration maintenance under thruster
faults, space perturbations, and possible uncertainties, and, then, its stability analysis is
provided. In Section 5, simulation studies are presented, and Section 6 concludes this paper.

2. Problem Formulation

In this paper, it is assumed that the chief spacecraft runs in a circular orbit and
formation configuration is short distance. As shown in Figure 1, the considered spacecraft
formation flying system comprised a chief spacecraft and a deputy spacecraft. r refers to
the position vector of the chief spacecraft with respect to the earth-centered inertial (ECI)
frame O-XYZ, which is attached to the center of the earth. The relative motion model for
spacecraft formation flying was formulated in the local vertical and local horizontal (LVLH)
coordinate frame that was fixed at the center of the chief spacecraft. In this frame, the x,
y, and z components are referred to as radial direction, tangential direction, and normal
direction, respectively.
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Figure 1. ECI and LVLH coordinate frames for spacecraft formation flying. 
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Considering space perturbation, the linear C–W equation [9,26] describes the relative
dynamic motion between the deputy spacecraft and the chief spacecraft and is as follows:

..
x = 2n

.
y + 3n2x + ux + dx..

y = −2n
.
x + uy + dy..

z = −n2z + uz + dz

(1)

where x, y, z are the components of relative position in each axis, n is the constant angular
velocity of the chief spacecraft around the earth, and ui, i = x, y, z are the components
of orbit control force provided by thrusters along each axis of the deputy spacecraft.
di, i = x, y, z are the components of space perturbation along each axis.

We define system state as
.
q(t) = [x, y, z,

.
x,

.
y,

.
z]T , and the relative motion equation in

(1) can be written into the following state–space model.{ .
q = Aq + Bu + Ed
y = Cq

(2)

where the control input vector u(t) = [ux, uy, uz]
T , space perturbation d(t) = [dx, dy, dz]

T ,
and coefficient matrices are denoted by the following.

A =

[
03 I3
A1 A2

]
, B = E =

[
03
I3

]
, C = I6, and A1 =

 3n2 0 0
0 0 0
0 0 −n2

, A2 =

 0 2n 0
−2n 0 0

0 0 0

.

Considering the thruster bias fault, a fault-free spacecraft formation system (2) can be
rewritten into the following form.{ .

q = Aq + Bu + Ed(t) + HF(t)
y = Cq

(3)

where F(t) represents control force results from thruster faults and the fault distribution
matrix H = B.

Assumption 1. In this study, the space perturbation d(t) is assumed to be bounded, and it satisfies
the following:

‖d(t)‖ ≤ dmax (4)

where dmax is a positive constant.

The main objective of this work was to develop robust thruster bias fault reconstruction
and a learning output–feedback fault-tolerant tracking control approach for spacecraft
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formation flying systems based on iterative learning algorithms. For reconstructing thruster
bias fault robustly, a novel ILO was explored for the spacecraft formation dynamics (3).
Based on the faults reconstructed using the designed ILO, an LOF2TC approach was
developed for the purpose of accurate spacecraft formation configuration maintenance.

3. Iterative Learning Observer-Based Thruster Fault Reconstruction Approach
3.1. Design of the Iterative Learning Observer

For reconstructing the thruster bias faults, the new continuous-time ILO was con-
structed for (3) in the following form,

.
q̂(t) = Aq̂(t) + Bu(t) + HF̂(t) + L1(y(t)− ŷ(t)) + γsgn(y(t)− ŷ(t))
ŷ(t) = Cq̂(t)
F̂(t) = Q1F̂(t− τ) + Q2L2(y(t)− ŷ(t))

(5)

where q̂ ∈ R6 and ŷ ∈ R6 denote the estimated state vector and measurement output vector,
respectively. Variable F̂(t) denotes the reconstructed thruster bias fault, which was updated
by both its previous information at t − τ and current output estimation error, where τ
was the learning interval. It is worth noting that the learning interval τ could be taken as
the sampling interval, or as an integer multiple of the sampling interval in sampled-data
control systems. The diagonal matrix Q1 = diag{σ1, σ2, σ3} with σi ∈ (0, 1], L1, and L2
are gain matrices with appropriate dimensions that are determined later. Q2 is a positive
constant.

Denote state estimation error, output estimation error, and bias fault reconstruction
error as eq = q− q̂, ey = y− ŷ, and eF = F(t)− F̂(t), respectively. Therefore, it followed that

.
eq(t) = (A− L1C)eq + HeF + Ed(t)− γCsgn(eq) (6)

ey(t) = Ceq(t) (7)

3.2. Stability Analysis of the Iterative Learning Observer

In this subsection, the stability and convergence of the proposed ILO was proved. The
following is the theorem that was used.

Theorem 1. Suppose that Assumption 1 holds if there exist positive definite symmetric matrices
P ∈ R6×6, Q1 ∈ R3×3 and matrices L2 ∈ R3×6, Y ∈ R6×6 and a positive scalar γ such that the
following relations hold

PA + ATP− YC− CTYT < 0 (8)

(L2C)T = PH (9)

(η + γ1)Q1
2 − I3 ≤ 0 (10)

γ ≥ dmax (11)

where γ1 > 0, and η = 1 + µ with µ ≥ 0. In this way, the state estimation error eq(t) and
fault-reconstructing error eF(t) are uniformly ultimately bounded, and matrix L1 can be determined
by L1 = P−1Y.

Proof of Theorem 1. Define {
∆f(t) = F(t)−Q1F(t− τ)
∆f̂(t) = F̂(t)−Q1F̂(t− τ)

(12)

then, we have
∆f(t)− ∆f̂(t) = eF(t)−Q1eF(t− τ) (13)
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Using (13), the fault-reconstructing error can be described by

eF(t) = Q1eF(t− τ) + ∆f(t)− ∆f̂(t) (14)

Further, (6) can be converted into the following form:

.
eq(t) = (A− L1C)eq + H(Q1eF(t− τ) + ∆f(t)− ∆f̂(t)) + Ed(t)− γCsgn(eq) (15)

According to (5) and (12), one has

L2Ceq =
1

Q2
[F̂(t)−Q1F̂(t− τ)] =

1
Q2

∆ f̂ (t) (16)

Consider the following Lyapunov–Krasovski function candidate

V(t) = eT
q Peq + β

∫ t

t−τ
eT

F eFds (17)

where P is a positive definite symmetric matrix and β > 0. The derivative of the Lyapunov
functional with respect to time can be given by

.
V(t) = eT

q [(A− L1C)TP + P(A− L1C)]eq + 2eT
q PH[Q1eF(t− τ) + ∆f(t)− ∆f̂(t)]

−2γeT
q PCsgn(eq) + 2eT

q PEd(t)− βµeT
F (t)eF(t) + β(1 + µ)eT

F (t)eF(t)
−βeT

F (t− τ)eF(t− τ)

(18)

where η = 1 + µ with µ > 0.
According to (14), it follows that

βηeT
F (t)eF(t) = βη[eT

F (t− τ)Q1
TQ1eF(t− τ) + ∆fT(t)∆f(t) + ∆f̂T

(t)∆f̂(t)
+2eF

T(t− τ)Q1
T∆f(t)− 2∆f̂T

(t)∆f(t)− 2∆f̂T
(t)Q1eF(t− τ)]

(19)

Using Young’s inequality [27], one can obtain

2ηeF
T(t− τ)Q1

T∆f(t) ≤ γ1eF
T(t− τ)Q1

TQ1eF(t− τ) +
η2

γ1
∆fT(t)∆f(t) (20)

where γ1 > 0.
Substituting (20) into Equation (19) leads to

βηeT
F (t)eF(t) ≤ β(η + γ1)eT

F (t− τ)Q1
TQ1eF(t− τ) + β(η + η2

γ1
)∆fT(t)∆f(t)

+βη[∆f̂T
(t)∆f̂(t) − 2∆f̂T

(t)∆f(t) − 2∆f̂T
(t)Q1eF(t− τ)]

(21)

Further, with the aid of (9), it is easily obtained from (16) that

2eT
q PH =

2
Q2

∆f̂T
(t) (22)

Defining 1
Q2

= βη and noting (22), it follows that

2eT
q PH[Q1eF(t− τ) + ∆f(t)− ∆f̂(t)]

= 2
Q2

∆f̂T
(t)[Q1eF(t− τ) + ∆f(t)− ∆f̂(t)]

= 2βη∆f̂T
(t)[Q1eF(t− τ) + ∆f(t)− ∆f̂(t)]

= βη[2∆ f̂ T(t)Q1eF(t− τ) + 2∆f̂T
(t)∆f(t)− 2∆f̂T

(t)∆f̂(t)]

(23)
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Then, substituting (21) and (23) into (18) yields

.
V(t) ≤ eT

q (t)[(A− L1C)TP + P(A− L1C)]eq(t)− 2γeT
q Psgn(eq) + 2eT

q PEd(t)
−βµeT

F (t)eF(t) + βeT
F (t− τ)[(η + γ1)Q1

2 − I3]eF(t− τ)

+β(η + η2

γ1
)∆fT(t)∆f(t)

= eT
q (t)[(A− L1C)TP + P(A− L1C)]eq(t)− 2eT

q P[γsgn(eq)− Ed(t)]
−βµeT

F (t)eF(t) + βeT
F (t− τ)[(η + γ1)Q1

2 − I3]eF(t− τ)

+β(η + η2

γ1
)∆fT(t)∆f(t)

(24)

According to (12), it follows that

‖∆f(t)‖ ≤ ‖F(t)‖+ ‖Q1‖·‖F(t− τ)‖ (25)

then, ∆f(t) is bounded. If (8), (10), and (11) hold, we have

.
V(t) ≤ −λmin(−Φ)eT

q (t)eq(t)− βµeT
F (t)eF(t) + β(η + η2

γ1
)∆fT(t)∆f(t)

≤ −δ‖
[

eq(t)
eF(t)

]
‖

2

2
+ ∆ f

(26)

where δ = min(λmin(−Φ), βµ) with Φ = (A− L1C)TP + P(A− L1C) and ∆f = β(η +
η2

γ1
)∆fT(t)∆ f (t).

Therefore, state-estimating and fault-reconstructing errors are uniformly ultimately
bounded. This completes the proof. �

Remark 1. It should be noted that (8), expressed in terms of LMI formation, could be conveniently
solved using standard LMI tools. However, Theorem 1 included a linear matrix in Equation (9)
such that solving (8) and (9) using the LMI toolbox of Matlab was not an easy task. To solve this
difficult problem, equation (9) could be transformed into the following inequality using the Schur
complement lemma [28]. [

−λI3 HTP− L2C
∗ −I6

]
< 0 (27)

Therefore, the solution of (8) and (9) was converted into a problem of finding a global
solution of the following minimization problem:

Minimize λ, subject to (8) and (27).
To solve the above minimization problem, a sufficiently small positive scalar λ could

be chosen. Then matrices P, L1, and L2 were obtained by solving (8) and (27) using the
Matlab LMI toolbox such that matrix HTP could be approximate to L2C with satisfactory
precision. Moreover, the above minimization problem could also be solved by using the
Solvers minx in the Matlab LMI toolbox. Finally, gain matrix Q1 could be easily computed
through solving (10).

Remark 2. To guarantee time-varying actuator fault reconstruction with high accuracy, parameters
in ILO (5) and Theorem 1 should be chosen appropriately such that the terms η2/γ1 and ∆ f (t) in
∆ f were sufficiently small. First, to guarantee that parameter η2/γ1 was small, parameter µ should
be designed as small as possible in Theorem 1. In addition, to guarantee that parameter ∆ f (t) was
small, the learning interval τ should be selected to be sufficiently small and the gain matrix Q1,
which was close to I3, should be designed to satisfy (10) in Theorem 1. To achieve this, it could be
noted from (10) that γ1 should be selected as a sufficiently small number. However, it also made the
term η2/γ1 large. It could be noted from ∆f that γ1 had a much greater impact on ∆fT(t)∆ f (t)
than η2/γ1. Therefore, a small parameter γ1 should be chosen for fault-reconstructing performance.
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Furthermore, based on Theorem 1, the design procedures of the proposed ILO are
given as follows:

(1) Select appropriate positive scalars µ and β, then compute η = 1 + µ and Q2 = 1/βη.
(2) Select a small positive scalar γ1, then compute Q1 through solving (10).
(3) Choose a sufficiently small positive scalar λ, then matrices P, Y, and L2 can be obtained

readily by using the Matlab/LMI toolbox to solve inequalities (8) and (27).
(4) Compute the gain matrix L1 = P−1Y by using the matrices obtained in step (3).
(5) Choose the appropriate learning interval τ and establish the learning observer in the

form of (5) according to the above gain matrices and parameters.

Remark 3. Compared with the existing ILOs proposed in [21], a term γsgn(y(t) − ŷ(t)) in
(5) was employed for the robustness of ILO with respect to the external space perturbations. To
achieve this point, the condition (11) that required that relation between the parameter γ and space
perturbations was obtained in Theorem 1. Obviously, the designed ILO (5) could clearly reconstruct
thruster faults in the presence of space perturbations, unlike the ILO that reconstructed the lumped
disturbances, including external disturbances, and actuator faults in [21].

Based on Theorem 1, the following corollary could be obtained for the considered
spacecraft formation control system, subject to constant thruster bias faults.

Corollary 1. Suppose that Q1 = I3, if there exist a positive definite symmetric matrices P ∈ R6×6,
a positive scalar γ, and matrices L2 ∈ R3×6, Y ∈ R6×6 such that (8), (9), and (11) hold, then the
ILO (5) can reconstruct constant thruster bias faults asymptotically, and the observer gain matrix
L1 can be obtained by L1 = P−1Y.

Proof of Corollary 1. The detailed proof process of Corollary 1 is similar to that of Theorem 1;
hence, the proof process is omitted here. �

Remark 4. Consider the spacecraft formation control systems described by (3) under Assumption
1. Using Theorem 1, the state-estimating and fault-reconstructing errors are uniformly ultimately
bounded such that the developed ILO can accurately reconstruct both constant faults and time-
varying faults. If Q1 = I3, then ∆f(t)= 0 for constant thruster faults according to (12). Therefore,
using Corollary 1, the developed ILO could achieve both asymptotic reconstruction and unbiased
reconstruction of constant thruster faults.

4. Learning Output–Feedback Fault-Tolerant Tracking Control for Spacecraft
Formation Configuration Maintenance

In this section, based on thruster bias faults reconstructed using the designed ILO,
an LOF2TC approach was developed for spacecraft formation control systems such that
on-orbit desired spacecraft formation configuration could be accurately tracked in the
presence of thruster faults, space perturbations, and possible uncertainties. The block
diagram of the tracking control system is shown in Figure 2.
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4.1. Design of the Learning Output–Feedback Fault-Tolerant Controller

An anticipated nominal formation configuration without any thruster control and
space perturbations was assumed as follows,{ .

q0 = Aq0
y0 = Cq0

(28)

where q0 is the system state of the nominal configuration. By subtracting (3) from (28), a
formation configuration that tracked error dynamics could be established as{ .

eq = Aeq − Bu− Ed(t)−HF(t)
ey = Ceq

(29)

where eq = q0(t)− q(t) and ey(t) = y0(t)− y(t) are the state tracking error and output
tracking error, respectively.

In order to track the desired state of the nominal system and maintain the formation
configuration in the presence of thruster faults and space perturbation forces, based on
fault-reconstructing signals obtained using the aforementioned ILO (5), the learning output–
feedback fault-tolerant tracking controller was established as follows,

u f = π(t)Key − B+Ev(t)− B+HF̂(t) (30)

where v(t) is a jointed compensation term of both space perturbation forces and actuator
fault reconstruction errors; π(t) is a learning parameter, which was designed to solve the
potential uncertainties; B+HF̂(t) represents the fault compensation term; B+ is a general-
ized inverse of matrix B; K ∈ R3×6 is the gain matrix that is designed later. In the controller
(30), π(t) is updated by the following learning algorithm [27],

π(t) = G1π(t− τ) + G2eT
q (KC)T(KC)eq (31)

where G1 and G2 are scalars that are designed later. Learning parameter v(t) was updated
by the following learning algorithm,

v(t) = G3v(t− τ) + G4KCeq(t) (32)

where G3 = diag{g1, g2, g3}, gi > 0 and G4 is a constant.
By substituting (30) into (29), a closed-loop spacecraft formation tracking error system

could be expressed as: { .
eq = (A− BπKC)eq(t)− Eeh(t)
ey = Ceq

(33)

where eh(t) = h(t)− v(t) and h(t) = d(t) + eF(t) denote synthesized disturbance forces.

4.2. Stability Analysis of the Learning Output–Feedback Fault-Tolerant Controller

To guarantee the stability and convergence of the formation configuration tracking
error dynamics system (29) under the controller (30), the stability proof of the closed-loop
formation configuration tracking error dynamics (33) is provided in detail.

Theorem 2. For the formation configuration tracking error dynamics system (29) under controller
(30), if there exists positive definite symmetric matrices P1 ∈ R6×6, Q ∈ R6×6, G3 ∈ R3×3, matrix
K ∈ R3×6, and a scalar G1 such that the following relations hold,

P1A + ATP1 − P1BBTP1 = −Q (34)

KC = BTP1 (35)
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(1 + µ1 + γ3)G2
1 − 1 < 0 (36)

(1 + µ1 + γ2)GT
3 G3 − I3 < 0 (37)

where G2 = 1/l(1 + µ1) and G4 = −1/β1(1 + µ1) with µ1 > 0, γ2 > 0, γ3 > 0, the closed-loop
formation configuration tracking error dynamics (33) is uniformly ultimately bounded.

Proof of Theorem 2. Define 
ρ1(t) = h(t)−G3h(t− τ)
ρ2(t) = v(t)−G3v(t− τ)
ρ3(t) = Σ(t)− G1Σ(t− τ)
ρ4(t) = π(t)− G1π(t− τ)

(38)

where h(t) and Σ(t) denote adaptive learning terms of v(t) and π(t), respectively.
Then substituting (31) and (32) into (38) yields{

ρ2(t) = G4KCeq(t)
ρ4(t) = G2eT

q (KC)T(KC)eq(t)
(39)

Let eΓ(t) = Σ(t)− π(t), it follows from (38) that{
eh(t) = ρ1(t)− ρ2(t) + G3eh(t− τ)
eΓ(t) = ρ3(t)− ρ4(t) + G1eΓ(t− τ)

(40)

therefore, the new form of π(t) can be described by

π(t) = Σ(t)− eΓ(t)
= Σ(t)− [ρ3(t)− ρ4(t) + G1eΓ(t− τ)]

(41)

Substituting (41) into (33) leads to

.
eq(t) = (A− BπKC)eq(t) + B[G1eΓ(t− τ) + ρ3(t)− ρ4(t)]KCeq(t)
−B[G3eh(t− τ) + ρ1(t)− ρ2(t)]

(42)

Considering the following Lyapunov–Krasovski function candidate

V(t) = eT
q P1eq + β1

∫ t

t−τ
eT

h (s)eh(s)ds + l
∫ t

t−τ
eT

Γ (s)eΓ(s)ds (43)

where β1 > 0 and l > 0, the derivative of the Lyapunov candidate
.

V(t) can be derived as

.
V(t) = eT

q (P1A + ATP1 − 2ΣP1BKC)eq + 2eT
q P1B[G1eΓ(t− τ) + ρ3(t)− ρ4(t)]KCeq

−2eT
q P1B[G3eh(t− τ) + ρ1(t)− ρ2(t)] + β1[−µ1eT

h (t)eh(t) + (1 + µ1)eT
h (t)eh(t)

−eT
h (t− τ)eh(t− τ)] + l[−µ1eT

Γ (t)eΓ(t) + (1 + µ1)eT
Γ (t)eΓ(t) − eT

Γ (t− τ)eΓ(t− τ)]

(44)

where µ1 ≥ 0. Substituting (40) into (44) leads to

.
V(t) = eT

q (P1A + ATP1 − 2ΣP1BKC)eq + 2eT
q P1B[G1eΓ(t− τ) + ρ3(t)− ρ4(t)]KCeq(t)

−2eT
q P1B[G3eh(t− τ) + ρ1(t)− ρ2(t)] − β1µ1eT

h (t)eh(t) + β1(1 + µ1)[ρ
T
1 (t)ρ1(t)

+ρT
2 (t)ρ2(t) + eT

h (t− τ)GT
3 G3eh(t− τ) + 2eT

h (t− τ)GT
3 ρ1(t)− 2ρT

2 (t)G3eh(t− τ)
−2ρT

2 (t)ρ1(t)] − β1eT
h (t− τ)eh(t− τ) − lµ1eT

Γ (t)eΓ(t)− leT
Γ (t− τ)eΓ(t− τ)

+l(1 + µ1)[eT
Γ (t− τ)GT

1 G1eΓ(t− τ) + ρT
3 (t)ρ3(t) + ρT

4 (t)ρ4(t) + 2eT
Γ (t− τ)GT

1 ρ3(t)
−2ρT

4 (t)G1eΓ(t− τ)− 2ρT
4 (t)ρ3(t)]

(45)

With the aid of (35) and (39), we have 2eT
q P1BKCeq = 2ρ4/G2 and 2eT

q P1B = 2ρT
2 /G4.

Then, let G2 = 1/l(1 + µ1) and G4 = −1/β1(1 + µ1), the above equality can be simplified
into the following form
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.
V(t) ≤ eT

q (P1A + ATP1 − 2ΣP1BKC)eq − β1µ1eT
h (t)eh(t) + β1(1 + µ1)[ρ

T
1 (t)ρ1(t)

+eT
h (t− τ)GT

3 G3eh(t− τ) + 2eT
h (t− τ)GT

3 ρ1(t)]− β1eT
h (t− τ)eh(t− τ)

−µ1leT
Γ (t)eΓ(t) + l(1 + µ1)[eT

Γ (t− τ)GT
1 G1eΓ(t− τ) + ρT

3 (t)ρ3(t)
+2eT

Γ (t− τ)GT
1 ρ3(t)]− leT

Γ (t− τ)eΓ(t− τ)

(46)

and defining η1 = 1 + µ1, we have the following inequalities: 2η1eT
h (t− τ)GT

3 ρ1(t) ≤ γ2eT
h (t− τ)GT

3 G3eh(t− τ) +
η2

1
γ2

ρT
1 (t)ρ1(t)

2η1eT
Γ (t− τ)GT

1 ρ3(t) ≤ γ3eT
Γ (t− τ)GT

1 G1eΓ(t− τ) +
η2

1
γ3

ρT
3 (t)ρ3(t)

(47)

where γ2 > 0 and γ3 > 0.
Further, with the aid of (47), (46) can be transformed into

.
V(t) ≤ eT

q [P1A + ATP1 − 2Σ(KC)TKC]eq − β1µ1eT
h (t)eh(t)− µ1leT

Γ (t)eΓ(t)

+β1eT
h (t− τ)[(η1 + γ2)G2

3 − I3]eh(t− τ) + β1(η1 +
η2

1
γ2
)ρT

1 ρ1

+leT
Γ (t− τ)[(η1 + γ3)G2

1 − 1]eΓ(t− τ) + l(η1 +
η2

1
γ3
)ρT

3 ρ3

(48)

According to (36) and (37), (48) can be further transformed into

.
V(t) ≤ eT

q [P1A + ATP1 − 2Σ(KC)TKC]eq − β1µ1eT
h (t)eh(t)− µ1leT

Γ (t)eΓ(t)

+β1(η1 +
η2

1
γ2
)ρT

1 ρ1 + l(η1 +
η2

1
γ3
)ρT

3 ρ3
(49)

Based on (37), it follows that{
‖ρ1‖ ≤ ‖h(t)‖+ ‖G3‖·‖h(t− τ)‖ ≤ ρ1max
‖ρ3‖ ≤ ‖Σ(t)‖+ ‖G1‖·‖Σ(t− τ)‖ ≤ ρ3max

(50)

Choosing 2Σmin ≥ 1, and based on the Lyapunov stability theory, it follows from (49)
that the global tracking error eq(t), output estimation error ey(t), and compensation error
eh(t) are uniformly ultimately bounded.

Furthermore, the design procedure of the learning output–feedback fault-tolerant
controller is given as follows:

(1) Select appropriate positive scalars l, β1, and µ1, then compute parameters G2 =
1/l(1 + µ1) and G4 = −1/β1(1 + µ1).

(2) Select appropriate matrix Q, then matrices P1 and K can be obtained readily by solving
(34) and (35).

(3) Choose small positive scalars γ2 and γ3, then compute G1 and G3 through solving
(36) and (37).

(4) Choose the appropriate learning interval τ and design the controller in the form of
(30) according to the above gain matrices and parameters. �

5. Simulation Studies

In this section, a numerical example is provided to illustrate the effectiveness and
superiority of the proposed ILO-based thruster fault reconstruction and LOF2TC-based
formation maintenance for a satellite formation flying system. The orbital rate was taken as
n = 0.0015 rad/s. The space perturbation model borrowed from [12] is given as follows,

d(t) = A0

 1− 1.5 sin(nt)
0.5 sin(2nt)
sin(nt)


where A0 = 1.2× 10−3 N. Therefore, using (3) it was easy to obtain satellite the formation
flying system model with space perturbation and thruster faults.
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In this work, it was assumed that an abrupt constant fault occurred in the x-axis
thruster, a slow time-varying fault occurred in the z-axis thruster, and the thruster in the
y-axis was fault free. The fault scenarios were selected as follows:

1. The abrupt constant fault in the x-axis thruster:

Fx(t) =
{

0 t ≤ 1500s
0.5 t ≥ 1500s

2. Fault-free condition in the y-axis thruster:

Fy(t) = 0

3. The time-varying fault in the z-axis thruster:

Fz(t) =
{

0 t ≤ 2000s
0.25 sin(0.05t + π

4 )− 0.2e−0.1t t ≥ 2000s

5.1. ILO-Based Thruster Fault Reconstruction

In the simulation, both the simulation step and the learning interval τ were set as 0.001 s.
Choosing parameters µ = 0.001, γ1 = 0.0193, and β = 1, one obtained Q2 = 0.999 and
gain matrix Q1 = diag{0.99, 0.99, 0.99}. Choosing parameter γ = 3.231× 10−3 according
to space perturbation d(t) such that the condition in (11) was satisfied. To guarantee good
transient performance, all poles of matrix A− L1C could be assigned to stability region
S(−5, 2) [29]. Solving (8) and (27) with λ = 10−8 using the Matlab/LMI toolbox yielded

L1 =



4.5471 0 0 1.0000 0 0
0 4.5471 0 0 1.0000 0
0 0 4.5471 0 0 1.0000
0 0 0 4.5470 0.0030 0
0 0 0 −0.0030 4.5471 0
0 0 0 0 0 4.5471



L2 =

 0 0 0 456.2710 0 0
0 0 0 0 456.2530 0
0 0 0 0 0 456.2642


Simulation results on ILO-based thruster fault reconstruction are shown in Figure 3. It

was observed that the proposed ILO not only accurately reconstructed the abrupt constant
fault in the x-axis thruster, but also had an accurate reconstruction of time-varying faults in
the z-axis thruster. In addition, it could be noticed that the reconstruction signal from the
proposed ILO converged to the zero region on the y-axis. The estimation errors of relative
position and relative velocity are illustrated in Figures 4 and 5. It was clearly demonstrated
that the errors could still converge quickly to zero in different fault scenarios. Therefore, the
designed ILO could achieve accurate estimations of relative position and relative velocity
of the satellite formation flying system.

In order to illustrate the superiority of the proposed robust thruster fault reconstruc-
tion approach, a comparison between the proposed ILO and the existing ILO proposed
in [25] is provided in the detail. It is worth noting that observer gain matrices and simula-
tion parameters between them were the same. Simulation results on fault reconstruction
between them in the x-axis thruster are provided in Figure 6. From these, it could be
observed that, compared with the ILO proposed in [25], the new ILO could achieve more
accurate fault-reconstructing results in the presence of space perturbations, mainly because
the designed ILO had robustness against space perturbations. Therefore, the proposed ILO
could achieve accurate fault reconstruction and state estimation simultaneously.
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5.2. LOF2TC-Based Formation Configuration Maintenance

Choosing parameters l = 1, µ1 = 1× 10−4, and β1 = 1 yielded G2 = 0.9999 and
G4 = −0.9999. G1 = 0.999 and G3 = diag{0.999, 0.999, 0.999} were obtained by choos-
ing γ2 = 0.0009 and γ3 = 0.0009. In this subsection, both the simulation step and the
learning interval τ were taken as 0.001 s, and the initial values of desired state and ac-
tual tracking state were chosen to be q0(0) = [−15, −505, 20, −0 .37875, 0 .045, 0]T and
q(0) = [0, 0, 0, 0, 0, 0]T . Solving (34) and (35) yields

P1 =



0.0007 0 0 0.0063 0.0002 0
0 0.0007 0 −0.0002 0.0063 0
0 0 0.0007 0 0 0.0063

0.0063 −0.0002 0 0.1127 0 0
0.0002 0.0063 0 0 0.1126 0

0 0 0.0063 0 0 0.1126



K =

 0.0063 −0.0002 0 0.1127 0 0
0.0002 0.0063 0 0 0.1126 0

0 0 0.0063 0 0 0.1126


To illustrate the effectiveness and superiority of the LOF2TC-based approach, a simu-

lation comparison between the proposed LOF2TC-based approach and the conventional
output–feedback FTC (COF2TC) approach proposed in [30] is provided in detail. Further
simulation results are provided in Figures 7–10. Figures 7 and 8 demonstrate the curves of
relative position tracking error and relative velocity tracking error for satellite formation
maintenance control using the proposed LOF2TC approach and the COF2TC approach.
From Figure 7, it was also seen that the convergence curve of relative position tracking
error deviated from the zero region at 1500 s in the x-axis, and had a fluctuation with small
amplitude after 2000 s in the z-axis using the COF2TC approach, while the relative position
tracking errors converged to the zero region with higher accuracy under the LOF2TC ap-
proach. Figure 9 illustrates the curves of three-dimensional space formation configuration
maintenance with space perturbations and thruster faults. From Figures 7–9, it could
be concluded that the LOF2TC approach could also have better formation maintenance
performance than the COF2TC approach.

The estimated signal of synthesized disturbance is described in Figure 10, where the
iterative learning algorithm could accurately estimate synthesized disturbance; this was
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the main reason the LOF2TC approach had a better formation maintenance performance
than the COF2TC approach. Therefore, based on the designed ILO, the developed LOF2TC
approach could achieve spacecraft formation maintenance with high accuracy under the
space perturbations and thruster faults.
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6. Conclusions

This paper investigated the issues of iterative learning algorithm-based robust thruster
fault reconstruction and reconfigurable fault-tolerant control for spacecraft formation flying
systems, subject to space perturbations. A novel ILO was developed for robust thruster
fault reconstruction. A systematic computation approach of partial ILO gain matrices was
provided using LMI optimization techniques. Based on fault-reconstruction signals, an
LOF2TC approach was proposed for closed-loop spacecraft formation flying systems such
that accurate spacecraft formation configuration maintenance was fulfilled. Finally, through
a series of numerical simulations, the effectiveness and superiority of the proposed fault
reconstruction and fault-tolerant formation control approaches were verified.

We would like to point out that the research on the proposed method in this paper was
based on the linear dynamic model for two spacecrafts. There inevitably existed modeling
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error when considering the chief spacecraft with the elliptical orbit and long-distance
formation mission. Therefore, it is an interesting issue and an extension of the proposed
approaches to a more practical nonlinear spacecraft formation flying system, which will be
investigated in the near future. In addition, an extension of the proposed approaches to
multi-spacecraft formation flying systems is also a meaningful research topic.
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