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Abstract: There are lots of situations that cannot be described by traditional networks but can be
described perfectly by the hypernetwork in the real world. Different from the traditional network,
the hypernetwork structure is more complex and poses a great challenge to existing network rep-
resentation learning methods. Therefore, in order to overcome the challenge of the hypernetwork
structure faced by network representation learning, this paper proposes a hypernetwork representa-
tion learning method with the set constraint abbreviated as HRSC, which incorporates the hyperedge
set associated with the nodes into the process of hypernetwork representation learning to obtain node
representation vectors including the hypernetwork topology structure and hyperedge information.
Our proposed method is extensively evaluated by the machine learning tasks on four hypernetwork
datasets. Experimental results demonstrate that HRSC outperforms other best baseline methods by
about 1% on the MovieLens and wordnet datasets in terms of node classification, and outperforms
the other best baseline methods, respectively, on average by about 29.03%, 1.94%, 26.27% and 6.24%
on the GPS, MovieLens, drug, and wordnet datasets in terms of link prediction.

Keywords: representation learning; hypernetwork structure; hyperedge information; set constraint

1. Introduction

Networks are ubiquitous in our daily life, and many real-life applications focus on
mining valuable information from networks. A basic issue of data mining is how to
learn ideal node representation vectors. To cope with this issue, network representation
learning has been proposed to learn a low-dimensional representation vector for each
node in the network, which can be applied to lots of machine learning tasks such as node
classification [1], link prediction [2], and community detection [3].

Most of the related works learn node representation vectors only from the network
topology structure, such as Deepwalk [4], node2vec [5], LINE [6], SDNE [7], and HARP [8].
The basic assumption of these topology-based representation learning methods is that the
nodes with similar topological contexts should be tightly distributed in the low-dimensional
vector representation space. However, in many real scenarios, the vectors learned only
from the network topology structure are not desirable vectors. For example, in the social
network, if two users share some common tags or topics, they are likely to be similar but
topologically far apart. Thus, topology-based network representation learning methods
cannot effectively capture their similarity. In such a case, other types of heterogeneous
information should be incorporated to learn node representation vectors of better quality.
Therefore, the researchers propose some representation learning methods that utilize both
the network topology and heterogeneous information to learn node representation vectors,
such as CANE [9], CNRL [10], and PPNE [11].

Nevertheless, most existing network representation learning methods are designed for
traditional networks with pairwise relationships, wherein each edge only links one pair of
nodes. However, the relationships among the data objects in the real world are much more
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complex and often not necessarily pairwise. For example, it forms a high-order relation
<James, movie, war> that James watches a war movie. The network that captures the
high-order relationship is often referred to as the hypernetwork. In view of the above facts,
the researchers extend the spectral clustering technique [12] to hypergraphs [13] to propose
a series of methods [14–16]. However, these methods mainly aim at homogeneous hyper-
networks, which construct the hyperedges through potential similarities such as common
tags. As for the heterogeneous hypernetwork, tensor decomposition [17,18] can be directly
applied to learn node representation vectors, but the time complexity of tensor decompo-
sition is often too high to effectively scale to large-scale hypernetworks. HGNN [19] is a
hypergraph neural network model for data representation learning. However, the datasets
to evaluate this model is not real hypernetwork datasets, but traditional network datasets.
HPHG [20] proposes a deep model named as hyper-gram to learn low-dimensional repre-
sentation vectors, but the hyperedge is not sufficiently considered in this model so that the
hypernetwork topology structure cannot be well preserved. DHNE [21] provides a solution
for modeling hyperedges directly without hyperedge decomposition. However, due to
the neural network structure used in this method, this method is limited to heterogeneous
hyperedges of fixed type and fixed size, and the relationship between multiple types of
objects of unfixed size cannot be considered.

In view of the above facts, this paper proposes a universal hypernetwork representa-
tion learning framework, which can effectively encode both the hypernetwork topology
structure and hyperedge information (which is handled by solving the following challenge).
It is not easy how to combine the hypernetwork topology structure and the hyperedges
well into a unified representation learning process under a universal framework. Since
there are complex interactions between the hypernetwork topology structure and the hyper-
edges, it is difficult to incorporate the hyperedges into the existing topology-based network
representation learning methods.

To deal with the above challenge, this paper proposes a universal hypernetwork rep-
resentation learning method with the set constraint HRSC to effectively incorporate the
hyperedges into the process of hypernetwork representation learning, which is formulated
as a joint optimization problem solved by the stochastic gradient ascent (SGA) algorithm.
To be more specific, a negative sampling method is utilized to capture the hypernetwork
topology structure, which aims to exploit the correlations between the nodes by maximiz-
ing the prediction probabilities of the center nodes given their contextual nodes in the
random walk node sequences. Besides, the negative sampling method is still utilized to
capture semantic correlations between the center nodes and their associated hyperedges
by maximizing the prediction probabilities of the center nodes given the hyperedge set
associated with the center nodes.

The contribution of this paper mainly includes the following three aspects:

• The hypernetwork is transformed into a traditional network abstracted as a two-
section graph approximating the hypernetwork topology structure. Then, on the basis
of this traditional network, a hypernetwork representation learning method HRSC is
proposed to learn node representation vectors by comprehensively utilizing both the
hypernetwork topology structure and the hyperedges.

• HRSC incorporates the set of the hyperedges associated with the nodes into the
process of hypernetwork representation learning, regarding the learning process of
node representation vectors as a joint optimization problem.

• Efficient and scalable learning algorithm for HRSC has been developed. Our learning
algorithm is able to handle large-scale hypernetworks efficiently.

The rest of this paper is organized as follows. In Section 2, we review related works.
Section 3 formally defines our studied problem. Section 4 introduces the preliminaries.
In Section 5, we introduce the hypernetwork representation learning method with the set
constraint in detail. The experimental results are given in Section 6. Finally, we conclude
this paper in Section 7.
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2. Related Works

Network representation learning aims to learn a low-dimensional vector for each node
in the network, preserving the structure and inherent characteristics of the network. More
and more researchers have focused on network representation learning in recent years.
For example, Deepwalk [4] introduces Skip-Gram [22], a widely-used distributed word
representation method, into the study of the network to learn node representation vectors.
node2vec [5] maximally preserves the network neighborhoods of the nodes through a
biased random walk strategy, and maps the network nodes to a low-dimensional feature
representation space. LINE [6], which can be easily extended to a network of millions of
nodes and billions of edges, carefully designs an objective function that preserves both
first-order and second-order proximities. SDNE [7] captures highly nonlinear network
structures and utilizes first-order and second-order proximities to characterize local and
global network structures. HARP [8] is proposed to learn low-dimensional representations
of a graph’s nodes to preserve high-order structural features by compressing the input
graph prior to graph embedding. However, the above-mentioned network representation
learning methods only utilize the network structure to learn the node representation vectors,
and do not consider heterogeneous information associated with the nodes, such as text,
community or label information of the nodes. To cope with this issue, researchers have
incorporated heterogeneous information associated with the nodes into the topology-based
network representation learning methods. For example, CANE [9] learns the context-aware
representation vectors of the nodes with mutual attention mechanism, and models semantic
relations between the nodes. CNRL [10] utilizes the similarities between the text theme and
the network community to incorporate community information, a key network analysis
factor, into the process of network representation learning, which simultaneously detects
the community distribution of each node and learns the representation vectors of the
nodes and the communities. PPNE [11] effectively incorporates the network topology and
attribute information of the nodes into the process of network representation learning.

Nevertheless, the network representation learning methods listed here only consider
the pairwise relationships between the nodes in the traditional network. However, in the
real world, the complex interaction relationships among no less than two nodes need to be
considered sometimes, and the complex relationships can be modeled by the hypernetwork.
Unfortunately, the above network representation learning methods are not appropriate
for the hypernetwork, since these methods do not fully consider the hypernetwork topol-
ogy structure.

So far, only a few hypernetwork representation learning methods have been pro-
posed. For example, Zhou [14] extends the powerful method of spectral clustering that is
originally run on undirected graphs to the hypergraph, and further develops the hyper-
graph embedding algorithm on the basis of the spectral hypergraph clustering method.
Liu [15] extends the traditional spectral hashing to the hypergraph and accelerates the
similarity search of social images by mapping semantically related nodes to similar binary
codes within a short hamming distance. Wu [16] utilizes two hypergraph views to rep-
resent text-related and theme-related images and proposes a spectral multi-hypergraph
clustering algorithm to classify the images. HGNN [19] a hypergraph neural network
model for data representation learning. HPHG [20] proposes a deep model named as
hyper-gram to learn low-dimensional representation vectors. DHNE [21] is proposed to
learn low-dimensional representation vectors of the hypernetwork with non-decomposable
hyperedges. HHNE [23] is a depth model based on graph convolutional network, which
incorporates the features of the nodes into the process of network representation learning.
However, although all of the above hypernetwork representation learning methods have
good representation learning ability, there are various problems. In order to deal with these
problems, this paper proposes a universal hypernetwork representation learning method
with the set constraint to learn discriminative node representation vectors.

Table 1 shows the statistics of the pros and cons for different network representation
learning methods.
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Table 1. The statistics of the pros and cons.

Network Type Methods Pros Cons

traditional network

Deepwalk
to introduce Skip-Gram into
network representation
learning firstly

random walk without
constraints

LINE to preserve first-order and
second-order proximities

direct concatenation of
first-order vector and
second-order vector

SDNE to capture highly nonlinear
network structures

not applicable to some
networks

CANE

to learn context-aware
representation vectors of the
nodes with mutual attention
mechanism

no inter-relation
between
structure-based vector
and text-based vector

hypernetwork

HPHG

to preserve hypernetwork
topology structure by a
random walk based on
hyper-path

not to consider
hyperedges sufficiently

DHNE
a solution to model
hyperedges without
hyperedge decomposition

limited to
heterogeneous
hyperedges of fixed
type and fixed size

HRSC to consider hyperedges
sufficiently

to lose partial
hypernetwork structure
information

3. Problem Definition

This section formally defines our studied problem. The hypernetwork is usually
abstracted as the hypergraph H = (V, E) with the set of nodes belonging to T types
V = {vi}

|V|
i=1 = {Vt}T

t=1 and the set of hyperedges which can be associated with no less

than two nodes E = {ei = (v1, v2, . . . , vm)}|E|i=1 (m ≥ 2). If the number of nodes is two
for each hyperedge, the hypernetwork degenerates to a traditional network. If T ≥ 2,
the hypernetwork is defined as a heterogeneous hypernetwork. Here the problem of
hypernetwork representation learning with the set constraint is formally defined as follows.

Definition 1. Given a hypernetwork H = (V, E), the problem of hypernetwork representation
learning with the set constraint aims to learn a low-dimensional vector rn ∈ Rk for each node n in
the hypernetwork, where k is expected to be much smaller than |V| , making the learned node repre-
sentation vectors explicitly preserve both the hypernetwork topology structure and the hyperedges.

4. Preliminaries

Since the study on traditional graphs is relatively mature, it can be regarded as a
desirable way to study the hypergraph to deepen the understanding of the corresponding
hypergraph by the study on the traditional graph (if the hypergraph can be transformed
into the traditional graph). In the literature [13], it is proposed that the hypergraph can
be transformed into three types of traditional graphs, namely a line graph, two-section
graph, and incidence graph, where the line graph has only the nodes converted from
the hyperedges and no nodes are associated with the hyperedges (which indicates that
the relationship between the nodes associated with the hyperedges is lost, leading to
a large loss of the hypernetwork topology structure). The incidence graph introduces
the nodes converted from the hyperedges to weaken the strong correlation relationships
between the nodes associated with the hyperedges, which leads to a certain amount of
loss of hypernetwork topology structure. The two-section graph makes all of the nodes
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associated with each hyperedge joined into a complete graph, which leads to less loss of
hypernetwork topology structure than other two graphs. Therefore, a two-section graph
that approximates the hypernetwork topology structure has the characteristic of preserving
the hypergraph topology structure better than other transformation strategies. Hence, in
this paper, the hypergraph is transformed into a two-section graph, and then the traditional
network topology structure abstracted as two-section graph and the hyperedges in the
hypernetwork abstracted as the hypergraph are comprehensively utilized to carry out the
study of the hypernetwork representation learning. The detailed strategy for transforming
the hypergraph into a two-section graph is as follows.

Given a hypergraph H = (V, E), two-section graph S = (V′, E′) corresponding to the
hypergraph H is a traditional graph that meets the following conditions:

• V′ = V, that is, the node set of 2-section graph S is the same as the node set of the
hypergraph H.

• One edge is linked between any two different nodes if and only if they are simultane-
ously contained in at least one hyperedge (that is, all of the nodes in each hyperedge
are joined into a complete graph).

A hypergraph and two-section graph of its transformation are shown in Figure 1.

Figure 1. The hypergraph and two-section graph of its transformation. (a) Hypergraph and (b) two-
section graph.

5. Our Method

In this section, we introduce the details of hypernetwork representation learning
method with the set constraint. Firstly, Section 5.1 gives the introduction of topology-
derived objective function. Secondly, Section 5.2 introduces the set constraint objective
function. Thirdly, HRSC based on the joint optimization of the above two objective functions
is introduced in details in Section 5.3. Finally, Section 5.4 introduces the complexity analysis
of HRSC.

5.1. Topology-Derived Objective Function

Continuous Bag-of-Words [22], abbreviated as CBOW, is a popular distributed word
representation method whose computational efficiency is higher than that of Skip-Gram.
Hence, in order to improve the computational efficiency of node representation vectors,
following the idea of CBOW, with such an assumption that the nodes with similar topology
context tend to be similar, we aimed to maximize the prediction probabilities of the center
node given its contextual nodes, which are defined as the previous nodes and after nodes
of the center node with a fixed-size window in the node sequences generated by random
walk. We propose a novel negative sampling-based topology-derived objective function in
which the node representation vectors are regarded as the parameters. In the optimization
procedure, the representation vectors are updated and the finally learned vectors preserve
the hypernetwork topology structure.

A set of node sequences C is generated by the same random walk on the traditional
network abstracted as 2-section graph as Deepwalk. For each node, a node sequence of
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length t to start from this node is generated in the random walk iteration, which will repeat
τ times to generate enough sequences.

Under the condition of a center node n and its contextual nodes context(n), the node
n is regarded as the positive sample, other nodes are the negative samples, and NEG(n) is
the subset of negative samples of the center node n with a predefined size ds. For ∀ u ∈ V,
the labels of the node are defined as follows:

Ln(u) =
{

1, u ∈ {n}
0, u ∈ NEG(n)

(1)

p(u|context(n)) denotes the prediction probability of the node u under the condition
of the contextual nodes context(n). On the basis of the node sequences C, we try to
maximize the following objective function.

D1 = ∏
n∈C

∏
u∈{{n}∪NEG(n)}

p(u|context(n)) (2)

As for each node n, this paper designs the embedding vector and the parameter vector,
where the embedding vector vn is the representation of the node n when it is treated as the
contextual node, while the parameter vector θn is the representation of n when it is treated
as the center node. p(u|context(n)) in Formula (2) is defined as follows.

p(u|context(n)) =
{

σ(XT
n θu), Ln(u) = 1

1− σ(XT
n θu), Ln(u) = 0

(3)

where σ(XT
n θu) =

1
1+e−XT

n θu
is a sigmoid function, where Xn is the summing operation of

the representation vectors corresponding to context(n). Formula (3) can also be rewritten
as an integral expression.

p(u|context(n)) = [σ(XT
n θu)]

Ln(u) · [1− σ(XT
n θu)]

1−Ln(u)
(4)

Accordingly, Formula (2) can be rewritten as follows.

D1 = ∏
n∈C

∏
u∈{{n}∪NEG(n)}

{
[σ(XT

n θu)]
Ln(u) · [1− σ(XT

n θu)]
1−Ln(u)}

(5)

Formally, maximizing D1 means maximizing the prediction probabilities of positive
samples and minimizing the prediction probabilities of negative samples simultaneously, by
which the hypernetwork topology structure is encoded into the node representation vectors.

5.2. Set Constraint Objective Function

The model based on the above topology-derived objective function only takes the
traditional network topology structure, abstracted as on a two-section graph approximat-
ing the hypernetwork topology structure as input to learn node representation vectors,
but ignores the relations among the nodes (namely hyperedges). Hence, it cannot learn
representation vectors of the nodes associated with the hyperedges well. In order to learn
node representation vectors better, the set of the hyperedges associated with the nodes is
incorporated into the process of hypernetwork representation learning.

Inspired by the above topology-derived objective function, this paper proposes a
novel negative sampling-based set constraint objective function, where Tn denotes the set
of the hyperedges associated with the center node n ∈ V, and also the set of the nodes
associated with the center node n ∈ V if the hyperedge is regarded as the node. The center
node n is regarded as the positive sample, and other nodes that are not associated with
the center node n ∈ V are regarded as the negative samples. For ∀ v ∈ Tn, NEG(v) is the
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subset of negative samples with a predefined size ds, and the labels of the node are defined
as follows:

δ(ϑ|v) =
{

1, ϑ ∈ {n}
0, ϑ ∈ NEG(v)

(6)

On the basis of the set constraint and the node sequences C, we aim to maximize the
following objective function to force the embedding vectors to satisfy the extracted constraints.

D2 = ∏
n∈C

∏
v∈Tn

p(n|v) = ∏
n∈C

∏
v∈Tn

∏
ϑ∈{{n}∪NEG(v)}

{
σ(eT

v θϑ)
δ(ϑ|v) · [1− σ(eT

v θϑ)]
1−δ(ϑ|v)}

= ∏
n∈C

∏
v∈Tn

{
σ(eT

v θn) · ∏
ϑ∈NEG(v)

[1− σ(eT
v θϑ)]

}
(7)

where ev is the parameter vector corresponding to v ∈ Tn.
By maximizing D2, the hyperedges is encoded into node representation vectors.

5.3. Joint Optimization Objective Function

A hypernetwork representation learning method with the set constraint HRSC, which
aims to jointly optimize the topology-derived objective function and set constraint objective
function, is proposed in this subsection. Figure 2 indicates HRSC framework.

Figure 2. HRSC framework, where vi is the center node, other nodes vi−s, vi−s+1, vi+s−1, vi+s, etc.
are contextual nodes of the center node vi, namely context(vi), where the vectors corresponding to
vi−s, vi−s+1, vi, vi+s−1, vi+s are denoted as the first red dot from the left, the second red dot from the
left, the red dot in the middle, the second red dot from the right, the first red dot from the right, SUM
denoted as all red is the summation of all of the vectors corresponding to context(vi), and Tvi is the
set of hyperedges associated with the center node vi, and also the set of the nodes associated with the
center node vi if the hyperedge is regarded as the node.

Compared to other hypernetwork representation learning methods, HRSC is improved
at two levels: (I) at the hypernetwork topology structure level, HRSC exploits the corre-
lations between the nodes by maximizing the prediction probabilities of the center nodes
given their contextual nodes in random walk node sequences; (II) at the node-hyperedge
level, HRSC captures semantic correlations between the center nodes and their associated
hyperedges by maximizing the prediction probabilities of the center nodes given the set
of the hyperedges associated with the center nodes. By means of the above improve-
ments, HRSC effectively incorporates the hyperedges into the process of hypernetwork
representation learning to get node representation vectors of better quality.

As shown in Figure 2, the hypernetwork topology representation and hyperedge
representation learned by the model based on the topology-derived objective function
and the model based on the set constraint objective function respectively share the same
representation, which can comprehensively utilize the contexts and hyperedge information
of each node to get the vectors of better quality.

For ease of calculation, take the logarithm of D1 and D2, we aim to maximize the
following joint objective function of HRSC.
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L = ∑
n∈C


∑

u∈{{n}∪NEG(n)}

{
Ln(u)· log

[
σ
(

XT
n θu

)]
+ [1− Ln(u)]· log

[
1− σ

(
XT

n θu

)]}
+

β· ∑
v∈Tn

∑
ϑ∈{{n}∪NEG(v)}

{
δ(ϑ|v)· log

[
σ
(

eT
v θϑ

)]
+ [1− δ(ϑ|v)]· log

[
1− σ

(
eT

v θϑ

)]}


= ∑
n∈C


∑

u∈{{n}∪NEG(n)}

{
Ln(u)· log

[
σ
(

XT
n θu

)]
+ [1− Ln(u)]· log

[
1− σ

(
XT

n θu

)]}
+

∑
v∈Tn

∑
ϑ∈{{n}∪NEG(v)}

β·
{

δ(ϑ|v)· log
[
σ
(

eT
v θϑ

)]
+ [1− δ(ϑ|v)]· log

[
1− σ

(
eT

v θϑ

)]}


(8)

where β is the harmonic factors to balance the model based on the topology-derived
objective function and the model based on the set constraint objective function.

For ease of derivation, L(n, u, v, ϑ) is defined as follows.

L(n, u, v, ϑ) =
{

Ln(u) · log[σ(XT
n θu)] + [1− Ln(u)] · log[1− σ(XT

n θu)]
}
+

β ·
{

δ(ϑ|v) · log[σ(eT
v θϑ)] + [1− δ(ϑ|v)] · log[1− σ(eT

v θϑ)]
} (9)

And then the joint objective function L is optimized by means of the stochastic gradient
ascent algorithm. The key is to give four kinds of gradients of L.

Firstly, the gradient on θu of L(n, u, v, ϑ) is calculated as follows.

∂L(n,u,v,ϑ)
∂θu

= Ln(u) · [1− σ(XT
n θu)] · Xn − [1− Ln(u)] · σ(XT

n θu) · Xn

=
{

Ln(u) · [1− σ(XT
n θu)]− [1− Ln(u)] · σ(XT

n θu)
}
· Xn

= [Ln(u)− σ(XT
n θu)] · Xn

(10)

Accordingly, the updating formula of θu is expressed as follows.

θu = θu + α · [Ln(u)− σ(XT
n θu)] · Xn (11)

where α is the learning rate of HRSC.
Secondly, the gradient on Xn of L(n, u, v, ϑ) is calculated. The symmetry property

between θu and Xn is utilized to get the gradient on Xn.

∂L(n, u, v, ϑ)

∂Xn
= [Ln(u)− σ(XT

n θu)] · θu (12)

Accordingly, the updating formula of vv′ is expressed as follows, where v′ ∈ context(n).

vv′ = vv′ + α · ∑
u∈{{n}∪NEG(n)}

∂L(n,u,v,ϑ)
∂Xn

= vv′ + α · ∑
u∈{{n}∪NEG(n)}

[Ln(u)− σ(XT
n θu)] · θu

(13)

Thirdly, the gradient on θϑ of L(n, u, v, ϑ) is calculated as follows.

∂L(n,u,v,ϑ)
∂θϑ

= β ·
{

∂
∂θϑ

{
δ(ϑ|v) · log[σ(eT

v θϑ)] + [1− δ(ϑ|v)] · log[1− σ(eT
v θϑ)]

}}
= β ·

{
δ(ϑ|v) · [1− σ(eT

v θϑ)] · ev − [1− δ(ϑ|v)] · σ(eT
v θϑ) · ev

}
= β ·

{{
δ(ϑ|v) · [1− σ(eT

v θϑ)]− [1− δ(ϑ|v)] · σ(eT
v θϑ)

}
· ev
}

= β · [δ(ϑ|v)− σ(eT
v θϑ)] · ev

(14)
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Accordingly, the updating formula of θϑ is expressed as follows.

θϑ = θϑ + α · β · [δ(ϑ|v)− σ(eT
v θϑ)] · ev (15)

Fourthly, the gradient on ev of L(n, u, v, ϑ) is calculated. The symmetry property
between θϑ and ev is utilized to get the gradient on ev.

∂L(n, u, v, ϑ)

∂ev
= β · [δ(ϑ|v)− σ(eT

v θϑ)] · θϑ (16)

Accordingly, the updating formula of ev is expressed as follows, where v ∈ Tn.

ev = ev + α · β · [δ(ϑ|v)− σ(eT
v θϑ)] · θϑ (17)

The stochastic gradient ascent (SGA) algorithm is used for optimization. In our
implementation, the effect of β is approximated through instance sampling (node—node
and node—hyperedge) in each training epoch. More details are shown in Algorithm 1.

Algorithm 1: HRSC

Input:
Hypernetwork H = (V, E)
Embedding size d

Output:
Embedding matrix X ∈ R|V|×d

for node n in V do
initialize embedding vector vn ∈ R1×d

initialize parameter vector θn ∈ R1×d

for node v in Tn do
initialize parameter vector ev ∈ R1×d

end for
end for
node sequences C = RandomWalk()
for (n, context(n)) in C do

update parameter vectors following Formula (11)
update embedding vectors following Formula (13)
update parameter vectors following Formula (15)
for node v in Tn do

update parameter vectors following Formula (17)
end for

end for
for i = 0; i < |V|; i ++ do

Xi = vvi

end for
return X

5.4. Complexity Analysis

The time complexity of Deepwalk is O(|C| · 2b · log |V|) , where b is the window size of
the contextual nodes. In Formula (8), the time complexity of HRSC based on joint objective
function is further reduced to O(|C| · (ds + 1) · (β ·M + 1)) , where the time complexities
of the models based on the topology-derived objective function and the set constraint
objective function are O(|C| · (ds + 1)) and O(|C| · (ds + 1) ·M) , respectively, where ds is
the predefined size of the negative sample set and also a constant number irrelevant to
the size of the network, and M = max

{∣∣∣Tv1 |, |T v2
|, . . . , |Tv|V|

∣∣∣} is the maximum number
of the set of the hyperedges associated with the node vi. Compared to Deepwalk, the
computational efficiency of HRSC is improved, since the computational efficiency of the
models in HRSC derived from CBOW is higher than that of Skip-Gram in Deepwalk.
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Meanwhile, the time complexity of the negative sampling adopted in HRSC is lower than
that of the hierarchical SoftMax adopted in Deepwalk.

6. Experiments
6.1. Dataset

Four hypernetwork datasets, including a GPS network, an online social network, a
drug network and a semantic network are utilized to evaluate the effectiveness of our
proposed method. Detailed dataset statistics is shown in Table 2.

Table 2. Dataset statistics.

Dataset Node Type #(V) #(E)

GPS user location activity 146 70 5 1436
MovieLens user movie tag 457 1688 1530 5965

drug user drug reaction 4 132 221 1195
wordnet head relation tail 1754 7 1549 2174

Four real-world hypernetwork datasets are as follows:

• GPS [24] describes a situation in which a user participates in an activity in a location.
The relationships <user, location, activity> are regarded as hyperedges to construct a
hypernetwork.

• MovieLens [25] describes personal tag activities from MovieLens. The relationships
<user, movie, tag> are regarded as hyperedges to construct a hypernetwork, where
each movie has at least one genre.

• Drug (http://www.fda.gov/Drugs/. 27 January 2020) is from FDA adverse event
reporting system (FAERS), including information on adverse events and medication
error reports submitted to the FDA. The relationships <user, drug, reaction> are
regarded as hyperedges to construct a hypernetwork, that is, the users who take some
drugs have certain reactions to lead to adverse events.

• wordnet [26] is composed of a set of triplets <head, relation, tail> extracted from
WordNet3.0. The relationships <head, relation, tail> are regarded as hyperedges to
construct a hypernetwork.

6.2. Baseline Methods

Deepwalk. Deepwalk is a popular topology-derived network representation learn-
ing method, and utilizes local information obtained from truncated random walk node
sequences to learn node representation vectors.

node2vec. node2vec is an algorithmic framework for learning node representation
vectors, which designs a biased random walk strategy to maximally preserve the network
neighborhoods of the nodes.

LINE. LINE is proposed to learn node representation vectors for large scale networks,
which designs an objective function that preserves both first-order proximity and second-
order proximity.

GraRep. GraRep [27] captures global structure properties of a graph using k-step loss
functions defined on the graph that integrates rich local structure information.

HOPE. HOPE [28] preserves higher-order proximity of a graph and captures the
asymmetric transitivity.

SDNE. SDNE captures highly nonlinear network structure and utilizes first-order
proximity and second-order proximity to characterize local and global network structures.

HRSC. HRSC incorporates the set of the hyperedges associated with the nodes into
the process of hypernetwork representation learning, regards the learning process of node
representation vectors as a joint optimization problem, and obtains node representation
vectors including the hypernetwork topology structure and the hyperedges by means of
the stochastic gradient ascent (SGA) algorithm to solve this joint optimization problem.

http://www.fda.gov/Drugs/
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6.3. Experiment Setup

The experiments are conducted on four hypernetwork datasets. The node classification
and link prediction tasks are adopted to verify the feasibility of our proposed method. As
for all four datasets, the vector dimension is set as 100, the number of random walks to start
at each node as 10, and the length of random walks to start at each node as 40. A portion of
datasets are randomly selected as training set, and the rest is testing set.

6.4. Node Classification

The multi-label classification tasks are carried out on MovieLens and wordnet datasets,
since only the two datasets have label information. In addition, we remove the nodes that
did not have labels in the two datasets. The node representation vectors are taken as input
to train SVM [29] classifier to calculate node classification accuracies.

Tables 3 and 4 show node classification accuracies on the MovieLens and wordnet
datasets. From the two tables, we have obtained the following observations:

• On the MovieLens and wordnet datasets, the node classification performance of
HRSC is superior to that of other baseline methods. For example, for these two
datasets, HRSC outperforms other best baseline method (i.e., Deepwalk) by about
1%. Meanwhile, the node classification performance of HRSC exceeds the remaining
baseline methods to a certain extent. Experimental results demonstrate that HRSC
is effective and robust, since HRSC incorporates the hyperedges into the process of
hypernetwork representation learning to learn node representation vectors of better
quality than Deepwalk and other baseline methods. Meanwhile, from the above
results, we can find that the node classification performance of HRSC exceeds other
baseline methods very little, since the categorical attributes on the MovieLens and
wordnet datasets are not obvious.

• The node classification performance of GraRep is second only to that of HRSC and
DeepWalk, and its node classification performance is nearly the same as that of Deep-
Walk. The reason for this is that GraRep is an algorithm framework that integrates
the global structure information of a graph into the representation learning process,
and considers the hyperedges to a certain extent in the process of network representa-
tion learning.

• Although SDNE preserves local and global structure information in the process of
network representation learning, it does not perform well in the hypernetwork dataset,
which indicates that SDNE is not universal.

Table 3. Node classification accuracies on MovieLens (%).

Methods
Training Ratios

10% 20% 30% 40% 50% 60% 70% 80% 90%

Deepwalk 48.01 50.35 51.41 52.60 52.59 53.47 53.57 54.23 54.09
node2vec 46.93 49.28 50.77 51.51 52.62 52.58 53.04 53.44 52.71

LINE 43.93 45.46 46.52 47.29 47.70 48.16 48.02 49.09 48.34
GraRep 47.75 50.11 51.16 52.01 52.10 53.15 53.34 53.43 53.24
HOPE 46.33 48.57 49.95 50.69 51.06 51.04 51.29 52.53 51.79
SDNE 41.74 41.79 42.34 42.73 43.36 43.27 43.89 43.43 42.81
HRSC 48.60 50.81 52.02 53.19 53.73 54.12 54.83 54.95 56.14

In summary, we find that HRSC obtains high-quality node representation vectors by
comprehensively considering the hypernetwork topology structure and the hyperedges.

6.5. Link Prediction

Link prediction is widely used in real life, especially in recommendation systems. In
this subsection, we carry out link prediction tasks on all four datasets. As for the link
prediction, the evaluation measure AUC [30] is adopted. As shown in Tables 5–8, the edges
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with different ratios are randomly removed from the four datasets respectively to evaluate
the AUC.

Table 4. Node classification accuracies on wordnet (%).

Methods
Training Ratios

10% 20% 30% 40% 50% 60% 70% 80% 90%

Deepwalk 29.91 33.44 34.53 35.05 35.70 36.80 37.93 36.71 39.00
node2vec 29.27 32.23 33.71 34.52 36.17 36.05 37.53 37.66 37.30

LINE 22.77 24.11 25.11 24.94 25.23 25.59 25.87 26.60 25.44
GraRep 32.59 34.74 34.63 35.21 35.38 36.05 35.10 36.63 37.79
HOPE 30.53 33.61 35.02 35.97 34.90 35.11 36.21 36.20 34.84
SDNE 21.96 21.57 22.05 22.37 23.26 22.59 23.63 23.60 25.31
HRSC 31.54 33.94 34.98 36.84 37.35 38.02 38.78 40.22 41.10

Table 5. AUC values on GPS.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90%

Deepwalk 0.4308 0.4278 0.4205 0.4583 0.4418 0.4914 0.4831
node2vec 0.3660 0.3614 0.3808 0.3939 0.3834 0.3958 0.3649

LINE 0.4575 0.4829 0.4761 0.4562 0.4429 0.4663 0.4574
GraRep 0.3873 0.3805 0.3882 0.3765 0.3820 0.3857 0.3874
HOPE 0.3805 0.3676 0.3416 0.2971 0.2794 0.2518 0.2334
SDNE 0.3262 0.4371 0.4319 0.3157 0.4379 0.3527 0.4540
HRSC 0.7516 0.7562 0.7488 0.7449 0.7236 0.7325 0.7279

Table 6. AUC values on MovieLens.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90%

Deepwalk 0.7845 0.8129 0.8301 0.8440 0.8729 0.8800 0.9025
node2vec 0.7078 0.7390 0.7418 0.7696 0.7939 0.8036 0.8296

LINE 0.8282 0.8242 0.8253 0.8320 0.8365 0.8172 0.8231
GraRep 0.7290 0.7833 0.7907 0.8121 0.8277 0.8481 0.8544
HOPE 0.6895 0.7333 0.7203 0.7522 0.7787 0.7986 0.8049
SDNE 0.4004 0.3511 0.3494 0.3406 0.3433 0.3598 0.4171
HRSC 0.8714 0.8706 0.8681 0.8644 0.8706 0.8651 0.8528

Table 7. AUC values on drug.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90%

Deepwalk 0.4852 0.4954 0.4934 0.4580 0.4901 0.4638 0.4713
node2vec 0.4500 0.4525 0.4490 0.4525 0.4329 0.4712 0.4345

LINE 0.4750 0.4672 0.4636 0.4625 0.4741 0.4523 0.4768
GraRep 0.5025 0.5089 0.4867 0.5051 0.5557 0.5835 0.5362
HOPE 0.5055 0.5269 0.4933 0.4690 0.4941 0.4668 0.4271
SDNE 0.2948 0.4310 0.4454 0.5050 0.5196 0.3536 0.3836
HRSC 0.7871 0.7774 0.7822 0.7920 0.7747 0.7983 0.8056

From Tables 5–8, we have following observations:

• On the GPS, drug and wordnet datasets, the link prediction performance of HRSC
is superior to that of other baseline methods. On the MovieLens dataset, the link
prediction performance of HRSC is better than that of most of other baseline methods,
specially, HRSC performs better than DeepWalk and GraRep at the smaller training
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ratios, and worse than DeepWalk and GraRep at larger training ratios, which indicates
the effectiveness of HRSC, and verifies that HRSC has the ability to accurately estimate
the relations among the nodes.

• The link prediction performance of DeepWalk is second only to that of HRSC, which
indicates that node representation vectors obtained by directly training DeepWalk
on the hypernetwork datasets contains the hyperedge information to a certain extent.
It is worth noting that SDNE is the worst performing baseline method overall and
has unstable performance at different training ratios, which verifies that SDNE is not
universal. In contrast, HRSC performs consistently at different training ratios, which
demonstrates its feasibility and robustness.

• By introducing the hyperedges, the node representation vectors learned by HRSC are
better than that of other baseline methods without considering the hyperedges, which
verifies our assumption that it is beneficial to link prediction task to incorporate the
hyperedges into the process of hypernetwork representation learning.

Table 8. AUC values on wordnet.

Methods
Training Ratios

60% 65% 70% 75% 80% 85% 90%

Deepwalk 0.7780 0.8181 0.8305 0.8341 0.8708 0.8765 0.8880
node2vec 0.7807 0.8242 0.8309 0.8285 0.8519 0.8503 0.8595

LINE 0.8063 0.8184 0.8056 0.8091 0.8000 0.7938 0.7926
GraRep 0.7685 0.7742 0.7888 0.7806 0.7958 0.7972 0.7756
HOPE 0.6902 0.7314 0.7417 0.7403 0.7649 0.7763 0.7700
SDNE 0.3712 0.5348 0.4784 0.4824 0.4254 0.6159 0.4850
HRSC 0.8953 0.9079 0.9086 0.9036 0.9093 0.9045 0.9034

In short, the above observations show that HRSC can learn high-quality node rep-
resentation vectors, which help to accurately estimate the relations among the nodes. In
addition, the experimental results of the link prediction task demonstrate the effectiveness
and robustness of HRSC.

6.6. Parameter Sensitivity

HRSC has a harmonic factor β to balance the model based on the topology-derived
objective function and the model based on the set constraint objective function. We fix the
training ratio to 50%, and test node classification accuracies of HRSC with different β. We
let β range from 0.1 to 0.9 on the MovieLens and wordnet datasets. Figure 3 shows the
comparisons of node classification accuracies of HRSC with different β.

Figure 3. Parameter sensitivity on the two datasets. (a) Sensitivity on MovieLens; (b) sensitivity
on wordnet.
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From Figure 3, the variation trend of node classification accuracies is different with the
increase of the parameter β on the two datasets, but all of the variation ranges are within
2%, which indicates that the overall performance of HRSC is not sensitive to the parameter
β, demonstrating the robustness of HRSC.

For the MovieLens and wordnet datasets, the best evaluated results in terms of node
classifications are achieved at β = 0.5. Although the hyperedges are fully incorporated into
the process of hypernetwork representation learning to learn node representation vectors,
partial hypernetwork topology structure information is still lost, which indicates that the
quality of node representation vectors is optimal.

7. Conclusions

This paper proposes a hypernetwork representation learning method with the set
constraint, which effectively incorporates the hyperedges into the process of hypernetwork
representation learning and regards the learning process of node representation vectors as
a joint optimization problem. By using an effective stochastic gradient ascend algorithm
to solve the joint optimization problem, the node representation vectors including the
hypernetwork topology structure and the hyperedges can be obtained. We conducted
extensive experiments with four hypernetwork datasets. The experimental results demon-
strate that HRSC outperforms other best baseline methods by about 1% on the MovieLens
and wordnet datasets in terms of node classification, and outperforms other best baseline
methods respectively on average by about 29.03%, 1.94%, 26.27%, and 6.24% on the GPS,
MovieLens, drug and wordnet datasets in terms of link prediction.

Author Contributions: Conceptualization, Y.Z. and H.Z.; methodology, Y.Z. and H.Z.; software, Y.Z.;
validation, Y.Z.; formal analysis, Y.Z.; investigation, Y.Z. and H.Z.; resources, Y.Z.; data curation, Y.Z.;
writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z. and H.Z.; visualization,
Y.Z.; supervision, Y.Z. and H.Z.; project administration, Y.Z. and H.Z.; funding acquisition, Y.Z and
H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant num-
ber 62166032 and grant number 62101299.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, C.T.; Lin, H.Y. Structural hierarchy-enhanced network representation learning. Appl. Sci. 2020, 10, 7214. [CrossRef]
2. Hou, X.J.; Liu, Y.S.; Li, Z.F. Convolutional adaptive network for link prediction in knowledge bases. Appl. Sci. 2021, 11, 4270.

[CrossRef]
3. Lyu, D.S.; Wang, B.; Zhang, W.Z. Large-scale complex network community detection combined with local search and genetic

algorithm. Appl. Sci. 2020, 10, 3126. [CrossRef]
4. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

Internatonal Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
5. Grover, A.; Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.
6. Tang, J.; Qu, M.; Wang, M.Z.; Zhang, M.; Yan, J.; Mei, Q.Z. Line: Large-scale information network embedding. In Proceedings of

the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077.
7. Wang, D.X.; Cui, P.; Zhu, W.W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234.
8. Chen, H.C.; Perozzi, B.; Hu, Y.F.; Skiena, S. HARP: Hierarchical representation learning for networks. In Proceedings of the 32nd

AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 2127–2134.
9. Tu, C.C.; Liu, H.; Liu, Z.Y.; Sun, M.S. CANE: Context-aware network embedding for relation modeling. In Proceedings of

the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, MD, Canada, 30 July–4 August 2017;
pp. 1722–1731.

http://doi.org/10.3390/app10207214
http://doi.org/10.3390/app11094270
http://doi.org/10.3390/app10093126


Appl. Sci. 2022, 12, 2650 15 of 15

10. Tu, C.C.; Zeng, X.K.; Wang, H.; Zhang, Z.Y.; Liu, Z.Y.; Sun, M.S.; Zhang, B.; Lin, L.Y. A unified framework for community
detection and network representation learning. IEEE TKDE 2019, 31, 1051–1065. [CrossRef]

11. Li, C.Z.; Wang, S.Z.; Yang, D.J.; Li, Z.J.; Yang, Y.; Zhang, X.M.; Zhou, J.S. PPNE: Property preserving network embedding. In
Proceedings of the 22nd International Conference on Database Systems for Advanced Applications, Suzhou, China, 27–30 March
2017; pp. 163–179.

12. Shen, C.X.; Qian, L.P.; Yu, N.N. Adaptive Facial imagery clustering via spectral clustering and reinforcement learning. Appl. Sci.
2021, 11, 8051. [CrossRef]

13. Bretto, A. Hypergraph Theory: An Introduction; Springer Press: Berlin, Germany, 2013; pp. 24–27.
14. Zhou, D.Y.; Huang, J.Y.; Schölkopf, B. Learning with hypergraphs: Clustering, classification and embedding. In Proceedings

of the 19th International Conference on Neural Information Processing Systems, Vancouver, MD, Canada, 4–7 December 2006;
pp. 1601–1608.

15. Liu, Y.; Shao, J.; Xiao, J.; Wu, F. Hypergraph spectral hashing for image retrieval with heterogeneous social contexts. Neurocomput-
ing 2013, 119, 49–58. [CrossRef]

16. Wu, F.; Han, Y.H.; Zhuang, Y.T. Multiple hypergraph clustering of web images by mining word2image correlations. JCST 2010,
25, 750–760.

17. Liang, L.; Wen, H.B.; Liu, F.; Li, G. Feature extraction of impulse faults for vibration signals based on sparse non-negative tensor
factorization. Appl. Sci. 2019, 9, 3642. [CrossRef]

18. Li, L.; Bai, R.; Lu, J.F.; Zhang, S.Q.; Chang, C.C. A watermarking scheme for color image using quaternion discrete fourier
transform and tensor decomposition. Appl. Sci. 2021, 11, 5006. [CrossRef]

19. Feng, Y.F.; You, H.X.; Zhang, Z.Z.; Ji, R.R.; Gao, Y. Hypergraph neural networks. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, Hawaii, HI, USA, 27 January–1 February 2019; pp. 3558–3565.

20. Huang, J.; Liu, X.; Song, Y.Q. Hyper-path-based representation learning for hyper-networks. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 449–458.

21. Tu, K.; Cui, P.; Wang, X.; Wang, F.; Zhu, W.W. Structural deep embedding for hyper-networks. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 426–433.

22. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their composition-
ality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, CA, USA, 5–10
December 2013; pp. 3111–3119.

23. Baytas, I.M.; Xiao, C.; Wang, F.; Jain, A.K.; Zhou, J.Y. Heterogeneous hyper-network embedding. In Proceedings of the 18th IEEE
International Conference on Data Mining, Singapore, 17–20 November 2018; pp. 875–880.

24. Zheng, V.W.; Cao, B.; Zheng, Y.; Xie, X.; Yang, Q. Collaborative filtering meets mobile recommendation: A user-centered approach.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; pp. 236–241.

25. Harper, F.M.; Konstan, J.A. The movielens datasets: History and context. ACM Trans. Inter. Intell. Syst. 2015, 5, 19. [CrossRef]
26. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.

In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, CA, USA, 5–10
December 2013; pp. 2787–2795.

27. Cao, S.S.; Lu, W.; Xu, Q.K. Grarep: Learning graph representations with global structural information. In Proceedings of the
24th ACM International Conference on Information and Knowledge Management, Melbourne, Australia, 19–23 October 2015;
pp. 891–900.

28. Ou, M.D.; Cui, P.; Pei, J.; Zhang, Z.W.; Zhu, W.W. Asymmetric transitivity preserving graph embedding. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1105–1114.

29. Gu, Y.; Zhang, S.Y.; Qiu, L.M.; Wang, Z.L.; Zhang, L.C. A layered KNN-SVM approach to predict missing values of functional
requirements in product customization. Appl. Sci. 2021, 11, 2420. [CrossRef]

30. Venkatesan, N.J.; Dong, R.S.; Choon, S.N. Nodule detection with convolutional neural network using apache spark and GPU
frameworks. Appl. Sci. 2021, 11, 2838. [CrossRef]

http://doi.org/10.1109/TKDE.2018.2852958
http://doi.org/10.3390/app11178051
http://doi.org/10.1016/j.neucom.2012.02.051
http://doi.org/10.3390/app9183642
http://doi.org/10.3390/app11115006
http://doi.org/10.1145/2827872
http://doi.org/10.3390/app11052420
http://doi.org/10.3390/app11062838

	Introduction 
	Related Works 
	Problem Definition 
	Preliminaries 
	Our Method 
	Topology-Derived Objective Function 
	Set Constraint Objective Function 
	Joint Optimization Objective Function 
	Complexity Analysis 

	Experiments 
	Dataset 
	Baseline Methods 
	Experiment Setup 
	Node Classification 
	Link Prediction 
	Parameter Sensitivity 

	Conclusions 
	References

