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Abstract: Traffic prediction is a popular research topic in the field of Intelligent Transportation Sys-
tem (ITS), as it can allocate resources more reasonably, relieve traffic congestion, and improve road
traffic efficiency. Graph neural networks are widely used in traffic prediction because they are good
at dealing with complex nonlinear structures. Existing traffic prediction studies use distance-based
graphs to represent spatial relationships, which ignores the deep connections between non-adjacent
spatio-temporal information. The use of a simple approach to fuse spatio-temporal information is
not conducive to obtaining long-term deep spatio-temporal dependencies. Therefore, we propose a
new deep learning model Multi-Stage Spatio-Temporal Fusion Diffusion Graph Convolutional Net-
work (MFDGCN). It generates multiple static and dynamic spatio-temporal association graphs to
enhance features and adopts the multi-stage hybrid spatio-temporal fusion method. This promotes
the effective fusion of a spatio-temporal multimodal and uses the diffuse convolution method to
model the graph structure and time series in traffic prediction, respectively. The model can better
predict both long and short-term traffic simultaneously. We evaluated MFDGCN using real road
network traffic data and it shows good performance.

Keywords: traffic prediction; spatio-temporal prediction; graph convolutional network; temporal
convolutional network; multi-head attention

1. Introduction

Traffic prediction is an important part of the Intelligent Transportation System (ITS),
which can reasonably allocate road resources, alleviate traffic congestion, and improve
road traffic efficiency [1,2]. Traffic prediction has always been extremely challenging be-
cause traffic in road networks changes dynamically over time. There is a complex, non-
linear and multimodal spatio-temporal dependency between historical traffic and pre-
dicted traffic. This temporal dependence relationship is expressed as the mutual influence
of traffic at different times within the road network. The spatial dependence relationship
is expressed as the mutual influence of the traffic between different roads within the road
network, as shown in Figure 1.

With the vigorous development of neural networks, deep learning has achieved suc-
cess in obtaining complex nonlinear relationships [3]. Graph Convolutional Networks
(GCNs) are good at processing nonlinear structural data and are widely used in traffic
prediction [4-7]. Most existing traffic prediction studies are aimed at short-term predic-
tion (15 min) [1,8-10]. DCRNN [8] uses the graph convolution operation to replace the
original linear transformation in the recursive unit of the Recurrent Neural Network
(RNN) for obtaining spatio-temporal information. To avoid the complex gating operation
of RNN, STGCN [9] uses graph convolution and 1D convolution to obtain spatio-temporal
information, reduce parameters, and achieve a good short-term prediction effect. GWnet
[10] further uses graph convolution and block stacking of the Temporal Convolution
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Network (TCN) to achieve better short-term prediction. STSGCN [11] constructs a local
spatio-temporal graph for convolution to obtain a better short-term prediction effect.
GMAN [12] pointed out that the existing models pay more attention to short-term predic-
tion and therefore spatio-temporal attention and an encoder—decoder mechanism were
used to obtain better long-term predictions (1 h). However, this did not significantly help
with short-term predictions. To be able to consider the combined effect of both short-term
and long-term traffic prediction, we propose a new deep learning model Multi-Stage Spa-
tio-Temporal Fusion Diffusion Graph Convolutional Network (MFDGCN).
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Figure 1. Traffic flow on different roads and times in a day. (a) At a specific time, roads 1, 2, 3 rep-
resent the traffic flow of three adjacent sensors and road n represents the traffic flow of a non-ad-
jacent sensor; (b) at a specific sensor, days 1, 2, 3 represent the traffic flow of three adjacent days and
day n represents the traffic flow of a non-adjacent day.

First, we propose a new spatio-temporal multi-association graph generation method,
which obtains the static and dynamic representations of traffic flow in the spatial dimen-
sion based on spatial distance and spatial similarity. We then obtain the static and dy-
namic representation of the temporal dimension per the temporal connection relationship
and temporal similarity. However, modeling based on a simple distance graph [8-10] will
ignore the deep relationship between non-adjacent spatial and temporal dimensions. It
will also be less able to capture the interaction of traffic between different roads. While
using weather and POI (Point of Interest) as features to build models is possible [1,13],
these data are not easy to obtain.

Second, we propose a multi-stage hybrid spatio-temporal fusion method that can
capture longer-term spatio-temporal relationships. It uses basic fusion operations to cap-
ture early low-level spatio-temporal information, followed by the use of an adaptive gat-
ing mechanism to fuse high-level spatio-temporal information after convolution. It then
finally captures deeper complex spatio-temporal information through a multi-head atten-
tion mechanism [14]. The spatial and temporal data in traffic prediction can be regarded
as multimodal data with different dimensions. However, simple connection or addition
operations are not sufficient to deeply mine for information from the mutual fusion of
different models [8-10,15]. For example, STGCN [9] and HetGAT [16] use separate mod-
ules to sequentially capture spatial and temporal relationships, thereby splitting the asso-
ciation between both dimensions. STGODE [17] and AST-MTL [18] add the separately
obtained spatio-temporal relationships, which is not conducive to establishing long-term
spatio-temporal fusion. The main contributions of this paper are summarized as follows:

1. We propose a new spatio-temporal multi-association graph generation method to
enhance features and capture richer spatio-temporal static and dynamic traffic fea-
tures;

2. Considering the complex and changing spatio-temporal information of the traffic
network, we propose a multi-stage hybrid spatio-temporal fusion method, which can
capture longer-term spatio-temporal relationships;

3. We propose a new deep learning model MFDGCN, which can not only predict short-
term traffic well, but also achieves good performance in long-term prediction;
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4. We perform extensive validation using data from a real road network, and our model
MFDGCN shows better performance in long and short-term traffic prediction com-
pared to existing advanced baselines.

2. Related Work

Spatio-temporal prediction refers to the prediction of unknown system states in spa-
tial and temporal dimensions and is widely used in many real-world scenarios, such as
weather prediction, traffic prediction, and earthquake prediction. Traffic prediction is a
typical spatio-temporal prediction problem [2,9]. Traditional traffic prediction utilized
model-driven methods, such as Historical Average (HA) [19] and Autoregressive Inte-
grated Moving Average (ARIMA). These models are based on the linear analysis method,
which are less accurate in complex nonlinear traffic prediction. Subsequently, data-driven
methods gradually became mainstream, and machine learning methods were used in the
early days, such as Vector Auto Regression (VAR) [20], Support Vector Regression (SVR)
[21], and K-Nearest Neighbor (KNN) [22], but they required more detailed engineering
features and were more complex in terms of time. With the rapid development of deep
learning technology, Recurrent Neural Networks (RNNs) have been widely used in time
series prediction tasks [23-25]. However, RNNs cannot consider the correlation of nodes
in the spatial dimension. As such, Convolution Neural Networks (CNNs) for image pro-
cessing have become a popular research topic, which divides the space into grids for con-
volution to capture spatial traffic dependencies [26]. However, regularized grid data is
unable to properly reflect irregular traffic network structure information. Therefore,
Graph Convolutional Networks (GCNs) [4-7] have received extensive attention and are
widely used in traffic prediction to extract spatial dependencies.

GCN is divided into spectral domain graph convolution [4] and spatial domain graph
convolution [5-7,27]. The spectral domain graph convolution uses Fourier transform to
convert the graph signal to the spectral domain, followed by the convolution operation
with a rather complicated calculation. The spatial domain graph convolution directly de-
fines the neighborhood nodes of the convolution on the graph followed by the convolu-
tion operation, which is more intuitive and flexible. For example, GraphSage [6] intro-
duces an aggregation function to aggregate the neighbor information of nodes. GAT [7]
uses an attention mechanism to determine the importance of each neighbor node. DCNN
[27] regards graph convolution as a diffusion process with graph convolution realized via
the probability transition matrix between nodes.

GCN uses information regarding graph edges to aggregate node information for gen-
erating a new node representation, so the adjacency matrix representing the edge relation-
ship is particularly important. In a traffic network graph, an adjacency matrix is usually
constructed based on the distance or connectivity between nodes. DCRNN [8] models the
traffic flow as a diffusion process on a directional graph, which constructs an adjacency
matrix based on the distance map and uses diffusion graph convolution to extract the
spatial representation. STGCN [9] builds an adjacency matrix based on the distance graph,
with spectral domain GCN used to extract the spatial representation. HetGAT [16] builds
an adjacency matrix based on the distance graph between nodes and the relationship be-
tween nodes and sites was also built and used GAT to extract the spatial representation.
AST-MTL [18] builds an adjacency matrix based on the connectivity between nodes and
the spatial representation was extracted using spectral domain GCN. A simple distance
graph extracts the spatial relationship between nodes and it is easy to ignore the correla-
tion between nodes. STSGCN [11] connects adjacent nodes to directly capture the local
correlation between close nodes and their spatio-temporal neighbors, which placed limi-
tations on capturing correlations between far nodes. HGCN [28] builds an adjacency ma-
trix based on the distance graph and uses the distance between nodes to generate a re-
gional graph for obtaining node similarity. DCNN was then used to extract the spatial
representation, but the regional similarity tended to ignore single node differences.
STGODE [17] and STFGNN [29] used DTW (Dynamic Time Warping) to compare
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similarities between time series, but it is computationally expensive. AST-GCN [1], MS-
net [13], and DMVST-Net [26] comprehensively modeled actual traffic data by integrating
various external information such as POI (Point of Interest) distribution, weather, and
holiday notifications, but these are difficult to obtain in many scenarios.

Traffic prediction models can be divided into two categories according to the acqui-
sition of temporal dependencies, which are either RNNs-based [1,2,8,18] or CNNs-based
[10,16,17,29]. Models based on RNNs extract temporal dependencies through RNN, Long
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). AST-GCN [1] and
DCRNN [8] use the graph convolution operation to replace the original linear transfor-
mation in the recursive unit to obtain spatio-temporal information. GST-GAT [2] and
TGC-LSTM [30] use LSTM [31] to extract temporal information. AST-MTL [18] uses GRU
to obtain spatio-temporal information after graph convolution. However, when a traffic
prediction data set is relatively large, the complex gating in RNNs will generate a large
computation workload. As RNNs rely on the memory of the previous step, this makes it
difficult to capture large traffic flow fluctuations during peak traffic conditions [9]. Some
studies tend to use CNNs for temporal relationships in traffic prediction. CNNs-based
studies use convolution operations across the temporal information to model temporal
dependencies and expand the receptive field through dilated convolution to obtain a
wider range of temporal relationships [20]. GWnet [10] and HGCN [28] use stacked 1D
and 2D dilated convolutions after graph convolution to increase the temporal receptive
field of the model and show better short-term prediction results. STGODE [17] uses 1D
dilated convolution after graph convolution to extract temporal information. STFGNN [29]
uses graph convolution and 1D dilated convolution with a large dilation rate to extract
spatio-temporal information in parallel. HetGAT [16] uses graph attention convolutional
after 1D and 2D dilated convolutions to extract temporal information.

Spatial and temporal modalities in traffic prediction usually use different methods to
extract information, so the mutual fusion of spatio-temporal information plays a crucial
role. STGCN [9] and HetGAT [16] use separate modules to sequentially capture spatial
and temporal relationships, thereby splitting the association between spatial and temporal
dimensions. STSGCN [11] and MS-Net[13] concatenate the separately obtained spatio-
temporal relationships, and GWnet [10], STGODE [17], and AST-MTL [18] add the sepa-
rately obtained spatio-temporal relationships, STFGNN [29] multiplies the separately ob-
tained spatio-temporal relationships, but these simple methods are not conducive to es-
tablishing long-term spatio-temporal fusion.

3. Methodology
3.1. Problem Definition

Traffic flow prediction is a time series problem in the traffic road network structure.
Usually, the traffic flow of a certain time series in the future is predicted based on traffic
flow from a certain historical time series. Our work mainly predicts the traffic speed data
of the expressway network. We first define several basic concepts to express this predic-
tion problem.

Definition 1. Road network structure graph G: We use an undirected graph G(V,E) to de-
scribe the topology of the road network, where V = {v1,v;, ... ... v, } is the set of all nodes in the
graph, which are the sensors in the road network, and the i-th node in V is represented by v;.
E eV XV is the set of all edges in the graph, which is the connection relationship between each
sensor.

Definition 2. Feature matrix X: For any node v; in G(V,E) we use X, to represent its feature
value. The feature value of all nodes in V € RN*N can be represented by matrix X which is the
feature matrix. Then, the feature value of the node at a particular moment t can be expressed as
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X3, If the current time is t, the traffic flow of the node v; in the graph G at time t + 1 can be
expressed as:

X = f(G; X3, X5 ovn v, XL) 1)

where f is the mapping function, XeRV*¢ is the traffic flow information of each sensor,
and N is the number of nodes, C is the number of channels.

Definition 3. Study question: We mainly study a mapping function f which can map the traf-
fic flow in the historical time series of all sensors to the traffic flow in a future time series. That
means that for any node v; in G(V,E), the traffic flow information ¥ = f(X) =

(Pt §,me2, L, ¥,™ ™) at a particular moment t for n time steps in the future can be pre-

dicted given historical traffic flow information X = (Xﬁil,Xﬁf, ...,XZ") with m historical time

steps, as shown in Figure 2.

Figure 2. According to historical traffic flow time series graphs, future traffic flow time series
graphs can be predicted (here t is time, m is the number of historical time steps, and n is the
number of prediction time steps).

3.2. Framework Overview

The architecture of our model MFDGCN is shown in Figure 3. Transformation us-
ing the encoder—decoder structure has achieved great success in the field of natural lan-
guage processing. As such, many studies have proposed that the deep learning architec-
ture of the encoder—decoder is better at solving the sequence-to-sequence problem
[32,33]. To obtain a better understanding of its short-term and long-term traffic predic-
tion effects, we adopt the encoder—decoder structure in the network and stack several
FDGCN layers in the encoder and decoder, respectively. Residual connections [34] and
normalization are added to each layer to ensure that there is a training effect when the
model network is deepened. To capture deeper spatio-temporal information, we use a
multi-head attention mechanism between the encoder and the decoder and finally out-
put the prediction result through the fully connected layer.

( encoder \ ( decoder \
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Figure 3. The framework of MFDGCN.

3.2.1. Association Graph Generation

Simple distance-based graphs can easily ignore related information between non-
adjacent spatio-temporal information, so we propose a new spatio-temporal multi-asso-
ciation graph generation method. In this section, we will show how to use multiple
graphs to capture static and dynamic spatio-temporal information in traffic.

Spatial static graph Gs(V, Ag,): It is generated based on the adjacency of the spatial
distance of nodes in the road network, where the spatial structure of the road network can
be captured through G,s. Two adjacent nodes in the spatial dimension are more likely to
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have similar flows because of the connectivity of the road network. We generate a matrix
Ags based on the node distance and set a certain threshold 6 to filter further information.
If there are nodes v; and v;, Aviv,- is the value of two nodes in matrix Ag,, which is de-

fined as:

Ay, = {G,dis(v;,v)) < 6} )

where dis(v;,v;) is the distance between nodes.

Spatial dynamic graph Gg4(V, Asq): It searches for nodes with similar traffic flow to
generate a graph according to the dynamic changes within a certain period of time in the
road network. Spatial nodes with similar functions can be captured through G,4. We se-
lect the k nearest neighbor nodes to generate a matrix Ay, according to the similarity of
traffic flow of each spatial node in a certain period using KNN [22]. If there are nodes v,
and vy, sim(vy,vq) is the similarity between the twonodes, and 4, ,, is the value of the
two nodes in the matrix Agy then:

1, sim(vp,vq)ek
Apyp, = 1, Up =1, 3)
0, otherwise

The temporal dynamic graph G.;4(T,A4:4) (T is time series) is based on dynamic
changes in time to find time nodes with similar traffic flow to generate graphs. Time nodes
with similar functions can be captured through G;;. For example, if there are two time
points T, and T; which are both in the peak period, traffic flow may be equally large and
the similarity is also large. We generate a matrix A4 based on the similarity of traffic flow
between time nodes and set a certain threshold 6 to filter information that is far apart.
Temporal static coding divides the time series into daily and weekly periods, which can
capture the static adjacent time relationship of traffic flow.

3.2.2. Multi-Stage Hybrid Spatio-Temporal Fusion

Considering the complex and changing spatio-temporal information of the traffic
network, we propose a multi-stage hybrid spatio-temporal fusion method. This effectively
fuses temporal and spatial information at different levels and can capture longer-term
spatio-temporal relationships.

In the early stage, we fuse the static and dynamic spatio-temporal graphs obtained
from the association graph, respectively, and retain the original characteristics of the data.
Relevant parameters are reduced as much as possible to obtain the spatial graph and tem-
poral information. To obtain a better representation of the spatio-temporal feature, we use
the Node2vec [35] method to perform node embedding operation on the spatial graph to
obtain the spatial representation E;. As for the temporal information, in order to avoid
matrix sparsity, we use the One-Hot encoding operation to obtain the time representation
E,. The spatial and temporal representations are then fused to obtain the final spatio-tem-
poral representation Eg, as shown in Figure 4.

E
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Figure 4. Static and dynamic spatio-temporal representation fusion (here A4 is the static distance
graph of nodes, Ag is the dynamic similarity graph of nodes, and Iy is the identity matrix; Ty is
the daily One-Hot static encoding of the time series, T, is the weekly One-Hot static encoding of
the time series, and Ty;;, is the dynamic similarity graph representation of the time series).
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In the mid-stage, inspired by the structure of LSTM, the gate fusion mechanism is
used to adjust the state of information flow in neural networks. We design an adaptive
gated spatio-temporal fusion mechanism that weights the different feature vectors of the
multimodal input by dynamically generating adaptive weights. It can adaptively learn
and control important features and assign larger weights to them, which can increase the
feature weights required by the target and reduce the irrelevant feature weights. The
adaptive gating structure is shown in Figure 5.

Residual
FDGCN-Layer esidua

o]

Pt

[

X

Figure 5. Adaptive gated spatio-temporal fusion mechanism.

When feature X is input into the network, the adaptive gating adjustment parame-
ter a receives feature vectors from different modes and weights the importance of hid-
den layer information of each time step to the target information. It then adaptively ad-
justs the output information required by the target. For the hidden network layer [, the
calculation and weighting of the gate « is defined as:

HY = Gg (W, - X;) @

HO =T (W, - X 5

O = TgW, - x,) )
a=o(@H®P +HD) ©6)
Hs(i+1) — Hs(l) Ca+ Ht(l) . (1 _ (Z) (7)

where W € RE"*C“" g the weight matrix, X; € R¥*¢ and X, € RV*¢ are the input

features of spatial and temporal information, respectively, H_cfl) is the output of the hid-
den layer after the graph convolution of Xj, Ht(l) is the output of the hidden layer after
the temporal convolution of X;. ® is the convolution operation, Gg is the graph convo-
lution operation, Tg is the temporal convolution operation, and ¢ is the sigmoid activa-
tion function, and H S(iﬂ) is the output result of the hidden layer [.

In the late decision stage, we use a multi-head attention mechanism to deeply fuse
the results obtained in the early and middle stages again. For each head attention, we
determine the importance of the spatio-temporal representation as predicted from the his-
torical spatio-temporal representation and sum it with the weighted feature matrix after
transformation. The multi-head attention results are then finally concatenated. For the
hidden network layer [, the calculation of spatial and temporal attention fusion can be
defined as:

a;j = softmax((Q; - K[') - h™°%) ©

n

! 9
HIFL) = Zaij -VW

x=1
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Attention = concat(Hl(l), HZ(”, ...... ,H,(ll)) (10)

where K; represents the i-th vector in the historical spatio-temporal representation,
Q; represents the j-th vector in the spatio-temporal representation to be predicted, and
V;, represents the w-th vector in the feature representation. h is a constant and in our
work we set h to be the number of attention heads. H, ,(ll) is the attention output result of
the h-head hidden layer. a;; is the outputof a softmax model, and the sum of the prob-
ability values is 1, which represents the importance of the i-th vector in the historical spa-
tio-temporal representation to the j-th vector in the prediction spatio-temporal represen-
tation.

3.2.3. FDGCN Layer

In the MFDGCN, each FDGCN layer consists of graph convolutional network, tem-
poral convolutional network, adaptive gating and residual connections [34]. The graph
convolutional network obtains the spatial dependence between nodes by continuously
aggregating neighborhood information, as shown in Figure 6.

-
-
- - order = 2
-
-
- order =1
-

order =0

Figure 6. A GCN aggregates neighborhood information to obtain the spatial dependence between
nodes (order = 1, the node aggregates its first-order neighbors; order = 2, the node aggregates its
second-order neighbors).

Extraction of spatial dependencies: we refer to DCNN so that we can use spatially
diffused graph convolution to extract spatial dependencies between nodes in the traffic
network. DCNN regard graph convolution as a diffusion process, which assumes that
information is transferred from one node to another adjacent node with a certain transi-
tion probability and that it is continuously diffused. If the traffic road network is regarded
as graph G(V,E), where V € R¥*V is the set of all nodes, E is the set of edges, and X €
RNXC is the feature matrix. If v, v; €V, for the network hidden layer [, the diffusion
graph convolution of node v; - v; is defined as:

z=fW QO Py X) (11)

where f is the mapping function, W € RE“™XC“"? denotes the weight matrix, z € RV<C

denotes the output. P, € RM*N' denotes the probability transition matrix, N is the
number of nodes, the O operator represents element-wise multiplication, and finally
output through the fully connected layer.

In our work, we use the adjacency matrix A; obtained from the spatial fusion graph
with distance and spatial similarity as the probability transition matrix P for diffusion
convolution. Implicit representation of the previous layer is then calculated as a function
of this layer. If given a node v; and its p-order neighbor set v, in the graph, for the net-
work hidden layer [, we define the diffusion graph convolution of node v; - v, as:

HY . = fAH D w o) (12)

vi~vp vi=vp

Ag = Agq + Ags + 1y (13)
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where A; € RV*N, Ay, is the static distance graph of nodes, Ay is the dynamic similar-
ity graph of nodes, and Iy is the identity matrix.

In our work, the diffusion order of the graph convolution is 2, and the node is dif-
fused to its 2-order neighbors, then the diffusion convolution of the node v; is defined as:

HYY = X, (14)
1 0
HY,. = fAHDW D) (15)
@ _ @®
H,~ .= f(4H, W @) (16)

Hy, = o(Hy + H{, . + H?

*
V-V V-V, )

17)

where v;" and v, are the 1-order neighbor set and 2-order neighbor set of the node v;,
o is the Relu activation function.

Extraction of spatial dependencies. Temporal Convolutional Network (TCN) [36] is
a model proposed in recent years with time series data processing ability. Its modeling
ability on time series data sets is better than the recurring structure in a recurrent neural
network, it is simple and effective without skipping cross-layer connections and can be
computed in parallel. For the value of a hidden layer ! in the network at time ¢, it only
depends on the value of the previous layer | — 1 attime t and before, and cannot see the
future. Therefore, it is more suitable for traffic prediction with time series characteristics.
To keep each hidden layer the same length as the input layer, the temporal convolutional
network increases channels via zero padding. To alleviate the complexity of the model
caused by deepening the network, TCN introduces dilated convolutions to expand the
receptive field of the convolution calculation.

In our work, we use temporal convolutional network to deal with temporal depend-
encies. For the input feature X € RV*¢ and a filter f:{0,...,k — 1}, the temporal convolu-
tion operation F of any element s € X of the network is defined as:

k-1
F&) =) fXooau (18)
i=0

where d is the dilation factor, k is the size of the convolution kernel. Here, we set k =
2, and the above formula can be simplified as:

F(s)=f"Xs+f Xs_q (19)

The temporal convolution operation of any element s is equal to the convolution of
the element s of the previous layer and the (s — d)-th element. In our work, the value of
d is different in each layer.

To enhance the extraction of complex temporal dependencies in the model, we add a
gating mechanism to the temporal convolutional network. The sigmoid function is used
to highlight strong relationships and filter weak relationships, with the tanh function
used to control the data output between (-1, 1). Amplification of important information is
undertaken by multiplying the output results of two different activation functions. The
final temporal convolutional network output is:

H = tanh(F(a)) * o(F (b)) (20)

where F(a) is the 2D TCN operation in the spatial and temporal dimensions, F(b) is the
1D TCN operation in the temporal dimension, tanh and o are the activation functions.
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4. Experiments and Discussion

In this section, we evaluate, compare, and analyze the experimental results of the
proposed MFDGCN model, which compares eight basic and advanced traffic prediction
baseline models when used with a real data set.

4.1. Data Set

We comprehensively evaluated the MFDGCN model on the real road network data
set PeMS_BAY [8], which is shown in Figure 7. This data set contains the data of 325 sen-
sors in the highway network collected by CalTrans Performance Measurement System
(PeMS). We selected data at 30 s intervals for 6 months from 1 January 2017 to 31 May
2017. Before the experiment, we aggregated 30 s of data into a time step of 5 min as the
traffic flow input feature X of the model and generated an adjacency matrix A; based on
the distance and traffic similarity of each sensor. For the traffic flow data, we used 70% of
the data for training, 20% for testing, and 10% for validation. In our work, the number of
time steps in an hour is set to 12, and on this basis, we sample features x and labels y by a
sliding window with a step size of 1.
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Figure 7. PeMS_BAY data set for traffic prediction. Black points mean location of sensors, each sen-
sor measures traffic data every 30 s. PeMS_BAY constructed a road network based on the measured
data.

4.2. Experimental Settings

We used PyTorch 1.10 to conduct experiments on GeForce RTX 2080Ti. The batch
size was 32, the initial learning rate was 0.001, the decay was performed every 5 rounds,
and the early stop mechanism was set during training. The number of FDGCN-layers was
8, and residuals were added to each layer. In the temporal convolutional network, the
kernel size k =2, and the dilation factor was d =1, 2,1, 4, 1, 4, 1, 2. In the graph convo-
lutional network, the convolutional neighborhood order = 2. The number of attention
heads was h =8, and the time step T was 12. We used the Adam optimizer [36] to train
the model. The traffic prediction in our work is a regression problem, so in the perfor-

mance evaluation stage, we adopted the regression commonly used evaluation metrics
MAE, RMSE, and MAPE.

4.3. Baselines

In the experiments, we compared MFDGCN against the following eight baseline
methods. HA [19]: The average value of all historical records in a certain period as the
predicted value. VAR [20]: Used in the analysis of multivariate time series models, it can
better reflect the fluctuation of traffic flow and reduce uncertainty. SVR [21]: Curve fitting
using SVM and regression task analysis. DCRNN [8]: Traffic prediction using the en-
coder—decode framework and diffusion graph convolution. STGCN [9]: Designing neural
networks with convolutional layers for spatio-temporal prediction with fewer parameters
and faster training. STSGCN [11]: Design of multiple modules with different time periods
to effectively capture heterogeneity in the local spatio-temporal graph. GWnet [10]: Stack
spatio-temporal layers for better short-term predictions. GMAN [12]: Multi-attention
mechanism modeling to solve the problem of poor long-term traffic prediction.



Appl. Sci. 2022, 12, 2688

11 of 15

4.4. Experimental Results

This section shows the prediction results of MFDGCN on traffic flow and compares
it with other baseline models. The results are shown in Table 1. We aggregated the MAE,
RMSE, and MAPE metrics for the prediction results of the model over the next 15, 30, and
60 min on the PeMS_BAY data set, respectively. In this experiment, five-fold cross-valida-
tion was performed on the neural network model and the average value was taken as the
final result.

Table 1. Comparison of 15, 30, and 60 min traffic prediction performance between MFDGCN and
baseline models on the PEMS_BAY data set.

15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA [19] 2.88 5.59 6.80% 2.88 5.59 6.80% 2.88 5.59 6.80%
VAR [20] 1.74 3.16 3.60% 2.32 4.25 5.00% 2.93 5.44 6.50%
SVR [21] 1.85 3.59 3.80% 2.48 5.18 550% 3.28 7.08 8.00%
DCRNN [8] 1.38 2.95 290% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN [9] 1.36 2.96 290% 1.81 4.27 4.17% 249 5.69 5.79%
STSGCN [11] 1.44 3.01 3.04% 1.83 4.18 4.17% 2.26 5.21 5.40%
GWnet [10] 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
GMAN [12] 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%
MFDGCN  1.30 2.75 2.75% 1.61 3.66 3.64% 1.88 4.33 4.45%

Method

Table 1 shows that the non-neural network models (HA, VAR, SVR) perform poorly
for traffic flow prediction, mainly because they cannot directly model spatio-temporal de-
pendencies in the traffic flow. The neural network model has strong feature learning abil-
ity and can achieve good results in traffic flow prediction. Our MFDGCN model outper-
formed other baseline models in MAE, RMSE, and MAPE by comprehensively comparing
long-term and short-term prediction effects.

As shown in the table, MFDGCN has a MAE that is 4% lower for a short-term pre-
diction of 15 min and a RMSE that is 7% lower when comparing with the GMAN model
with better long-term prediction performance. MFDGCN has a MAE that is 7% lower for
a long-term prediction of 60 min and a RMSE that is 19% lower when comparing with the
GWnet model with better short-term prediction performance. In the comprehensive com-
parison, the MFDGCN model goes further when compared to the GWnet and GMAN
models. It fuses spatio-temporal features better, obtains richer spatio-temporal depend-
encies, and achieves better results in both short-term and long-term traffic prediction. As
the prediction duration increases, the long-term prediction performance of each model
will decline, but the decline for MFDGCN is smaller and its advantage is more obvious.

Compared with STGCN, DCRNN, GWnet, and GMAN modeled using a simple dis-
tance graph and STSGCN modeled with a local node correlation graph, MFDGCN uses
dynamic and static fusion graph modeling in spatial and temporal dimensions. This can
not only capture relevant information from local nodes in the road traffic network, but
also capture relevant information from global nodes. It can learn the similar relationship
between non-adjacent nodes and improve prediction performance. Compared with
STGCN that splits the spatio-temporal association, STSGCN concatenates spatio-temporal
information and GWnet adds the stacked spatio-temporal information, MFDGCN uses
an adaptive gating mechanism to fuse the convolutional spatio-temporal information. It
then fuses the embedded spatio-temporal information through a multi-head attention
mechanism, which can capture longer-term spatio-temporal relationships and achieve
better long-term prediction performance.

MFDGCN shows better short-term prediction performance by using multi-layer
stacked and dilated temporal convolutions. It is 4% lower in MAE for a short-term pre-
diction of 15 min and 1% lower in MAE at 30 min when compared with GMAN where a
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transformer is used. However, MFDGCN is slightly lacking in long-term prediction when
compared with GMAN and the MAE of GMAN at 60 min for a long-term prediction is 2%
higher. In general, the comprehensive performance of MFDGCN is better.

The comparison of the prediction performance of each model at each time step on the
PeMS_BAY data set is shown in Figure 8. Figure 9 shows the comparison of the truth and
predicted values of MFDGCN for a certain day on the PeMS_BAY data set.
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Figure 8. Comparison of prediction performance at each time step on the PeMS_BAY data set. (a)
MAE values comparison; (b) RMSE values comparison; (c) MAPE values comparison.

ettt o PP

W oo oy |
604 AN N s AN
| y{ ‘/ [ \( l

= 50 |
k} |
[
404 I
f

30 Truth \
Prediction J*l

T T T T T T T T T
0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
Time

Figure 9. Comparison of the truth value and the predicted value.

4.5. Effects of Components and Parameters

We compared the proposed multi-association graph generation and multi-stage fu-
sion methods, verified the effectiveness of each component in MFDGCN, and compared
the selection of important model parameters. We removed the spatial similarity graph in
the multi-association graph and named the model No-simg. We also removed the gate in
the multi-stage fusion and named the model No-gate. Comparing them with the
MFDGCN model, the MAE values of the prediction results at 15 min are shown in Figure
10. The results show that stronger features can be obtained by using the multi-association
graph and the spatio-temporal multimodal fusion module shows better performance.

W VFDGON
No-simg
— No-gate

) JJ

1.0

15min 30min &0min
Time

Figure 10. Comparison of MAE values of prediction results of MGSTCN, No-simg, and No-gate
models at 15, 30, and 60 min on the PeMS_BAY data set.

We used L to represent the number of layers of FDGCN, fixed each component in
FDGCN, and tested the model prediction results when L was set to 2, 4, 6, 8, and 10. The
results are the average of all MAE values within an hour. As shown in Figure 11a, the
model works best when L = 8. The results show that the model needs a certain depth to
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obtain richer spatio-temporal information, but too much depth will influence the model
effect, and parameter selection needs to be made according to different data and models.

We fixed the number of FDGCN layers at L =8 and tested the model prediction re-
sults when the graph convolutional network neighborhood order was set to 1, 2, 3, and 4.
The results are the average of all MAE values within an hour. As shown in Figure 11b, the
model works best when order = 2. The results show that graph convolution is not as large
as possible when selecting neighborhoods and appropriate parameters should be selected
according to the different data and models.
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Figure 11. The average value of MAE when the parameter takes different values. (a) Parameter L;
(b) parameter order.

5. Conclusions

In this paper, we proposed a new deep learning model Multi-Stage Spatio-Temporal
Fusion Diffusion Graph Convolutional Network (MFDGCN) based on the diffuse convo-
lution method to solve the problem with deep spatio-temporal dependencies being easily
ignored in road network traffic prediction based on simple distance maps and spatio-tem-
poral fusion methods. MFDGCN combines the graph convolutional network for captur-
ing spatial dependencies and the temporal convolutional network for capturing temporal
dependencies. It generates multi-association graphs to learn similar relationships between
non-adjacent nodes and uses a multi-stage hybrid spatio-temporal fusion mechanism to
capture longer-term spatio-temporal associations and mine deep spatio-temporal depend-
encies. From evaluation with real-world traffic data, MFDGCN shows good performance
in both long-term and short-term prediction of traffic flow. It can also be used to solve
other similar spatio-temporal prediction problems. In future work, we will continue to
optimize the network structure as well as parameters and further study the dynamic
graph structure problem to make the neural network more flexible.
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