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Abstract: A linear discriminant analysis transformation-based approach to the classification of three
different motor imagery types for brain–computer interfaces was considered. The study involved
16 conditionally healthy subjects (12 men, 4 women, mean age of 21.5 years). First, the search for
subject-specific discriminative frequencies was conducted in the task of movement-related activity.
This procedure was shown to increase the classification accuracy compared to the conditional common
spatial pattern (CSP) algorithm, followed by a linear classifier considered as a baseline approach.
In addition, an original approach to finding discriminative temporal segments for each motor imagery
was tested. This led to a further increase in accuracy under the conditions of using Hjorth parameters
and interchannel correlation coefficients as features calculated for the EEG segments. In particular,
classification by the latter feature led to the best accuracy of 71.6%, averaged over all subjects
(intrasubject classification), and, surprisingly, it also allowed us to obtain a comparable value of
intersubject classification accuracy of 68%. Furthermore, scatter plots demonstrated that two out of
three pairs of motor imagery were discriminated by the approach presented.

Keywords: EEG; brain–computer interfaces; motor imagery; machine learning; cross-correlation;
frequency power spectrum

1. Introduction

Currently, intelligent methods of data processing have begun to play a crucial role in
the personalization of various areas of human activity. Interaction with technical systems
is one of them, and it is referred to as human–machine interfaces. The availability and
miniaturization of computer technology has created the prerequisites for the widespread
use of new-generation human–machine interfaces, such as brain–computer interfaces (BCIs)
or neural interfaces [1,2]. The development of BCIs is carried out in a multidisciplinary
approach at the intersection of information technology and neuroscience and is, perhaps,
one of the most intensively growing and promising areas of applied research. The primary
goal, as is widely known, is to create a new reliable communication channel for the reha-
bilitation of people with speech and motor activity disorders [3,4]. BCI implements its
communication function by decoding various types of mental commands of an individual,
including evoked brain activity (ERP) and voluntary EEG-induced patterns (motor imagery
and inner speech) that are formed in the brain electrical activity.

However, at present, the limiting factor for the practical implementation of such
systems is the lack of sufficiently developed intelligent data processing methods that
provide automated individual interface adjustment [5–7]. This leads to the urgent unsolved
problem of bringing such systems out of scientific laboratories to the end-user environment.
One of the unsolved problems hindering achievement that is the exclusion of the laborious
participation of an expert researcher, who forms training samples manually, from the
process of tuning the neural control system. Therefore, the development of computational
methods that provide autonomous BCI tuning is urgent.
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In numerous BCIs based on the patterns of the motor imagery (MI) acts electroen-
cephalogram (EEG), at the stage of setting up the system, the stimulus-dependent experi-
mental paradigm is used. It consists in presenting the user with various stimuli that specify
the execution of single movements (Berlin BCI [8], Graz BCI [9], Wadsworth BCI [10]). On
the one hand, within this paradigm, it is convenient to configure and test computational
methods for recognizing control EEG commands and monitoring the user’s training for
their reproduction. On the other hand, control stimuli affect the EEG of a movement’s
mental performance, since the MI signal and the components of the evoked potential are
superposed [11,12]. Subsequently, this complicates the operation of the BCIs configured
in this way in the control mode, in which the MI activity is performed by the user in an
arbitrary manner without reference to external stimuli. Therefore, it is urgent to develop
a BCI adjustment procedure that does not use external stimuli that induce the execution
of individual ideomotor acts. Methods for detecting EEG patterns of target motor im-
agery acts are a key element in the implementation of tuning autonomy in completely
stimulus-independent BCIs.

Voluntary imaginary hand and leg movements are actively used in BCIs within the
framework of the stimulus-independent experimental paradigm. It is well known that the
main advantage of this experimental approach is that mental actions are not associated with
external stimuli on the monitor screen, and therefore the control commands themselves
are completely voluntary. Thus, the mental formation of control commands for external
devices occurs at a random moment at the request of the subject. This allows the user
to work at a voluntary pace that is convenient for them. Existing methods of accounting
for individual characteristics of brain activity and BCIs based on mental performance of
movements [13–16] were proposed only for particular tasks, with a fixed set of EEG com-
mands known a priori and are difficult to implement for completely stimulus-independent
autonomously tuned BCIs.

The noninvasive approach based on electroencephalogram (EEG) signals proved to be
extremely useful for the development of BCI technology. The EEG method has convincingly
proved its high safety and reliability, primarily in the framework of providing a new channel
of communication with the outside world to patients if they are immobilized for various
reasons [17]. The BCIs neural communication system does not require any pronounced
muscular activity from the user, and therefore it can actually function even in patients with
severe neurodegenerative diseases of the motor system and disorders caused by spinal
cord injuries [18,19].

The selection of informative features to describe the target patterns of multidimen-
sional EEG patterns often faces a number of problems, including too wide range of parame-
ters and the nature of the analyzed activity in the EEG, in particular, its nonlinearity and
nonstationary. Furthermore, it has been experimentally shown that significant individual
differences in informative EEG features are observed in different subjects [20]. Although
we have previously identified the most significant frequency ranges (such as µ (10–13 Hz),
β (13–25 Hz), and γ (30–70 Hz)) reliable for the classification of MI-related EEG patterns [3],
we assume that the most effective frequency band of the EEG and its severity are deter-
mined by the individual characteristics of the subject [20]. It has also been shown that the
ability of a person, in principle, to voluntarily induce patterns of brain activity, for example,
when mentally performing a movement with a certain limb, is purely individual [21–23].
Therefore, the BCI user is not always able to operate with the set of control commands
offered to them. This problem for the case of a practical need to find and consolidate a new
pattern or command is not considered in existing systems. In this regard, it is necessary
to develop universal and noise-resistant approaches that allow us to isolate informative
signal components to detect EEG patterns of target ideomotor acts.

EEG signals recorded in MI tasks, such as legs, left-hand, and right-hand move-
ments, are widely analyzed by various methods for BCI applications. For example, the
use of conventional support vector machines (SVM), autoregressive SVM (AR-SVM),
CSP-SVM [16,24,25], and LDA models [26,27] provide sufficient performance for neural
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control. Artificial neural networks (ANN) and algorithms for the classification of EEG-
related MI have also been implemented [28]: empirical mode decomposition, radial basis
function networks, local approximation, and interpretation of time series [3,23,29,30]. These
methods improve the accuracy of recognition and classification of target EEG patterns. On
the other hand, data augmentation and deep learning approaches are used to classify MI.
Convolutional neural networks (CNN) for feature extraction and MI classification provide
better accuracy than conventional methods [31]. CNN and Morlet wavelets have also been
applied to EEG to create pattern-similar frames to improve the accuracy of evoked potential
analysis [32,33]. Comparative analysis shows that although the effectiveness of neural
network methods is high, they require higher computing power and training time.

In this paper, an MI EEG pattern classification approach is proposed (Materials and
Methods, D). It consists in (i) detection of the most informative EEG frequency ranges
specific to different subjects and classes of MI by linear discriminant analysis (LDA);
(ii) highlighting the most informative and shorter time segments of the EEG containing the
target MI pattern by LDA transformation of all time segments, which also minimizes noise;
and (iii) classification of the transformed data by logistic regression.

The paper is organized as follows. In Section 2, a description of the experimental
procedures followed in EEG recording and processing is presented, as well as the approach
developed. A summary of the results obtained is provided in Section 3. Section 4 presents
a discussion of the results obtained in this work. Finally, some conclusions are drawn in
Section 5.

2. Materials and Methods
2.1. Dataset and Subjects

The dataset includes 16 subjects of both sexes (12 men, 4 women) from 18 to 25 years of
age (average 21.5 ± 3.5 years). Each subject provided their voluntary consent to participate
in the study prior to the start of the experiment. The experimental methodology was
approved by the Ethics Committee of the Southern Federal University.

2.2. Experimental Design

The methodology of the experiment included 3 series with a different type of voluntary
movements. Each series lasted 180 s and included 15–20 repetitions of each movement
execution and motor imagery. Voluntary movement execution took place for 2 s in a random
mode with the simultaneous fixation of the gaze on the monitor screen. The target was
stationary in the center of the screen to exclude eye movements. Hand movements consisted
in compressing the hands into a fist. The movements of the legs were the simultaneous
bending and unbending of both feet in the vertical plane. Subjects performed real voluntary
movement with their hands and feet in the first series (Figure 1).

In the second series, the subjects performed all the same real movements, but after each
of them, they had to reproduce the MI of a specific movement. In other words, the repetition
of mental equivalents followed the actual execution of the corresponding movement.

Finally, the MI preceded the actual implementation of the corresponding movement
execution in the third series. It was not required to report the beginning or end of the
MI. Subsequently, artifacts that affected the quality of the MI EEG patterns (“MI classes”)
were removed from the electrograms on the basis of electrooculogram (EOG) signals using
the cross-correlation method in series 2 and 3 in each subject (on average: right hand
MI (RHMI)—35.9 ± 9.7, left hand MI (LHMI)—35.1 ± 9.1, legs MI (LMI)—32.9 ± 9.2,
rest—207.9 ± 55.0).

In total, 1663 artifact-free EEG epochs were analyzed for both resting state and MI
classes. The artifact removal method, in turn, did not affect the number of signal epochs,
that is, it did not consist in removing fragments of the signal. Rather, it consisted in cleaning
the signal using the cross-correlation method (Figure 2). Resting state examples were taken
between single trials of MI executions.
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Figure 1. Timing representation of a scenario with the participation of volunteers in the task of move-
ment execution (ME) and motor imagery (MI). (1)—rest with eyes open (EO, 60 s); (2)—instructions,
60 s; (3)—series 1 (ME) (180 s), (4)—rest after series 1, 60 s; (5)—series 2 (ME + MI) (180 s), (6)—series 3
(MI + ME) (180 s).

EEG signals were recorded using an Encephalan biopotential amplifier (Medicom
MTD LLC, Taganrog, Russia) in a room with light and sound insulation. There was a total
of 17 channels (F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) according
to the international 10–20 system. The sampling rate was 250 Hz. To remove network
crosstalk, a notch filter (50 Hz) was used. The surface electromyogram (EMG) of both
hands was recorded in the superficial muscles of the hands (m. Brachioradialis, m. Flexor
digitorum superficialis) and the legs (m. Tibialis anterior). Brain potentials associated with
MI (MI-related potentials) were isolated and accumulated relative to the initiation marks of
real movements recorded on the electromyogram channels (EMG).

Events were set after bandpass (0.1–4 Hz) filtering of the EMG. The threshold level of
the amplitude of the EMG, the achievement of which the tags were set, was set at 10 µV.
The threshold of movement onset was determined at the rising front of the smoothed EMG
channels. The EEG epoch for the analysis of MI potentials was 2 s after the completion of
myographic activity in series 2 and 2 s before the start of EMG in series 3. An example of
such event detection is shown in Figure 3.

2.3. Linear Transformations

To transform feature vectors, linear discriminant analysis (LDA) with singular value
decomposition as a solver method and the tolerance for stopping criteria of 10−4 was
used. The rest of the parameters were set to their default values provided in Scikit-Learn v.
1.0 for Python programming language [34]. By default, all input values were converted
to z-scores.
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Figure 2. Artifact removal example. (A) Raw signal containing artifacts. (B) Signal with artifacts
removed. Channels 1–3 are EMG channels for the right hand, left hand, and feet, respectively, and
channel 4 is EOG.

To highlight the most discriminative frequency ranges the initial feature vector of
length 153 (17 channels × 9 frequency bands), the transformation method based on LDA
was applied:

1. For each class of movement, a separate model of a 1-component LDA model (trans-
former) was trained: the training sample included all the examples of the given class
and as many resting state signal examples.

2. On the completion of the transformation, 153 values of features collapsed into one, a
linear combination, while for each class, there was a specific set of coefficients.

3. After tuning all class-specific transformers, the final feature vector was three-
dimensional (one feature for each class).

A schematic of this transformation procedure is shown in Figure 4.
During the complementing search for the most informative segments of the time

domain for each two-second segment of each MI, a sample of examples of two classes
was artificially created: the considered movement and the resting state signal. The feature
vector consisted of the differences between feature vectors of all window combinations
with each window having a length of 750 ms and a shift being 100 ms within a given MI
signal epoch and a 2 s long background signal epoch. If frequency spectrum features were
used, they were converted to three components in the manner described above. Otherwise,
from the weights of each frequency LDA transformer, one frequency corresponding to the
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highest absolute weight value was extracted. Finally, multiband filtering was applied to
the signals processed using the frequencies found in the previous step.
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Figure 3. Real movement detection (left hand) detection using the EMG signal. (A) Raw EEG and
EMG data. (B) 1–4 Hz filtered EEG and EMG data for movement onset detection. The blue label
“5” at almost 00:17:56 is the detected onset of the movement in channel 2, where the absolute value
of the filtered signal first exceeded 10 µV. Ellipsis indicates the channels skipped for more compact
representation. Other designations are adopted from Figure 2.

The window length of 750 ms was used, since it provided the best classification
accuracies (compared to 500 and 1000 ms). In 2 s, 13 different 750 ms windows are
accommodated with a 100 ms shift. These windows resulted in 13 examples labeled as the
class of a given mental movement. Each of these examples included differences between
a particular background window and the 13 windows of a given MI epoch. A total of
13 more examples were labeled background class and included differences between pairs
of the background signal epoch windows in the same manner.
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Thus, each MI signal epoch was first transformed into a 26 × 153 sample, and then
this sample was used to train a two-component LDA-based transformer. To be added to
the final sample, each example was transformed as follows: a pseudo-example was created
from the differences of the averaged feature vector over all background signal windows
and all shifts of the given mental movement example, which was then transformed by a
trained two-component LDA. A detailed step-by-step description of this transformation is
shown in Figure 5.

The approach to find informative time segments steps are as follows:

1. A two second long epoch of a single MI and a single randomly chosen two second
long epoch of background signal are independently split into windows of lengths of
750 ms with 100 ms shift; this results in 13 windows of the MI and 13 windows of the
background signal.

2. Features are computed for each of 26 examples considering the results of previous
searches for informatory frequencies for the current subject.

3. The sample of the current MI is formed as follows:

a. Each MI example feature vector is the result of stacking differences between
fixed background window features and all the MI windows features (thus, on
a smaller scale, the resulting feature vector periodically represents a feature
number for each window, and, on larger scale, it represents window number,
i.e., time);

b. Each background example feature vector is the result of stacking differences
between a fixed background window’s features and all the background
windows’ features.
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c. The resulting two-class sample is of shape 26 * (13 * n features).

4. An LDA model is trained on the sample obtained.
5. The trained LDA model is applied to the windowed example feature representation

of the whole MI example calculated as the result of stacking differences between the
averaged background windows feature vector and all the MI window features.

6. The transformed representation of the whole MI is added to the final sample.
7. Steps 1–6 are repeated for each MI.
8. Logistic regression is applied to classify the resulting three-class transformed sample.
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Figure 5. The transformation procedure for finding informative segments. * If the power spectral
density features are used, then the spectrum is computed, and the previously trained informative
frequency LDA transformers are applied; otherwise, if Hjorth parameters or interchannel correlation
coefficients are used as features, 3 frequency bands corresponding to the largest absolute values of
the previously trained informative frequency LDA transformers weights are extracted, and then
multiband frequency filtering is performed, and features are calculated.

To compare this approach using different window lengths with the approach using
the whole signal of each MI (2 s), the features were simply calculated using the entire MI
signal, considering the most informative frequencies previously found for each subject, as
provided in the Figure 5 notes.

2.4. Classification

To perform classification and obtain corresponding accuracy scores, we used the
logistic regression implemented in the Scikit-Learn module for the Python programming
language [34]. The L2 function was used for penalty; the optimization algorithm was
L-BFGS with a tolerance for stopping criteria of 10−4. To optimally set the regularization
parameter C, a grid search was performed over the following values: 10−3, 0.01, 0.1, 1, 10.
The twofold cross-validation accuracy was then used to evaluate the classification quality.
By accuracy score, we mean the simplest definition of accuracy, i.e., the ratio between
correct answers of the model and the total number of predictions.
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Preliminarily, all feature values were converted to z-scores, and the entire sample of
MI examples was randomly mixed. The classification procedure described was applied
separately to the three-class data samples of each subject, and the final score was calculated
as the mean value of all subjects’ scores.

2.5. Frequency Spectrum Features

Nine biologically significant EEG frequency bands were used: δ or delta (1–3 Hz), θ or
theta (3–7 Hz), α or alpha (7–10 Hz), µ or mu (10–13 Hz), β1 or beta-1 (13–25 Hz), β2/γ1 or
beta2-gamma1 (25–45 Hz), γ2 or gamma2 (55–70 Hz), γ3 or gamma3 (70–90 Hz), and γ4 or
gamma 4 (90–110 Hz). PSDs (power spectral densities) of these bands were calculated with
the Welch method (Hanning filtering window, 50% overlap of consecutive windows) [35].
Once the PSDs were calculated, they were converted to the feature vector by summing the
PSDs of frequencies lying between the boundaries of each band.

2.6. Frequency Filtering

Frequency filtering was carried out using a Butterworth filter with an infinite impulse
response of the fifth order.

2.7. Receiver Operating Characteristic Curves

To validate the quality of models built on different features and segment lengths, we
plotted receiver operating characteristic (ROC) curves. It was carried out using samples
of all subjects concatenated after both linear transformations had been applied to the data
of each subject independently. The intersubject manner was chosen in order to reduce
the number of resulting graphs. First, a logistic regression-based model with parameters
described in D. Classification was optimized using the very same approach. The model
with the best hyperparameters found was then re-fitted on half of the sample, and the
other half was used to obtain the values of the decision function to further construct
the ROC curves using the corresponding Scikit-Learn function [34]. The best score of
hyperparameter optimization during cross-validation was used as the accuracy of the
intersubject classification by the model considered.

3. Results

To perform a comparative analysis, baseline accuracy was obtained with the traditional
combination of common spatial pattern (CSP) and a linear classifier [20] (in our case, logistic
regression). In addition to the described adjustment of the logistic regression regularization
coefficient, the optimal number of CSP filters in the range from 1 to 9 was also selected
during cross-validation. In this approach, the resulting accuracy was 51.1 ± 10.8%, that is,
even such an efficient and widely used model resulted in quite poor classification.

Next, the algorithm of discriminative frequencies selection, including mu, beta-2,
gamma-1, and gamma-2 ranges in the frontal, central, and parietal brain areas was tested.
The best linear combination of the bands considered was determined for each MI class
in order to provide the most accurate discrimination between its signal epochs and the
background signal epochs. However, it also improved the discrimination between three
MI classes themselves: after applying such a transformation, the accuracy increased to
65.4 ± 9.1%. Furthermore, this transformation allows one to reduce the dimensionality
of the feature vector by more than 50 times, resulting in higher computational efficiency
and compact feature space representation [36]. Additionally, Hjorth parameters [37] and
pairwise interchannel correlation coefficients were used to form feature vectors. When
Hjorth parameters were used, the accuracy of classification was 53.9 ± 11.4%; use of
correlation coefficients led to the classification accuracy of 53.7 ± 8.2% (Table 1).
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Table 1. Motor imagery classification accuracies in the approach for the detection of the most
informative frequencies.

Approach Feature Classification Accuracy

CSP + LR CSP patterns 51.1 ± 10.8%

Search for informative
frequencies

PSD 65.4 ± 9.1%

Hjorth parameters 53.9 ± 11.4%

Correlation coefficients 53.7 ± 8.2%

Further refinement was the addition of the search for the most informatory time
intervals within 2 s in each mental movement act. Since the onset and duration of MI
execution were quite voluntary, it is reasonable to find the informatory time interval for
each MI act. Three types of features were used to test this approach: power spectral
densities, Hjorth parameters, and coefficients of pairwise interchannel correlation. The
resulting classification accuracies are listed in Table 2.

Table 2. Accuracies of motor imagery classification in the approach according to the search for
informative frequencies and segments for different features and window lengths (intrasubject).

Feature
Window Length

500 ms 750 ms 1000 ms 2000 ms

PSD 59.8 ± 9.6% 57.9 ± 8.4% 54.3 ± 8.3% 64.8 ± 7.6%

Hjorth parameters 67.9 ± 4.7% 68.6 ± 3.1% 68.9 ± 3.9% 54.0 ± 12.6%

Correlation coefficients 68.8 ± 3.1% 71.6 ± 3.9% 68.5 ± 4.3% 53.9 ± 8.3%

The decrease in accuracy according to the PSD features obtained for shorter windows
was probably due to the use of fewer data points rather than all 2 s, which leads to poorer
spectra. However, it can be argued that the sequential determination of discriminative
frequency ranges and informatory time segments, although using different features, leads
to an improvement in the classification results. Indeed, according to Table 2, the highest
accuracy among all subjects was obtained using 750 ms windows and coefficients of
pairwise interchannel correlation as features.

It is also clearly shown in Tables 2 and 3 that using shorter windows is advantageous
compared to using the entire 2 s epochs if coefficients of pairwise interchannel correlation
or Hjorth parameters are used as features.

Table 3. Motor imagery classification accuracies in the approach according to the search for in-
formative frequencies and segments for different features and window lengths during additional
classification for ROC curves creation (intersubject).

Feature
Window Length

500 ms 750 ms 1000 ms 2000 ms

PSD 38.55% 35.29% 34.64% 64.7%

Hjorth parameters 66.08% 67.77% 68.01% 35.48%

Correlation coefficients 68.07% 68.01% 67.65% 35.72%

The ROC curves and AUC scores calculated for the transformed sample of all subjects
after the completion of the search for discriminative time segments do not allow us to
clearly see which window length is the most advantageous. However, according to the
best features (coefficients of pairwise interchannel correlation and Hjorth parameters)
and segments of lengths of up to 1000 ms (Figure 6A,B,D,E,G,H) providing the highest
intersubject accuracies, a window of 750 ms seems to be somewhat optimal. Indeed, for the
former features, 500 ms is somewhat better than comparable 750 and 1000 ms, whereas,



Appl. Sci. 2022, 12, 2736 11 of 17

for the latter, 750 ms along with 1000 ms is superior to 500 ms. Moreover, according to the
averaged intrasubject accuracy (Table 2), the window of 750 ms is definitely superior.
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It is noteworthy that the signals of each MI class are processed independently, but
an improvement in accuracy is still observed when they are combined again, that is, the
method is able to identify general patterns. Moreover, this also leads to the accuracy
rate of the intersubject classification being comparable (Table 3) to that of the intrasubject
classification (Table 2). Among its advantages, one can also note the resistance to noise,



Appl. Sci. 2022, 12, 2736 12 of 17

since, in the process of its operation, all pairwise combinations of background windows
and the MI signal are used. The classification accuracies for the different features used
and the approaches implemented are summarized in Tables 1 and 2. Scatter plots with
axes being the LDA components obtained are shown in Figures 7 and 8 for the Hjorth
parameters and cross-channel correlations, respectively.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

 

Figure 7. Scatter diagram for the sample comprising all 16 subjects in the space of LDA components 

after finding discriminative frequencies and time intervals using Hjorth parameters for three motor 

imagery classes. 

 
Figure 8. Scatter diagram for the sample comprising all 16 subjects in the space of LDA components 

after finding discriminative frequencies and time intervals using interchannel cross-correlation co-

efficients for three motor imagery classes. 

4. Discussion 

Currently, the methods of spontaneous EEG analysis, including both linear classifiers 

[38] and artificial neural networks (ANN), have become quite widespread for solving neu-

ral communication problems [23,39]. The results of the comparative analysis, on the one 

hand, show the superiority of nonlinear neural network algorithms over linear ones, pri-

marily in terms of the efficiency of their functioning and adaptive settings [40–42]. This is 

achieved, in particular, through the development of new neural network methods [43] 

that integrate extensive customization capabilities and advantages of various approaches 

that can effectively detect specific and invariant MI patterns of bioelectric brain activity. 

On the other hand, linear classifiers are still a clear and easy-to-interpret method; in addi-

tion, they form a low computational load. However, since quasi-stationary EEG can lead 

to nonlinear discriminant functions, this type of classification does not always show high 

accuracy of detecting control commands in the BCI circuit. In this regard, improving the 

Figure 7. Scatter diagram for the sample comprising all 16 subjects in the space of LDA components
after finding discriminative frequencies and time intervals using Hjorth parameters for three motor
imagery classes.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18 
 

 

Figure 7. Scatter diagram for the sample comprising all 16 subjects in the space of LDA components 

after finding discriminative frequencies and time intervals using Hjorth parameters for three motor 

imagery classes. 

 
Figure 8. Scatter diagram for the sample comprising all 16 subjects in the space of LDA components 

after finding discriminative frequencies and time intervals using interchannel cross-correlation co-

efficients for three motor imagery classes. 

4. Discussion 

Currently, the methods of spontaneous EEG analysis, including both linear classifiers 

[38] and artificial neural networks (ANN), have become quite widespread for solving neu-

ral communication problems [23,39]. The results of the comparative analysis, on the one 

hand, show the superiority of nonlinear neural network algorithms over linear ones, pri-

marily in terms of the efficiency of their functioning and adaptive settings [40–42]. This is 

achieved, in particular, through the development of new neural network methods [43] 

that integrate extensive customization capabilities and advantages of various approaches 

that can effectively detect specific and invariant MI patterns of bioelectric brain activity. 

On the other hand, linear classifiers are still a clear and easy-to-interpret method; in addi-

tion, they form a low computational load. However, since quasi-stationary EEG can lead 

to nonlinear discriminant functions, this type of classification does not always show high 

accuracy of detecting control commands in the BCI circuit. In this regard, improving the 

Figure 8. Scatter diagram for the sample comprising all 16 subjects in the space of LDA components
after finding discriminative frequencies and time intervals using interchannel cross-correlation
coefficients for three motor imagery classes.

One can clearly see that the right-hand MI is almost completely discriminated from
other MIs, which is more likely due to the most subjects being right-handed and is also
reflected in the ROC scores shown in Figure 6.

4. Discussion

Currently, the methods of spontaneous EEG analysis, including both linear classi-
fiers [38] and artificial neural networks (ANN), have become quite widespread for solving



Appl. Sci. 2022, 12, 2736 13 of 17

neural communication problems [23,39]. The results of the comparative analysis, on the
one hand, show the superiority of nonlinear neural network algorithms over linear ones,
primarily in terms of the efficiency of their functioning and adaptive settings [40–42]. This is
achieved, in particular, through the development of new neural network methods [43] that
integrate extensive customization capabilities and advantages of various approaches that
can effectively detect specific and invariant MI patterns of bioelectric brain activity. On the
other hand, linear classifiers are still a clear and easy-to-interpret method; in addition, they
form a low computational load. However, since quasi-stationary EEG can lead to nonlinear
discriminant functions, this type of classification does not always show high accuracy of
detecting control commands in the BCI circuit. In this regard, improving the accuracy of
linear methods requires an additional method of preprocessing and highlighting significant
features for invariant EEG patterns [44].

The results of EEG-based multiclass MI pattern classification in the methodology and
approach developed by us showed that the method is capable of increasing the accuracy
(up to 71.6 ± 3.9%) of detecting randomly generated control commands in the BCI circuit.
The results obtained are consistent with the already available data, indicating that neural
interfaces exploiting mental equivalents of real movement execution (MI) and various
approaches for solving neurofeedback problems are able to provide a reliable and effective
nonmuscular communication channel. However, it requires the development of new
user training techniques and scenarios, as well as thorough training and adaptation of
methods themselves [45,46] to ensure a reliable and fast integration of technical units into
the somatosensory map of the human body.

Finally, our results are in good agreement with the well-researched characteristics
of event-related desynchronization (ERD) and synchronization (ERS) phenomena in the
mu- and beta-rhythms of the EEG. They are primarily considered events that reflect the
performance of MI or mental movements [5,47]. The ERD phenomenon develops not
only when performing a movement execution, but also when the subject only mentally
imagines movement or sensation in a certain part of the body [48,49]. At the same time, the
authors note a characteristic somatotopic localization of the effects: the ERD effect is more
pronounced in the contralateral hemisphere of the working hand [50].

These EEG phenomena are usually obtained statistically by averaging EEG signals
recorded in different mental tasks identical in content and other characteristics by a group
of subjects in the field of classical EEG frequencies corresponding to lower (delta, theta,
alpha (mu)), or higher (beta and gamma) rhythms. The analysis of single events in the EEG,
in turn, is relatively rarely used, especially at short time intervals [25,51]. Comparative
analysis has shown [52–54] that by single implementations of short (up to 500 ms) EEG
segments, it is possible to identify the type of visual stimulus that indicates, for example,
the direction of movement and the areas of the brain involved in its processing. In addition,
even shorter EEG epochs (up to 200 ms) may be sufficient in identifying the readiness
potential, indicating the lateralization of the upcoming motor act. However, analysis
epochs of at least 500–700 ms are considered to be the most reliable for identifying motor
intent [51,55].

We have also shown earlier [12,56] that mental representation of movements leads
to additional activation, not only of the central motor cortex but also of the frontal and
temporal cortical areas. At the same time, sufficiently pronounced phenomena associated
with motor imagination were recorded at gamma frequencies. We believe that the increase
in the power of gamma oscillations can be considered as a reflection of the intensification
of specific information processes associated with voluntary forms of motor behavior regu-
lation. The specificity of these changes is indicated, in particular, by their close connection
with the target areas of the cortex that are contralateral to the MI that is performed, as well
as those involved in the formation of spatial images and their relationships.

This fact is confirmed by studies performed using fMRI and MEG methods, which
demonstrated the effects of local growth of high-frequency gamma activity within the
somatosensory cortex in the task of MI repetition [57,58]. Thus, the EEG phenomena
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associated with MI are quite diverse and require thorough and extensive consideration
when creating high-quality classification algorithms for BCIs.

5. Conclusions

Thus, in this study, it was observed that the MI activity of the brain is accompanied
by a number of electrographic phenomena that can be used in BCIs. Motor imaginations
are used by a number of groups [1,42] to create prototypes of such systems, and in terms
of efficiency (reliability, speed control, etc.), they are not inferior to systems operating on
other phenomena, particularly on the basis of P300-evoked potentials. Their significant
advantage is that, on the one hand, they do not require external stimuli and are associated
with more local cortical phenomena than other types of cognitive activity, and, on the other
hand, they are distinguished by a relatively short duration, which is essential for creating
real-time systems. Nevertheless, it is currently possible to form a fairly limited alphabet
of MI control commands. This apparently is due both to the lack of skills of effective MI
activity in a person, with the exception of mental or inner speech [59], as well as to the
complexity of classifying electrographic patterns correlating with visual and proprioceptive
types of MI [60,61]. The development of such classifiers is an urgent task that many groups
of researchers are currently working on.

It is obvious that such important factors as increasing the reliability of methods for
detecting and classifying invariant EEG patterns generated by the user in voluntary and
anthropomorphic mode directly affect the development of BCI technology. The successful
solution of these problems can determine the overall effectiveness and stability of neural
communication systems, which will contribute to the rapid spread of technology among
paralyzed individuals. The demand for these technologies is quite high, both in the
framework of scientific research and in the mass consumer market to solve the problems of
monitoring the functional state of a person, as well as the formation of a new nonmuscular,
auxiliary control channel for external devices for various purposes [62,63].

In this paper, it was experimentally demonstrated that the problem of classifying MI
EEG patterns or equivalents of real movements can be solved effectively by searching for
specific frequency ranges that are individual for the subject. At the same time, the sequential
limitation of the time window of EEG epochs within the framework of the procedure for
finding the best time segment containing target MI patterns additionally contributed to
an increase in the accuracy of classification. In particular, the best classification accuracy
of 71.6 ± 3.9% was obtained when (a) the search for discriminative frequency bands was
performed using power spectral density features, (b) the search for discriminative time
segments was performed on the basis of interchannel correlation coefficient features applied
to the signal filtered in the bands found during the previous step (three best frequency
bands by absolute values of their weights in the linear combinations), and (c) logistic
regression was used to classify the transformed data from the previous step.

In addition, as part of the development of successful classification models suitable for
practical use in the end-user environment, it is necessary to solve the additional task of
significantly improving and developing the experimental paradigm of training subjects
in the neural interface circuit. These preliminary results obtained by us will become the
basis for the development of an adaptive approach in BCI technology. In particular, new
methods of deep and machine learning will facilitate the improvement of the accuracy of
the classification of MI execution. The development of such models is the subject of our
current work.
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