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Abstract: The paper proposes a special technique for microstructural analysis (STMA) of rock samples
based on two provisions. The first one is an algorithm for the automatic detection and digitalization
of microstructures in images of oriented thin sections. The second one utilizes geographic information
system (GIS) tools for an automatized analysis of objects at the micro scale. Using STMA allows
the establishment of geometric features of fissure and pore space of rock samples to determine the
parameters of stress–strain fields at different stages of rock massif deformation and to establish a
relationship between microstructures and macrostructures. STMA makes it possible to evaluate the
spatial heterogeneity of physical and structural properties of rocks at the micro scale. Verification of
STMA was carried out using 15 rock samples collected across the core of the Primorsky Fault of the
Baikal Rift Zone. Petrographic data were compared to the quantitative parameters of microfracture
networks. The damage zone of the Primorsky Fault includes three clusters characterized by different
porosity, permeability, and deformation type. Findings point to the efficiency of STMA in revealing
the spatial heterogeneity of a tectonic fault.

Keywords: microstructural analysis; GIS technology; image analysis; image filtering; microfracture
mapping; porosity; permeability; Primorsky Fault; tectonite; Baikal Rift Zone

1. Introduction

One of the main tasks of tectonophysics and structural geology is to establish the hier-
archical rank of tectonic stress fields from local [1–3] and subregional [4,5] to regional [6–8]
and global [9–12] ones. Depending on the tasks being solved and the scale of the ob-
jects under study, various methods from microstructural and petrophysical analyses to
numerical methods of continuum mechanics and physical modeling are used [13–15]. A
reconstruction of the stress–strain field can be successful only after detailed structural
studies, mapping smallest changes in tectonic deformations and taking into account the
lithological factors and the interaction of structures at different scales [16,17]. Additional
information in many cases can decide the interpretation of the obtained data. For example,
a comprehensive study of the mechanical, hydraulic and seismological properties of a
fault allows the consideration of various components of the fault structure and permits the
creation of a most accurate model of the fault [18–20]. Actually, the structure of a fault zone
being determined provides information forecasting its mechanical behavior [19]. Determin-
ing orientation and distribution of microfractures along a large fault helps in verifying the
tectonophysical data obtained in macrofracture measurements [21]. Additionally, studying
microfractures in oriented rock samples may be used to define paleostress conditions in the
rock at the time when the microfractures formed [22–24].
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Microstructural analysis in geology is mainly used to establish the spatial and tem-
poral relationship between microfracture ensembles of different genetic types, as well as
to reconstruct the stress–strain fields, which act within small volumes of mineral aggre-
gates [25–28]. The technique of traditional microstructural analysis is reduced to statistical
measurements of the position of certain crystallographic or optical elements of grains of
some minerals in the rock. Resting on the typification of orientations for a single mineral
and different minerals in polymineral formations observed in stereograms, S-, B- and
R-tectonites are identified. For S-tectonites the optical axes and other crystallographic
elements of mineral grains are directed in different ways. This is expressed in one or two
maxima in stereograms. B-tectonites in stereograms are characterized by a series of maxima
located within a certain belt, the axis of which is perpendicular to the deformation plane.
Sometimes, rocks are characterized by an orientation with a relatively uniform belt density
of R-tectonite type [29]. One accumulated an extensive database on spatial orientations of
various minerals, textural and structural features of rocks of various genesis and composi-
tion. However, the main problem of the traditional microstructural analysis method is the
technical complexity of its implementation, which implies the use of a four-axis Fedorov
stage mounted on a microscope, the lack of a computer automated software, the need to
obtain a large amount of data and the extremely ambiguous interpretation of the data [10].
Measurements of crystallographic and optical elements of mineral grains in this case have
to be carried out manually, which takes a lot of time.

Cracks and microcracks form mainly in the zone of brittle deformations as a response
to the external stress [9,30–33]. Tectonic stresses result in the formation of permeable
fractures or cause shear disturbances in pre-existing open fractures [34]. In the shallow
crust the brittle deformation is predominant, and the intensity of deformation increases
with depth and is relatively independent on temperature, rock type and strain rate [2].
Brittle deformation significantly depends on the coefficient of friction, the pressure of pore
fluids and the orientation of the structure relative to the axes of the stress–strain field [33,34].
In contrast, at deep crust, ductile deformation is predominant and is highly dependent on
temperature, strain rate and rock type [35]. The temperature increase results in a brittle–
ductile transition, and rocks are characterized by brittle properties at low temperatures
and acquire ductile characteristics at high temperatures (hundreds of degrees). The brittle–
ductile transition usually takes place in the temperature range of 370–400 ◦C [36,37].

Porosity and permeability determine physical properties of the rock and characterize
the fissure-pore space available for the pathway of fluids and deposition of minerals [38].
Porosity and permeability are directly related to the structural properties of the rock and can
be calculated using geometric analysis of fractures [38,39]. Geometric analysis includes the
determination of mean fracture orientation, length, aperture and volumetric density [40–50].
Fracture network parameters can be estimated manually by using semi-automatic and auto-
matic measurements in rock samples [51–54] and indirectly by using electrical conductivity,
Vp and Vs velocity measurements [38]. Other approaches, involving techniques such as
X-ray tomography [55,56] or confocal scanning laser microscopy (CSLM) [57] are also used.

Methods of microstructural analysis always rest on the determination of geometric
parameters of all microfractures, for which its number can reach hundreds of thousands in
a single-oriented thin section. Obviously, without using any special technique of automatic
detection, the solution of this problem is not only technically complex but is also time
consuming. Many works present results of successful automatic lineament detection at
microscales [27,58–60], mesoscales [61,62] and macroscales [61–63]. The development of
digital technologies allows taking a fresh look at microstructural analyses.

The geospatial binding of thin sections allows the performance of microfracture detec-
tion by mapping objects at the area of thin section, which can be a conditional cartographic
basis. GIS techniques can be used to solve spatial problems. In terms of territorial cover-
age, it is customary to distinguish between global GIS, subcontinental GIS, national GIS,
regional GIS, subregional GIS and local GIS [64–66]. Geospatial binding of thin sections
allows the performance of the transition from macro-GIS projects to micro-GIS.
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This paper presents a new approach for the microstructural analysis of rock sam-
ples based on an algorithm of automatically mapping microfractures and their geospatial
binding using GIS tools. The advantages of STMA method are shown by analyzing the
microfractures of rock samples collected across the core of the Primorsky Fault. In the
context of ongoing microstructural studies, given that the studied rock samples belong
directly to the damage zone of the Primorsky Fault, the rocks were characterized by the
type of tectonites among other parameters. In most cases, tectonites are defined as rocks
that have experienced tectonic stress [67,68]. Rocks with pronounced schistosity are pre-
sented by protomylonites, blastomylonites, mylonites and ultramylonites. Rock samples
without obvious schistosity are subdivided into protocataclasites, blastocataclasites, catacl-
asites and ultracataclasites. Mylonites are fine-grained, siliceous, very densely banded or
vein-like rocks resulting from the fine crushing of coarse-grained rocks without noticeable
chemical transformations. Mylonites are the end product of intensive dislocation meta-
morphism [67,68]. Cataclasites are rocks that formed during discontinuous deformations
(brecciation and crushing) of brittle parent rocks. Cataclasites gradually transform into
mylonites via a decrease in grain size and the development of banded textures.

2. Materials and Methods

The research methodology is aimed at identifying the heterogeneity of the fault zone
based on the analysis of the spatial distribution of microfracture parameters. The main
emphasis is conducted on a detailed description of the developed automatic identification
and mapping of microfractures. Figure 1 shows a flowchart of the research protocol.
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Figure 1. Flowchart of the research protocol.

2.1. Area of Study

Oriented rock samples were taken from outcrops across the strike of the Primorsky
deep fault of the Baikal Rift Zone (Irkutsk region, Russia) in the area of the Sarma river
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(Figure 2). The Primorsky Fault is the largest and best-documented neotectonic struc-
ture [69–75] in the region. It belongs to the Obruchev fault system [76,77].

The main thrust event occurred in the Paleozoic [78], but the compression structures
became active again in later tectonic events. The age of the last activity remains poorly
established and varies from Mesozoic to Miocene–Pliocene in different models [78–81]. The
setting of neotectonic regional stress changed from early orogenic shear strike-slip about
30 million years ago to late orogenic extension about 3 million years ago [80]. The faults
of the Obruchev system, which stretch for hundreds of kilometers in the northeasterly
direction, have experienced different stages of evolution and can be studied via field
structural measurements. The main trace of the Primorsky Fault, which was formed at
the final phase of the collapse, is geomorphically expressed as a ledge and is available for
geological surveys for over more than 200 km.
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Figure 2. (A) Geological map of the Primorsky Fault [74,75,81–84]: 1—beach lacustrine deposits of
Lake Baikal and alluvium of river valley terraces; 2—Manzurka Fm. alluvium; 3—Golumets Fm.
alluvium; 4—Bayanday Fm. alluvium; 5—Lower and Middle Cambrian sediments on the Siberian
craton; 6—Atarkhan peridotite–gabbro complex; 7—Ozersk gabbro–diorite complex; 8—Olkhon
migmatite–granite complex; 9—Early Paleozoic metamorphic complexes of the Olkhon terrane;
10—Upper Proterozoic sediments (Baikal Group); 11—Primorsky granite complex; 12—Early Protero-
zoic craton basement; 13—main faults; 14—blastomylonite from the marginal suture of the Siberian
craton; 15—Primorsky Fault; 16—Sarma village; 17—area of study. (B) Scheme of the oriented rock
samples selection within the Primorsky Fault zone near Sarma village: 1—sampling points and their
numbers; 2—Primorsky Fault.

The Primorsky deep fault has been well studied via geological, structural and tectono-
physical methods [85]. The internal structure and dimensions of the zone of influence of
this discontinuity have been studied carefully [73–75]. Due to its geomorphological severity,
excellent exposure and accessibility for study, it is a reference point for paleotectonic recon-
structions. Previously, it was established that, at the neotectonic stage, the main interface of
the discontinuity was formed as a normal fault with an insignificant strike-slip component.
It has been established that the Primorsky Fault had formed under conditions of crustal
extension, as evidenced by the corresponding structural fault pattern. During Cenozoic
rifting, the main displacement of the Primorsky Fault became active as a normal fault with
a very insignificant sinistral strike-slip component [73]. By now, horizons of the Earth’s
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crust within the zone of the Primorsky Fault, which were previously located at seismic
focal depths, have become accessible for visual geological study at the Earth’s surface [86].

2.2. Collection of Rock Samples and Petrographic Analysis

An obligatory condition for the implementation of any microstructural analysis tech-
nique is the collection of spatially oriented samples, for which spatial fixation must be
strictly observed throughout the entire duration of their processing [13,22,24–31]. Sam-
ples for petrographic and STMA studies were collected mainly in the outfall parts of the
Sarma river. Rocky outcrops contain dislocated series of rocks of the Neo-Proterozoic that
had undergone multistage physical and chemical transformations while being exposed
to stress metamorphism. It is specific for amphibolite and greenshale facies of regional
metamorphism.

The collected and analyzed samples of rocks are represented by numerous varieties of
predominantly metamorphic and igneous rocks, as well as their metasomatically altered
varieties. Shales (55-1, 55-3, 56-1, 57-1, 60-3, 81-3, 81-4, 81-5), gneissose granite (58-1, 59-1,
59-2, 60-1), plagiogranites (55-3, 55-4), amphibolites (60-2) and gabbro (61-5), varied in
mineral composition, were distinguished (Table 1). The studied rock samples are classified
as mylonites (81-4), blastomylonites (55-1, 55-3, 81-3, 81-5), cataclasites (55-4, 60-2, 60-3),
blastocataclasites (56-1, 57-1, 61-5) and host rocks (58-1, 59-1, 59-2, 60-1), which were not
subjected to intensive deformations. Among other characteristics, the type of deformation
(brittle or ductile) was assessed, and metamorphic and metasomatic changes were marked.

Table 1. Petrographic description of rock samples.

Sample
Number Petrographic Type Tectonite Type Deformation

Mode

Main
Minerals * and
Proportions (%)

Metamorphic and
Metasomatic

Transformations

55-1
Quartz-Sericite-

Chlorite
shale

Blastomylonite Brittle Q(60), Fsp(20),
Src(10), Cl(5)

Complete recrystallization
of quartz; sericite is

formed by plagioclase;
actinolite is chloritized

55-3

Contact rock:
Quartz-Actinolite-

Chlorite
shale–

Plagiogranite

Blastomylonite Brittle and ductile Fsp(60), Q(30),
Cl(5), Ac(3)

Partial recrystallization of
quartz; sericite is formed

by plagioclase; actinolite is
chloritized

55-4 Plagiogranite Mylonite Brittle Q(60), Fsp(30),
Ac(5), Cl(3), Src(2)

Partial recrystallization of
quartz; sericite is formed

by plagioclase

56-1
Plagioamphibo-

lite
shale

Mylonite Brittle Q(50), Fsp(40),
Src(5), Cl(3), Ac(2)

Partial recrystallization of
quartz; sericite is formed

by plagioclase; actinolite is
chloritized

57-1
Chlorite-Sericite-
Plagioquartzite

shale
Blastocataclasite Brittle

Q(50), Fsp(30),
Src(15), Cl(5),

Ac(<1)

Partial recrystallization of
quartz;

sericite is formed by
plagioclase; actinolite is

chloritized

58-1 Leucocratic
gneissose granite Host rock Brittle Q(55), Fsp(35),

Mu(2), Bt(2) Am(1) Quartz is slightly granular

59-1 Leucocratic
gneissose granite Host rock Brittle Q(50), Fsp(35),

Mu(5), Bt(4) Am(1) Quartz is slightly granular

59-2 Leucocratic
gneissose granite Host rock Brittle Q(50), Fsp(35),

Mu(7), Bt(5) Am(3)

Quartz is slightly
granulated; about 10%

potassium feldspar
saussuritized
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Table 1. Cont.

Sample
Number Petrographic Type Tectonite Type Deformation

Mode

Main
Minerals * and
Proportions (%)

Metamorphic and
Metasomatic

Transformations

60-1 Gneissose granite Host rock Brittle Q(55), Fsp(30),
Bt(10)

Saussurite developed
according to potassium

feldspar; quartz is slightly
granulated

60-2 Amphibolite Cataclasite Ductile Am(55), Ep(25)
Q(15), Fsp(5)

Recrystallization of quartz
by schistosity

60-3 Amphibolite shale Cataclasite Ductile Bt(50), Am(40),
Q(5), Fsp(5)

Recrystallization of quartz
by schistosity; amphibole

is replaced by biotite

61-5 Gabbro Blastocataclasite Brittle Am(35), Fsp(30),
Px(25), Bt(5), Q(5)

Amphibole is substituted
with biotite; quartz is

recrystallized and
switched into the matrix

81-3 Epidote shale Blastomylonite Brittle and ductile Ep(60), Cl(30),
Q(5),

Zone of stress
metamorphism;

a matrix of ground
material of hydromicas

formed over amphiboles;
quartz is granulated

81-4 Amphibolite shale Mylonite Brittle and ductile
Cl(40), Fsp(20),
Am(10), Ep(20),

Q(10)

Zone of stress
metamorphism;

amphibole is replaced by
chlorite and stretched into
ribbons; Matrix–ground
materials of potassium
feldspar, chlorite, iron

hydroxide

81-5 Epidote shale Blastomylonite Brittle and ductile Ep(35), Q(15),
Cl(40), Ca(10)

Zone of stress
metamorphism;

a matrix of ground
material of hydromicas

formed over amphiboles;
quartz is granulated

* Main minerals: Q—Quartz; Fsp—Potassium feldspat; Am—Amphibole; Px—Pyroxene; Ep—Epidote;
Cl—Chlorite; Ac—Actinolite; Src—Sericite; Bt—Biotite; Mu—Muscovite; Ca—Calcite.

2.3. Fotos of Thin Sections

Images of oriented thin sections for microstructural mapping were obtained using
an Olympus BX-51 optical microscope with an Olympus Camedia C7070zoom digital
camera. To determine the orientation of microfractures in a GIS project and to calculate
their geometric parameters (strike azimuth, length and aperture), all studied thin sections
must be strictly oriented in space. This requirement must also be taken into account
when taking photographs of individual parts of an oriented thin section. Separate parts of
oriented thin sections were photographed in such a manner that a panoramic image of the
entire section could be automatically constructed for them. Images of thin sections should
have a resolution sufficient for analysis, which corresponds to at least 10,000 pixels along
the smallest side. Photomosaics collected from separate sections should be provided with a
scale ruler. Images were saved in TIFF format. Figure 3 shows thumbnail images of the
studied thin sections.
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microscope with the Olympus Camedia C7070zoom digital camera.

2.4. Special Technique of Microstructural Analysis (STMA)

Given that the focus of the research is studying microfractures, the software used in
STMA should implement and automate the following basic operations:

• Implementation of binding the rasters (images) of individual parts of a thin section, as
well as their filling and docking in a single coordinate system;

• Determination of relative coordinates X and Y of any point in a thin section;
• Marking all microstructures within the thin section;
• Automatic determination and measurement of geometrical parameters of microstruc-

tures (strike azimuth, length and aperture);
• Identification of various ensembles and microstructure generations depending on the

values of azimuth and their separate marking;
• Possibility of marking objects over type (microcracks filled with secondary fluid

inclusions (FIPs), open or partially mineralized microcracks and microcracks filled
with ore material);

• Calculation of porosity and permeability in paleo and modern conditions at various
stages of deformation of geological bodies;

• Determination of quantitative and percent ratios of different types of microstruc-
tures and presentation of the results in the form of diagrams (graphs, rose-diagrams
and histograms).

2.4.1. Automatic Mapping of Microfractures

At the first stage of STMA, images of thin sections were mapped in a local rectangular
coordinate system using QGIS (a free and open-source cross-platform GIS application). The
global Mercator projection of Google Maps (EPSG–900913) [87] was used to display the
image of the thin section.

At the second stage, a directional filtering of the image was carried out to remove
the noise from sections located within a certain area of the image but without blurring its
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edges. For this purpose, the Sobel operator was used. It is a discrete differential operator
that calculates the approximate value of the image brightness gradient. The result of
applying the Sobel operator at each point of the image is the vector of brightness gradient
at that point.

The directional filters induce an optical effect of shadow at the image, as if it was illu-
minated by an oblique light. Directional filters are applied to the image using a convolution
process by means of constructing a window, as a rule a (3 × 3) pixels box (Table 2) of Sobel
kernel filters (Table 3). Sobel kernels generate an effective and faster method for evaluating
lineaments (linear objects) in four principal directions [88–91].

Table 2. Floating image matrix, size 3 × 3.

Z1 Z2 Z3
Z4 Z5 Z6
Z7 Z8 Z9

Table 3. Sobel operator masks for four principal directions of filtration.

N-S (0◦) NE-SW (45◦) E-W (90◦) NW-SE (135◦)

−1 0 1 −2 −1 0 −1 −2 −1 0 1 2
−2 0 2 −1 0 1 0 0 0 −1 0 1
−1 0 1 0 1 2 1 2 1 −2 −1 0

The Sobel operator for horizontal and vertical brightness differences is defined by the
following functions.

Gx = (Z7 + 2 × Z8 + Z9) − (Z1 + 2 × Z2 + Z3) (1)

Gy = (Z3 + 2 × Z6 + Z9) − (Z1 + 2 × Z4 + Z7) (2)

Based on these data, it is possible to calculate the value of the brightness difference.

G =
√

(Gx2 + Gy2) (3)

The directional filtering operation narrows the boundary that exists between the values
of neighboring pixels. In this study, directional filtering is used to improve the boundaries
of gradient transition between pixel values in order to highlight certain characteristics of
the image resting on their spatial frequency associated with textural features [92]. The
original image of the section consists of three spectral channels: R, G and B. The R channel
must be fed to the filter input, since the data obtained in red and infrared spectral ranges
are more sensitive to structural features. Four filtered images were produced by ENVI
software related to the directions N-S, NE-SW, E-W and NW-SE (Figure 4).

At the third stage, the automatic extraction of lineaments is carried out. At this stage,
the first step is the edge detection procedure, which provides information about areas of
sharp changes in the intensity of neighboring pixels by applying the Canny edge detector,
and the second step is the detection of lineaments [93]. These steps can be performed using
the “LINE” module of the PCI Geomatica software, which is a widely used module for
automatic extraction of lineaments [93]. There are two categories of parameters in this
module: the first category controls the edge detection step, the second one detects and
extracts curves (Table 4).
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Table 4. Parameters used for the PCI Geomatica LINE module.

Parameter Description Range and Unit

Edge Detection

RADI Filter radius. It specifies the radius of the edge
detection filter (Filter de Canny). 0–8192 (pixel)

GTHR
Gradient threshold. It specifies the threshold for
the minimum gradient level for an edge pixel to

obtain a binary image (Filter de Canny).
0–255

Curve extraction

LTHR Length threshold: It specifies the minimum
length of curve to be considered as lineament 0–8192 (pixel)

FTHR
Line fitting error threshold: It specifies the

maximum error (in pixels) allowed in fitting a
polyline to a pixel curve.

0–8192 (pixel)

ATHR Angular difference threshold: It is the maximum
angle between two vectors for them to be linked. 0–90 (degrees)

DTHR
Linking distance threshold: It specifies the

minimum distance between the end points of
two vectors for them to be linked.

0–8192 (pixel)

A number of experimental tests was performed using various combinations of values
for each parameter of the LINE module to make an automatic selection of lineaments
(microfractures) directly related to the structural and texture features in thin section images.
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Parameters of the LINE module were verified visually. Default and calculated values of
parameters of the LINE module are presented in Table 5.

Table 5. Default and verified values of the PCI Geomatica LINE module parameters for microfrac-
ture extraction.

Thresholds and Units Default Value Verified Value

RADI (pixels) 10 10
GTHR 100 35

LTHR (pixels) 30 60
FTHR (pixels) 3 5

ATHR (degrees) 30 45
DTHR (pixels) 20 20

Operating the program gives results that highlight linear objects, marking microfrac-
tures (Figure 5).
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Directional filtering and Canny edge detecting results in constructing 4 groups of
linear objects. The general ensemble of lineaments, obtained by a simple addition of the
4 groups, can be interpreted as the ensemble of detected microfractures. Figure 6 shows the
image of a thin section with highlighted microfractures.
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2.4.2. Microfracture Characteristics

The main quantitative parameters of the identified microfractures were calculated
in QGIS using the Field Calculator tool [94]. The Field Calculator in the attribute table
performs calculations based on existing attribute values or specific functions, such as
calculating the length or the area of geometric objects. The results can be written to a new
attribute column or used to update an existing column. The following parameters were
automatically calculated for microfractures:

• Number of objects (microfractures);
• X and Y coordinates of the ends;
• Cumulative length;
• Length of each microfracture;
• Mean aperture of each microfracture;
• Length of each straight segment of each microfracture;
• Strike azimuth of each straight segment of each microfracture;
• Number of intersections of microfractures;
• Studied area of thin section, etc.

The spatial distribution of microfractures over the area of the section was analyzed
by constructing density maps (P20) [95] using the Line Density tool. Rose diagrams of
microfractures were built according to the values of their spatial orientation and taking into
account their lengths. This allowed the visual assessment of the nature of distribution, the
significance and severity of the selected linear objects in the thin section and to compare
the intensity of deformations that resulted in the origination of a particular ensemble of
microfractures at different stages of tectogenesis. Constructing rose diagrams has made it
possible to carry out a comparative analysis of microfracture orientations and to identify
different systems and generations of microfractures.

2.4.3. Determination of Porosity and Permeability

Porosity and permeability of rocks were determined via the quantitative method
proposed in [27,49]. The mapped microfractures were considered as a network of fractures.
Cracks were approximated by disks. It was assumed that the maximum crack length
corresponds to the disk diameter. In this study, the assumption was made that all the open
microcracks that formed at a certain stage of deformation are interconnected. Thus, an
equivalent crack with a total length of the disk diameter could be introduced. The effective
porosity can be determined as follows:

Φ = (L·π·e)/S (4)
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where L is the total length of a certain crack population, S is the area of the studied surface
and e is the mean aperture of the crack ensemble [27,49].

The definition of fracture permeability is also based on the assumption that all frac-
tures are connected and can be approximated by disks with an aperture equivalent to the
fracture aperture. An assumption was introduced that cracks propagated perpendicularly
to the plane of the oriented section and formed a non-uniform spatial distribution. This
assumption allows to determine the microcrack permeability (Kf) [27]:

Kf = (ε·π·Nf·c2·e3)/12 (5)

where ε is the crack wall roughness coefficient, Nf is the volume density of crack population
f, c is the mean value of half-length of the cracks in the ensemble and e is the mean aperture
of cracks.

If the surface density and half-length of all cracks are known, it is possible to determine
their volumetric density [27,94]:

Nf = 2/(S·π·c·sinθ) (6)

where θ is the angle of crack incidence. If we assume that the cracks are perpendicular to
the plane of the thin section, then sinθ = 1.

Thus, Formula (5) can be simplified as follows [27]:

Kf = (ε·c·e3)/6S (7)

where Kf is the total or directive permeability (for a certain population of cracks), expressed
in square meters (m2) or in darcy (1 darcy = 0.987·10−12 m2).

It should be noted that the results of laboratory tests are in good correlation with the
values of porosity and permeability calculated with this method [96–98].

3. Results

Using the STMA, quantitative parameters of microfractures in thin sections were
calculated. The mean length of one object (microfracture segment) was about 7.5 µm. The
investigated area varied from 150 to 370 mm2. Microstructural parameters are presented
in Table 6 and in Figure 7. Samples 57-1 and 60-2 show maximum cumulative length and
maximum number of microfractures (see Table 6 and Figure 7A,B). Minimal values of
these parameters are observed in samples 55-3, 55-4, 81-4 and 81-5. The remaining samples
are characterized by average values. The L/S ratios (see Table 6 and Figure 7C) reached
maxima in samples 57-1, 60-2, 60-3, 61-5 and minima in samples 55-4, 81-3, 81-4, 81-5.
Maximum values of the fracture intensity (F = N/L) [99] were observed in samples 61-5,
81-3, 81-4, 81-5 and the minimum values–in samples 55-4, 60-2 (see Table 6 and Figure 7D).
In general, the distribution of the fracture intensity is extremely nonuniform. Porosity and
permeability can be most informative parameters for assessing the degree of deformations,
since they are directly related to the physical properties of rocks. Porosity and permeability
vary in a similar manner (see Table 6 and Figure 7E,F). Four clusters can be distinguished.
The first cluster shows increased values of porosity and permeability. It includes samples
60-2, 60-3 and 61-5. The second cluster shows average values of porosity/permeability
typical for samples 57-1, 58-1, 59-1 and 59-2. The third cluster includes only sample 60-1
and is associated with below-average values. Minimum values characterize the fourth
cluster, which includes samples 55-1, 55-3, 55-4, 56-1, 81-3, 81-4 and 81-5. Figure 8 shows
distributions of L/S and N/L versus permeability.
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Table 6. Statistical parameters of microfractures.

Sample
Number

Cumulative
Length,
mm (L)

Mean
Aperture,
Microns

(e)

Number of
Objects

(N)

Studied
Area, mm2

(S)

Fracture
Intensity
F = N/L

L/S Porosity, % Permeability,
m2

55-1 2416.76 3.1 326,112 282.52 0.0367 0.1156 1.13 1.44 × 10−15

55-3 1349.20 2.7 177,193 151.99 0.0357 0.1200 1.02 9.84 × 10−16

55-4 1168.48 3.3 142,813 287.83 0.0332 0.0549 0.57 8.22 × 10−16

56-1 1849.79 2.6 251,385 243.86 0.0369 0.1025 0.84 7.52 × 10−16

57-1 3579.96 4.5 484,590 337.23 0.0368 0.1435 2.03 5.45 × 10−15

58-1 2233.05 4.8 292,253 251.44 0.0356 0.1200 1.81 5.53 × 10−15

59-1 2801.10 4.9 379,502 306.55 0.0369 0.1235 1.90 6.05 × 10−15

59-2 2387.49 4.8 309,648 251.95 0.0353 0.1281 1.93 5.90 × 10−15

60-1 2881.68 3.9 384,124 354.89 0.0363 0.1098 1.34 2.71 × 10−15

60-2 3444.97 5.4 424,009 326.80 0.0335 0.1425 2.42 9.35 × 10−15

60-3 2648.34 5.6 356,331 242.95 0.0366 0.1473 2.59 1.08 × 10−14

61-5 2501.05 5.3 346,100 259.61 0.0376 0.1302 2.17 8.08 × 10−15

81-3 1958.90 2.9 278,241 325.88 0.0386 0.0812 0.74 8.26 × 10−16

81-4 1241.22 3.2 173,286 276.85 0.0380 0.0606 0.61 8.27 × 10−16

81-5 1173.13 3.1 166,625 371.26 0.0386 0.0427 0.42 5.30 × 10−16
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Fracture density maps (P20) [100] of the identified microfractures were built to assess
the most permeable zones in the thin section. These maps show the areal distribution of
microfractures (Figure 9).
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Microfractures in the samples 56-1, 57-1, 59-1, 60-2, 60-3 and 61-5 have relatively
uniform spatial distributions. In other thin sections, the distribution of microfractures is
extremely uneven. Most often, the areas of maximum density of microfractures are confined
to linearly elongated zones oriented in a certain manner. In sample 55-3, the density
diagram clearly shows the contact of two rocks, which strike northeast. The rocks differ in
the density of microfractures. Figure 9 also shows rose diagrams microfracture orientation.
The results of orientation measurements can be used to reconstruct stress–strain fields,
as well as to indirectly assess the degree of deformations that resulted in the origination
of microfracture ensembles. In this paper, only the predominant directions of strikes of
microfracture ensembles are considered. For a more detailed analysis, it is necessary to rank
microfractures over length and orientation intervals, as well as structural and genetic types
in order to identify individual ensembles associated with certain stages of deformations and
parameters of the acting stress–strain field [6–9]. Samples 55-3, 59-1, 59-2, 60-1, 60-2, 60-3,
81-3 and 81-4 have predominantly northeastern orientation of microfractures. In samples
55-1 and 81-5, the microfractures are developed along the latitude with slight deviations to
the northwest and northeast, respectively. Predominant northwestern orientations were
identified in thin sections 55-4 and 58-1; a less pronounced northeastern orientation is
also distinguished here. Samples 56-1 and 57-1 show north–northeastern orientations
of microfractures. In the sample 61-5, microfractures are oriented almost uniformly in
all directions.

A comparison of petrographic analysis data to the results of STMA reveals a high
correlation. Thus, it was possible to identify clusters that characterize the heterogeneity of
the fault zone. Four clusters were identified (Figure 10).
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Cluster I shows the highest permeability. It includes samples of amphibolites, am-
phibolite schists and gabbro, which, by the type of tectonite, belong to cataclasites and
blastocataclasites. Predominantly brittle deformations manifest in this area.

Cluster II shows lower permeability, which corresponds to host rocks represented by
leucocratic granite gneisses. Brittle deformations also prevail here.
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Cluster III was identified via only a single gneissose granite sample. It shows less
pronounced brittle deformations, and it is a blastocataclasite according to the type of
tectonite. The identification of this cluster is in doubt.

Cluster IV is represented by shales of different mineral composition and, to a lesser
extent, by transformed plagiogranites. Cluster IV characterizes the transition from brittle to
ductile deformations; it mainly includes mylonites and blastomylonites. Moreover, this cluster
coincides with the zone of stress metamorphism established via petrographic analysis.

In order to characterize the fault zone, it is important to understand the change in
the main quantitative characteristics of microfractures with distance from the fault trace
(Figure 11). The total length and number of microstructures naturally increase with distance
from the fault trace (Figure 11A). At the same time, a local maximum is fixed in the interval
of 400–500 m, which was established in one sample (57-1). The distributions of L/S
ratios and fracture intensity (N/L) show heterogeneous distribution (Figure 11B). In the
immediate vicinity of the fault trace, the L/S values are in the range of 0.043–0.120. At a
distance of more than 400 m from the fault trace, the values vary from 0.110 to 0.150. The
fracture intensity near the fault trace varies in a wide range—from 0.033 to 0.039. Then, the
values decrease linearly again to 0.033 with distance. It should be noted that all values of
the N/L parameter are generally in a very narrow range. The porosity and permeability
show a similar trend (Figure 11C). They are characterized by the lowest values near the
fault trace (up to 200 m) and increase with distance from 400 to 1100 m. The maxima are
reached at a distance of more than 1200 m.
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4. Discussion

The damage zone of the fault is usually characterized by a spatial heterogeneity of
physical properties of rocks, types of their deformations and the development of secondary
structures and microstructures [21,26]. At the same time, it is assumed that there is a
certain zonality within this zone, the identification of which is one of the most important
tasks of structural geology [6,18,21,24,33,69]. The solution of this problem is extremely
difficult, since most fault structures are characterized by a long history of evolution and a
successive change of several stages of deformations with certain parameters of the stress-
strain field. The developed STMA method, using the GIS tools, significantly reduces the
complexity of identifying and mapping microfractures in oriented thin sections, measuring
and calculating their spatial and statistical parameters. The method provides necessary
opportunities for a most comprehensive description and analysis of microfractures.

The Primorsky Fault is characterized by a long geological and tectonic history difficult
for reconstruction. During its evolution it passed through numerous stages, including
compression, strike-slip and tension [74,75,79,80]. The main challenge for a researcher is to
restore the sequence of these stages. Microstructural analysis makes it possible to obtain
additional information, which allows the identification of the stages of deformations and
the reconstruction of the evolution of tectonic stress fields. At the same time, the STMA
technique remains quite difficult to implement, and the process of sample preparation takes
a long time. The first problem is the selection of a statistically significant number of oriented
rock samples from outcrops. In the presented study, the main tasks were to confirm the
efficiency of the developed approach and demonstrate its advantages. Therefore, the results
of the analysis of 15 rock samples are preliminary. In the future, it is necessary to increase
the density of rock sampling for a more comprehensive analysis of the heterogeneity of the
fault zone, as well as to carry out selection along profiles across the fault strike throughout
the entire damage zone.

In this study, fluid transfer properties are used as indicators of structural features
of rock samples and probable heterogeneity of the fault zone. Porosity and permeability
are in agreement with the results of petrographic analysis. It allows the identification of
zones that characterize the heterogeneity of the fault. It is possible to create a preliminary
scheme of heterogeneity of the fault (Figure 12). Three zones, which are characterized by
different values of porosity and permeability, types of deformations and types of tectonites,
were identified. The closest to the fault trace zone is characterized by the minimum values
of porosity and permeability. Blastomylonites and mylonites formed there. The spatial
distribution of parameters indicates intensive deformations within a zone 200 m thick.
This zone can be considered as the fault core. During the formation of the network of
microfractures, brittle and ductile deformations presumably took place. In the transition
to the middle zone, an increase in porosity and permeability is observed. Rock samples
mainly consist of cataclasites, and brittle deformations predominate. The farthest zone from
the fault trace is characterized by the highest porosity and permeability; cataclasites and
blastocataclasites are predominant there, and brittle deformations dominate. This model is
consistent with most of the previously proposed models of fault zones [11,16–21,33,69].
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Figure 12. Scheme of heterogeneity of the Primorsky Fault zone based on microstructural analysis:
1—Sampling points and their numbers; 2—Primorsky Fault; 3—Cluster with low porosity and
permeability, zone of blastomylonites and brittle and ductile deformations; 4—Cluster with medium
porosity and permeability, zone of cataclasites and brittle deformations; 5—Cluster with high porosity
and permeability, zone of cataclasites and blastocataclasites and brittle deformations.

Tectonophysical studies usually result in detecting variations of the parameters of
the stress–strain field, which, in its turn, makes it possible to reconstruct the sequence
of changes in deformations [3–12]. At the microscale, this issue can be resolved by
studying fluid inclusion planes (FIPs) as tectonic indicators of changing stress–strain
fields [23,27,48,49]. In studying the oriented sections of the collected samples, it was found
that most of the microcracks are of mode I [34,47]. Resting on this fact, Figure 13A shows
a preliminary scheme for interpreting the orientations of principal axes of stress fields.
It should be noted that the identified orientations probably reflect the most pronounced
stages of deformation. The preliminary interpretation of the position of stress axes for the
sample 61-5 is ambiguous. Figure 13B shows the interpretation of the modern stress–strain
field, identified by conducting an analysis of lineaments [75,101,102] in the area of the
Sarma River. The orientation of the axes of modern stress field does not coincide with the
orientation of the main axes of the stress fields identified in single samples. This suggests
that main deformations observed in rock samples took place in previous geological epochs.
It is worth mentioning that the presented results cannot be considered as final ones and a
complete sequence of stress field changes can be reconstructed only based on a detailed
study of cracks of various genetic types and an identification of their generations.
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Figure 13. Scheme for interpreting the orientations of the principal axes of stress fields. (A) Interpreta-
tion of orientations of the main axes of the stress field performed for single rock samples based on the
analysis of rose diagrams of microfractures, taking into account the fact that most studied microstruc-
tures are cracks of mode I; (B) interpretation of the orientations of principal axes of the modern
stress field, performed via the analysis of lineaments in the area of the Sarma River [75,101,102].
1—sampling points and their numbers; 2—Primorsky Fault; 3—cracks of mode I; 4—pair cracks of
mode II; 5—orientation of the main axes of compression (red) and tension (blue).

5. Conclusions

A special technique of microstructural analysis (STMA) that utilizes advantages of GIS
technologies is presented. Applying the GIS approach simplifies detection, vectorization
and processing of large amounts of microstructural data (one thin section can contain up to
105 cracks). The GIS tools of STMA makes it possible to link all collected samples and their
detected characteristics to maps of different types, as well as to simultaneously analyze
microstructures and macrostructures identified via topographic and tectonic map data
and satellite images. There is a unique possibility of linking and upscaling macro-, meso-
and micro-characteristics of a rock massif, as well as restoring the sequence of changes in
tectonic stress–strain fields at different scale levels and times of origination.

Applying the STMA algorithm, the structure of the damage zone of the Primorsky
Fault was detected. Three permeable zones that are consistent with the results of petro-
graphic studies have been identified. The thickness of the zone of most intensive deforma-
tions is estimated as 10–20 m.
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