
����������
�������

Citation: Park, J.-H.; Farkhodov, K.;

Lee, S.-H.; Kwon, K.-R. Deep

Reinforcement Learning-Based DQN

Agent Algorithm for Visual Object

Tracking in a Virtual Environmental

Simulation. Appl. Sci. 2022, 12, 3220.

https://doi.org/10.3390/

app12073220

Academic Editor: José Sánchez

Moreno

Received: 17 January 2022

Accepted: 15 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Reinforcement Learning-Based DQN Agent Algorithm for
Visual Object Tracking in a Virtual Environmental Simulation
Jin-Hyeok Park 1, Khurshedjon Farkhodov 2, Suk-Hwan Lee 3 and Ki-Ryong Kwon 1,*

1 Department of IT Convergence and Application Engineering, Pukyong National University,
Busan 48513, Korea; mons88@pukyong.ac.kr

2 Department of Artificial Intelligence Convergence, Pukyong National University, Busan 48513, Korea;
farkhodovxf@pukyong.ac.kr

3 Department of Computer Engineering, Dong-A University, Busan 49315, Korea; skylee@dau.ac.kr
* Correspondence: krkwon@pknu.ac.kr; Tel.: +82-51-629-6257

Abstract: The complexity of object tracking models among hardware applications has become a
more in-demand task to accomplish with multifunctional algorithm skills in various indeterminable
environment tracking conditions. Experimenting with the virtual realistic simulator brings new
dependencies and requirements, which may cause problems while experimenting with runtime
processing. The goal of this paper is to present an object tracking framework that differs from
the most advanced tracking models by experimenting with virtual environment simulation (Aerial
Informatics and Robotics Simulation—AirSim, City Environ) using one of the Deep Reinforcement
Learning Models named as Deep Q-Learning algorithms. Our proposed network examines the envi-
ronment using a deep reinforcement learning model to regulate activities in the virtual simulation
environment and utilizes sequential pictures from the realistic VCE (Virtual City Environ) model as
inputs. Subsequently, the deep reinforcement network model was pretrained using multiple sequen-
tial training image sets and fine-tuned for adaptability during runtime tracking. The experimental
results were outstanding in terms of speed and accuracy. Moreover, we were unable to identify
any results that could be compared to the state-of-the-art methods that use deep network-based
trackers in runtime simulation platforms, since this testing experiment was conducted on the two
public datasets VisDrone2019 and OTB-100, and achieved better performance among compared
conventional methods.

Keywords: object tracking; object detection; deep learning; deep reinforcement learning; deep
Q-network; DQN; AirSim; virtual simulation environment; virtual drone

1. Introduction

Visual object tracking is a classic computer vision problem that entails detecting an
object in a scene and distinguishing it from other objects in each frame. In sequential
frames, it might be static or dynamic. To our knowledge, there are a slew of fundamental
challenges to visual object tracking, including occlusion, motion blur, background clutter,
ambient illumination fluctuations, etc. To address these issues, the most common tracking
approaches [1–4] monitor specific object classes utilizing a variety of feature learning algo-
rithms. However, several other tracking techniques offer great efficiency and competitive
outcomes when compared to the state-of-the-art object tracking models. Nevertheless,
they still have constraints that need to be addressed in order to achieve high accuracy and
quicker tracking performance under difficult environmental circumstances.

There are certain tracking filters [5,6] and object-detection-based models [7,8] that
may be competitive alternatives to classic methods, but they still have drawbacks when
compared to deep network-based tracking strategies.

Despite the relative success of conventional tracking approaches [9–11], deep convolu-
tional neural network (Deep CNN)-based visual object tracking models [12–14] have gained

Appl. Sci. 2022, 12, 3220. https://doi.org/10.3390/app12073220 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073220
https://doi.org/10.3390/app12073220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12073220
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073220?type=check_update&version=2

Appl. Sci. 2022, 12, 3220 2 of 18

popularity in recent years. The popularity and advantages of CNN-based trackers may be
explained in two ways: firstly, by their tracking robustness, and secondly, by the highly
efficient feature representations located inside their detection units. In the majority of target
tracking situations, pretrained CNN classifiers were employed [11,15,16] for finding objects
and classifying them, or cropping and regressing methods [9,10,17]. However, the disparity
between the CNN-based feature representation for classification and the tracking algorithm
has an impact on the output of the final tracking results. Furthermore, the pretrained
CNN classifier fails to function well in the challenging environment of the tracking process,
where the captured spatial features are not explored thoroughly during training.

Nonetheless, tracking by detection method has been proven to be effective in nu-
merous difficult tracking circumstances [11,18,19] where CNN was used in training and
superior tracking results were finally obtained compared to standard target trackers. Un-
fortunately, in the event of a visually crowded scene with numerous occluded frames and a
small distance of correlation, targeted items may be missed. The basic strategy and goal
of CNN-based models relies on a target classification approach. In addition, an object
classification model will be used to address a backdrop cluttering problem. Consequently,
there is a necessity to investigate the ability of deep learning models to automatically
learn effective features in a virtual environment that uses drone agents with spatial and
temporal constraints. In particular, it should be considered to make a long–short term
feature learning strategy and classify objects into identical target classes with the proposed
end-to-end model.

The motivation for this study was to develop an object tracking algorithm capable
of learning and tracking the target using deep reinforcement learning and an artificial
intelligence network model in a wide variety of skills and abilities that can compete with
other models in complicated tasks. In this study, we created a novel tracker that was
based on a sequential recurrent neural network [20,21] prediction and tracking architecture.
The deep reinforcement learning-based Q-network agent tracker was integrated with the
high-dimensional cross-platform virtual simulator for drones called AirSim.

For testing reasons, we built our unique tracking model using the AirSim [22] (Aerial
Informatics and Robotics Simulation) simulator platform. The platform enables the algo-
rithm to be evaluated in a realistic virtual environment that includes elements such as
pedestrians, automobiles, trees, street signs, buildings, and weather conditions. Figure 1
shows the virtual CityEnviron model scenario with a virtual AirSim drone from the Mi-
crosoft AirSim v1.2 version. The inspiration and idea for our proposed model came from
deep reinforcement learning for human-level control [23], which uses a specific architecture
in conjunction with a deep convolutional network [24] with hierarchical layers of tiled con-
volutional filters integrated alongside artificial neural networks in order to learn concepts
such as object categories directly from raw sensory data.

Our proposed deep reinforcement learning and tracking technique is thought of as a
sequential feature learning/prediction and decision-making technique for drone agents to
monitor actions’ rewards through environment sequence and to acquire a tracking output
of the recommended methodology. Traditionally, we estimated the adaptive action-value
function using a deep sequential neural network [25] such as

Qπ(s, a) .
= Eπ [Gt|s, a] = Eπ

[
∞

∑
k=0

γkrt+k+1|s, a

]
(1)

where the equation estimates the expected total returns, also known as the sum of rewards
Gt beginning from a fixed location state s and performing an action a in accordance with
some policy π.

Appl. Sci. 2022, 12, 3220 3 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 19

Figure 1. Microsoft AirSim v1.2 is a realistic virtual CityEnviron environment scenario with an Air-
Sim drone simulator from various angles on a city map.

Our proposed deep reinforcement learning and tracking technique is thought of as a
sequential feature learning/prediction and decision-making technique for drone agents to
monitor actions’ rewards through environment sequence and to acquire a tracking output
of the recommended methodology. Traditionally, we estimated the adaptive action-value
function using a deep sequential neural network [25] such as

𝑄గ(𝑠, 𝑎) ≐ 𝔼గሾ𝐺௧|𝑠, 𝑎] = 𝔼గ ൥෍ 𝛾௞𝑟௧ା௞ାଵ|𝑠, 𝑎ஶ
௞ୀ଴ ൩ (1)

where the equation estimates the expected total returns, also known as the sum of rewards 𝐺௧ beginning from a fixed location state s and performing an action a in accordance with
some policy 𝜋.

Reinforcement Learning (RL) algorithms are mostly based on the above-mentioned
Equation (1), which estimates the best value function from sufficient experience to obtain
the excellent value estimation. Our proposal utilizes a Q-learning algorithm that uses an
action-value function with particular parameters to learn and obtain the best action-value
by repeating the learning process. Basically, the reinforcement learning method is known
to be unstable as a nonlinear function approximator in a neural network to represent the
action-value (known as Q) function given above. The 𝑄గ(𝑠, 𝑎) equation function above
estimates the expected total returns by taking some policy 𝜋. 𝜋(𝑎|𝑠) is the policy that
maps from state observation s to action a. Typically, stochastic policies are used; however,
deterministic policies can also be specified. Most of the useful RL algorithms heavily rely
on the above value function and will be obtained from sufficient experience, the optimal
policy 𝜋∗ that can be found in every state, and taking the greedy action that leads to the
state with the highest value estimations. The process will be applied continuously for
every state environment as an iterative update.

The rest of this article is organized as follows. Section 2 will give an overview of deep
network-based object tracking descriptions and related work. In Section 3, we describe the
deep reinforcement learning-based DQN agent drone tracking algorithm integrated with
the Virtual CityEnviron (VCE) simulation platform. Experimental simulation results for

Figure 1. Microsoft AirSim v1.2 is a realistic virtual CityEnviron environment scenario with an
AirSim drone simulator from various angles on a city map.

Reinforcement Learning (RL) algorithms are mostly based on the above-mentioned
Equation (1), which estimates the best value function from sufficient experience to obtain
the excellent value estimation. Our proposal utilizes a Q-learning algorithm that uses an
action-value function with particular parameters to learn and obtain the best action-value
by repeating the learning process. Basically, the reinforcement learning method is known
to be unstable as a nonlinear function approximator in a neural network to represent the
action-value (known as Q) function given above. The Qπ(s, a) equation function above
estimates the expected total returns by taking some policy π. π(a|s) is the policy that
maps from state observation s to action a. Typically, stochastic policies are used; however,
deterministic policies can also be specified. Most of the useful RL algorithms heavily rely
on the above value function and will be obtained from sufficient experience, the optimal
policy π∗ that can be found in every state, and taking the greedy action that leads to the
state with the highest value estimations. The process will be applied continuously for every
state environment as an iterative update.

The rest of this article is organized as follows. Section 2 will give an overview of deep
network-based object tracking descriptions and related work. In Section 3, we describe the
deep reinforcement learning-based DQN agent drone tracking algorithm integrated with
the Virtual CityEnviron (VCE) simulation platform. Experimental simulation results for
verifying our algorithm are presented in Section 4 and our conclusion follows in Section 5.

2. Related Work
2.1. Visual Object Tracking

Visual object tracking has gained more attention in computer vision in the last decade
than ever before. There have been numerous successful studies on various tracking bench-
marks [18,19,26]. Classification-based trackers have also been proposed, which may be
referred to as tracking-by-detection or tracking-by-classification [27–31]. These techniques
primarily focus on separating targets from the scene by collecting target locations and
detecting them using trained classifier models. To be more specific, a tracker captures
foreground patches close to the target position and background patches from a distance,
which are then trained as a foreground–background classifier to score the current or next
frame’s target’s location in order to recognize it.

Appl. Sci. 2022, 12, 3220 4 of 18

Robust MIL-based feature learning [12] and tracking-learning-detection adopted for
unsupervised learning [14] techniques were presented to improve the resilience of tracking
models in noisy environments. In general, the classification model is trained offline using
manually labeled pictures before being utilized for online or real-time tracking operations.
Numerous neural network-based trackers utilize these concepts [11,16,32,33] throughout
the development of their approach, and they provide effective outcomes when compared
to classic trackers [12,13,34] and achieve state-of-the-art results [11,26]. The concept of
using correlation filters to resolve the inadequate representation of convolutional and hand-
crafted features is retained [5,15,35]. However, due to the fact of learning through a limited
number of scale-wise filters and a relatively small number of feature extraction video frames,
those methods are not fully functional, resulting in the loss of critical long-term feature
representation and temporal information between two or several consecutive frames.

2.1.1. Regression-Based Trackers

In recent years, some researchers have developed a deep regression network-based
tracking approach [10,36,37] that uses bounding box regression to identify objects instead
of classification models. This technique improves the chances of solving the tracking
issue by training the model on trainable datasets using a loss function such as mean-
squared or mean-absolute error. The datasets usually consist of the input pictures and the
bounding boxes of the frame’s object classes. However, if the object moves very quickly
across the consecutive frames or if occlusion occurs, this approach may fail or produce
poor results during the tracking process. Furthermore, to fully cover the consecutive
frames’ characteristics and their information, the aforementioned approaches require a
more efficient searching algorithm for learning the dataset or environment by utilizing
sliding-window or candidate-sampling strategies.

2.1.2. Recurrent Neural Network-Based Tracking

Furthermore, recurrent neural network-based research [36–38] has advocated employ-
ing recurrent layers in order to solve the visual object tracking issues. They employ an
RNN-based structure combined with an attention mechanism. RNN-based tracking models
have not been proven competitive yet on contemporary benchmarks; nevertheless, this
technique can obtain higher results by using sequential layers to anticipate objects using
the sliding method.

There is also a work by Ning et al. [39] that combines spatially supervised recurrent
convolutional neural network integration with the YOLO network [40] architecture for
directly detecting object classes. The recurrent neural network will directly regress the
YOLO detection output on each frame to retrieve the targeted objects class.

2.2. Deep Reinforcement Learning

Reinforcement learning (RL) is a training approach in which a machine learning model
makes judgments in a series of actions while managing the process. It investigates how
an agent may learn to make decisions and attain goals in a complex and unpredictable
environment. Essentially, this method learns the optimal policy for deciding which se-
quential acts to perform by maximizing future benefits [41]. Recent popular works [42–45]
propose the combination of RL models with deep neural networks in order to improve
decision making by representing RL techniques as a policy or value function where the
model learns the process interactively from feedback rewards, to improve expected re-
wards in long-term sequential processes by learning best policy. Several techniques have
proposed recovering deep features by learning particular policy tasks [46], which have
been evaluated by applying them to Atari games [42] and other [44] approaches, which
have been successfully addressed by using a semi-supervised learning methodology. In
addition, many models for object localization [47], prediction, and target tracking [48] have
been suggested. By integrating CNN, RNN, and RL algorithms, Zhang et al. [49] proposed
a network design that was particularly well-suited for addressing the tracking issue. They

Appl. Sci. 2022, 12, 3220 5 of 18

used RNN as a top-level CNN feature extraction, focusing on both spatial and temporal
restrictions. In addition, the framework was trained in offline mode utilizing an end-to-end
reinforcement method.

Deep Q-Networks (DQN) and the gradient policy method are the most well-known
deep RL algorithms [23,42]. The Deep Q-Network is an alternate model of the Q-learning
algorithm that learns each step of the action values in a given state. It is a model-free method
that uses stochastic transitions and incentives to solve problems without requiring any
modifications. Alternatively, various DQN algorithm-based designs have been developed,
such as Double DQN [50] and Dueling DQN [51], which are better versions of the learning
and tracking process in terms of stability.

Another research method is the policy gradient methodology, which learns policy
directly by applying gradient descent to optimize the network policy to the projected future
reward. Williams et al. [46] proposed the reinforce method, which used a simple and quick
reward to measure the policy’s value.

3. Deep Reinforcement Learning-Based DQN Agent Drone Algorithm for Visual
Object Tracking in a Virtual Environmental Simulation Platform

In this study, we propose a network that is connected to a virtual environment in order
to obtain a runtime sequence of video frames and locate targeted objects in each image
of the episode. The basic novelty of our algorithm is that it uses one of the most well-
known RNNs for learning and predicting from long-term temporal sequences, integrated
with action decision techniques inspired by the successful work [52]. RNNs enable the
VCE simulation platform to exhibit temporal dynamic behavior by connecting nodes from
direct or indirect graphs along a temporal sequence. An integrated deep reinforcement
learning network can control actions by using RNN-based training sequences for making
action decisions as an output for an object tracking procedure. Figure 2 depicts the overall
framework of the proposal, which demonstrates the integrated scheme of the AirSim
simulation platform with a virtual environment.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19

Figure 2. The design depicts a linked virtual world using the AirSim simulation platform to execute
network algorithms and evaluate a tracking technique in real-time simulation.

The AirSim simulation platform includes two types of Multirotor (Drone) and Car
options to test the approach via connecting AirSim Python Client, as shown in Figure 2.
This DQN model discovers the VCE model relatively quickly while exploring and starting
to learn the tactic of UAV agents. In this paper, we use a structure in Figure 2 (above) to
learn sequential video frames by controlling policies in a variety of simulation environ-
mental conditions. This is achieved by receiving input images and using them as input
values for learning, as well as value estimation. The Environment Simulation code in our
model connects the VCE and DQN agent simulation network algorithm with tracking via
AirSim python client to control the drone simulation during training and tracking. The
AirSim API gives an opportunity to run the algorithm on the VCE simulation platform
and test it easily without any physical hardware system.

3.1. DQN Network Architecture
The recommended network model architecture incorporates reinforcement learning

and a recurrent neural network method. The recurrent network is effective for applying
sequential circumstances and for forecasting environmental target attributes. Figure 3,
given below, illustrates the network structure of the learning procedure. The DQN net-
work model processing steps with targeted action and state values of the learning proce-
dure are depicted in the diagram below. The taken action and state values will be stored
for the next step of training operations as an initial input value. Additionally, preserving
learned information allows drone agents to avoid unnecessarily surveying the same loca-
tion twice. This action may appear to be a repeated procedure, but in a virtual environ-
ment, the action and state value will be identical to the preceding one.

Figure 3. DQN network structure with targeted Q-learning outcomes in operation with states.

Figure 3 depicts a portion of Q-learning for updating the samples or minibatches for
a given iteration. In this process, the updated Q-value determines the agent’s actions,
where the action with the highest targeted Q-learning value is chosen, and the update is
accomplished through the use of a Bellman Equation (2) defined as

Figure 2. The design depicts a linked virtual world using the AirSim simulation platform to execute
network algorithms and evaluate a tracking technique in real-time simulation.

The AirSim simulation platform includes two types of Multirotor (Drone) and Car
options to test the approach via connecting AirSim Python Client, as shown in Figure 2. This
DQN model discovers the VCE model relatively quickly while exploring and starting to
learn the tactic of UAV agents. In this paper, we use a structure in Figure 2 (above) to learn
sequential video frames by controlling policies in a variety of simulation environmental
conditions. This is achieved by receiving input images and using them as input values
for learning, as well as value estimation. The Environment Simulation code in our model
connects the VCE and DQN agent simulation network algorithm with tracking via AirSim
python client to control the drone simulation during training and tracking. The AirSim API
gives an opportunity to run the algorithm on the VCE simulation platform and test it easily
without any physical hardware system.

Appl. Sci. 2022, 12, 3220 6 of 18

3.1. DQN Network Architecture

The recommended network model architecture incorporates reinforcement learning
and a recurrent neural network method. The recurrent network is effective for applying
sequential circumstances and for forecasting environmental target attributes. Figure 3,
given below, illustrates the network structure of the learning procedure. The DQN network
model processing steps with targeted action and state values of the learning procedure are
depicted in the diagram below. The taken action and state values will be stored for the
next step of training operations as an initial input value. Additionally, preserving learned
information allows drone agents to avoid unnecessarily surveying the same location twice.
This action may appear to be a repeated procedure, but in a virtual environment, the action
and state value will be identical to the preceding one.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19

Figure 2. The design depicts a linked virtual world using the AirSim simulation platform to execute
network algorithms and evaluate a tracking technique in real-time simulation.

The AirSim simulation platform includes two types of Multirotor (Drone) and Car
options to test the approach via connecting AirSim Python Client, as shown in Figure 2.
This DQN model discovers the VCE model relatively quickly while exploring and starting
to learn the tactic of UAV agents. In this paper, we use a structure in Figure 2 (above) to
learn sequential video frames by controlling policies in a variety of simulation environ-
mental conditions. This is achieved by receiving input images and using them as input
values for learning, as well as value estimation. The Environment Simulation code in our
model connects the VCE and DQN agent simulation network algorithm with tracking via
AirSim python client to control the drone simulation during training and tracking. The
AirSim API gives an opportunity to run the algorithm on the VCE simulation platform
and test it easily without any physical hardware system.

3.1. DQN Network Architecture
The recommended network model architecture incorporates reinforcement learning

and a recurrent neural network method. The recurrent network is effective for applying
sequential circumstances and for forecasting environmental target attributes. Figure 3,
given below, illustrates the network structure of the learning procedure. The DQN net-
work model processing steps with targeted action and state values of the learning proce-
dure are depicted in the diagram below. The taken action and state values will be stored
for the next step of training operations as an initial input value. Additionally, preserving
learned information allows drone agents to avoid unnecessarily surveying the same loca-
tion twice. This action may appear to be a repeated procedure, but in a virtual environ-
ment, the action and state value will be identical to the preceding one.

Figure 3. DQN network structure with targeted Q-learning outcomes in operation with states.

Figure 3 depicts a portion of Q-learning for updating the samples or minibatches for
a given iteration. In this process, the updated Q-value determines the agent’s actions,
where the action with the highest targeted Q-learning value is chosen, and the update is
accomplished through the use of a Bellman Equation (2) defined as

Figure 3. DQN network structure with targeted Q-learning outcomes in operation with states.

Figure 3 depicts a portion of Q-learning for updating the samples or minibatches
for a given iteration. In this process, the updated Q-value determines the agent’s actions,
where the action with the highest targeted Q-learning value is chosen, and the update is
accomplished through the use of a Bellman Equation (2) defined as

Q́(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

disparity in time︷ ︸︸ ︷
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount f actor

· max
a

Q(st+1, a)︸ ︷︷ ︸
optimum f uture value estimation︸ ︷︷ ︸

−Q(st, at)︸ ︷︷ ︸
old value

intended new value


(2)

where Q́(st, at) is the result of the updated Q-network iteration value; Q(st, at) in which
the initial old value will be added; α is the learning rate of the training network; rt is the
reward value; in this equation γ relates the rewards to the time domain; and max

a
Q(st+1, a)

is the optimum future value estimation.
In the equation above, the calculation of the updated Q-Network iteration value has

been presented. An updated iteration value can be formulated by adding the previous
Q(st, at) value and multiplying the learning rate with α, which represents the difference
in computation time. The max in this equation represents the maximized actions that
help agents to take in the upper arcs of the VCE itself. Suppose, our drone agent was in
state s and it took some action a. Because of that action, the environment might land our
drone agent in any of the states st+1, and from these states, it would maximize the action.
From these values, the drone agent will choose the action with the maximum Q value:
max

a
Q(st+1, a). Intended new values can be calculated by multiplying the discount factor

γ with the maximum Q value and adding to them the reward rt value.
In our DQN-network concept, the DQN agent contains a replay memory class unit that

keeps track of the environment in dynamic mode. All state (st), action (at), new state (st+1),

Appl. Sci. 2022, 12, 3220 7 of 18

reward (rt), and done transitions are memorized. This replay memory approach allows us
to effectively sample minibatches from preserved values and generate the accurate state
representation. In order to obtain the best results from memorized values and keep track
dynamically, a responding buffer memory is integrated with the VCE simulation platform.

Figure 4 illustrates the construction of the replay memory unit, where the storage
monitoring process is shown. The buffer memory is directly connected to the virtual
environment, which adds the required transition to the memory unit. During the sampling
process, a random number of map indices of varying sizes are produced in memory, and the
returned indices may be retrieved using the “get state” function of the AirSim python client.
Minibatches will be generated by using the last saved values from the training process.
Replay memory is one of the most critical individual core components of the DQN agent,
separating the target Q-network and exhibiting the negative impacts on performance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19

𝑄ሖ (𝑠௧, 𝑎௧) ← 𝑄(𝑠௧, 𝑎௧)ᇣᇧᇤᇧᇥ௢௟ௗ ௩௔௟௨௘ + 𝛼⏟௟௘௔௥௡௜௡௚ ௥௔௧௘ ∙ ⎝⎜
⎛ 𝑟௧⏟௥௘௪௔௥ௗ + 𝛾⏟ௗ௜௦௖௢௨௡௧ ௙௔௖௧௢௥ ∙ max௔ 𝑄(𝑠௧ାଵ, 𝑎)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௢௣௧௜௠௨௠ ௙௨௧௨௥௘ ௩௔௟௨௘ ௘௦௧௜௠௔௧௜௢௡ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ − 𝑄(𝑠௧, 𝑎௧)ᇣᇧᇤᇧᇥ௢௟ௗ ௩௔௟௨௘௜௡௧௘௡ௗ௘ௗ ௡௘௪ ௩௔௟௨௘ ⎠⎟

⎞ᇩᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇭᇫௗ௜௦௣௔௥௜௧௬ ௜௡ ௧௜௠௘
 (2)

where 𝑄ሖ (𝑠௧, 𝑎௧) is the result of the updated Q-network iteration value; 𝑄(𝑠௧, 𝑎௧) in which
the initial old value will be added; 𝛼 is the learning rate of the training network; 𝑟௧ is the
reward value; in this equation 𝛾 relates the rewards to the time domain; and max௔ 𝑄(𝑠௧ାଵ, 𝑎) is the optimum future value estimation.

In the equation above, the calculation of the updated Q-Network iteration value has
been presented. An updated iteration value can be formulated by adding the previous 𝑄(𝑠௧, 𝑎௧) value and multiplying the learning rate with 𝛼, which represents the difference
in computation time. The max in this equation represents the maximized actions that help
agents to take in the upper arcs of the VCE itself. Suppose, our drone agent was in state 𝑠
and it took some action 𝑎. Because of that action, the environment might land our drone
agent in any of the states 𝑠௧ାଵ, and from these states, it would maximize the action. From
these values, the drone agent will choose the action with the maximum 𝑄 value: max௔ 𝑄(𝑠௧ାଵ, 𝑎). Intended new values can be calculated by multiplying the discount factor 𝛾 with the maximum 𝑄 value and adding to them the reward 𝑟௧ value.

In our DQN-network concept, the DQN agent contains a replay memory class unit
that keeps track of the environment in dynamic mode. All state (𝑠௧), action (𝑎௧), new state
(𝑠௧ାଵ), reward (𝑟௧), and done transitions are memorized. This replay memory approach
allows us to effectively sample minibatches from preserved values and generate the accu-
rate state representation. In order to obtain the best results from memorized values and
keep track dynamically, a responding buffer memory is integrated with the VCE simula-
tion platform.

Figure 4 illustrates the construction of the replay memory unit, where the storage
monitoring process is shown. The buffer memory is directly connected to the virtual en-
vironment, which adds the required transition to the memory unit. During the sampling
process, a random number of map indices of varying sizes are produced in memory, and
the returned indices may be retrieved using the “get state” function of the AirSim python
client. Minibatches will be generated by using the last saved values from the training pro-
cess. Replay memory is one of the most critical individual core components of the DQN
agent, separating the target Q-network and exhibiting the negative impacts on perfor-
mance.

Figure 4. The data flow diagram for a DQN-network model with a responding buffer memory unit
and a targeted network that is associated with a virtual environment [53].

As shown in Figure 4, the data flow diagram for the DQN-network model connects a
Q-network and a recurrent network design (network for prediction) via the AirSim Python
client to a virtual simulation platform. The accumulator keeps track of the N frames to be
utilized for agent assessment. We can also compute the DQN loss function by combining
forecasted and targeted Q-values, and we can obtain gradient loss output as well. The
DQN network uses loss function for updating Q-learning at iteration i as follows [23]:

Li(θi) = E(s,a,r,s′)∼U(D)




targeted Q value︷ ︸︸ ︷
r + γmax

a′
Q
(
s′, a′; θ−i

)
−

predicted Q value︷ ︸︸ ︷
Q(s, a; θi)


2 (3)

where γ denotes the discount factor value of the agent’s horizon, θi are the parameters
of the Q-network at iteration i, and θ−i are the network parameters utilized to compute
the target at iteration i. The target network parameters θ−i are only updated with the
Q-network parameters (θi) at each defined step and are maintained constant between
individual updates.

The underlying buffer with N previous states is stacked along the first axis in the
replay memory unit and added to the state preservation. Furthermore, by using the reset
function, the whole memory unit is reset to the underlying buffer, with all indexes set to
zero (0).

Appl. Sci. 2022, 12, 3220 8 of 18

3.2. Deep Q-Agent with Tracking Unit

We propose a DQN agent model that learns by utilizing a recurrent neural network
model, whereas the authors in [23] adopted a convolutional neural network model. In
our work, the recurrent layers are used to learn the features and information about the
virtual simulation environment, while the method proposed in [23] used the convolutional
neural network layers for that purpose. In our model, an additional featured approach
is used to determine the eventual consequence of final action value. In the sequential
environment learning process, the recurrent layers provide accurate predictions of state and
action values with generalized data created from policies. Figure 5 illustrates a schematic
representation of the DQN agent learning architecture integration with tracking based on
recurrent neural networks.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 19

Figure 5. The implementation of the deep Q-neural network agent model initiation with the tracking
process by calculating the intersection over union of two predicted bounding boxes from targeted
action values.

In the first step of implementation, we configure the parameters of the DQN agent
model with initial setup, where an action value model will be used by the agent to interact
with the virtual simulation environment. A target model is used to compute the target Q-
values in training, and is updated less frequently to increase the stability of the learning
procedure of the DQN agent. The network model is built using a sequential mode by ap-
plying an LSTM layer with a deeply connected dense layer to change the dimensions of
the vector from 64 to 32 with the activation-relu function. The network outputs will be
state, Q, and action values to provide the drone agent with crucial information. A number
of Q-value actions allow the agent to select the next action to perform in regard of the
current state of the environment. Subsequently, the drone agents’ next targeted action will
be chosen dependently by following predicted feature information of the trackable objects
via LSTM network that are stored in a long–short term memory unit. Correspondingly,
the drone agent takes best targeted action Q-values while tracking objects over time.

The network model’s observation unit allows the agent to observe the number of Q-
values through action functions on the old state. If finished, the process will be reset in the
network’s short-term memory, where it gives summary outcomes about one-time explo-
ration episodes and summaries of learning procedures and appends to the network’s
long-term memory.

Network training’s output summary includes total rewards, average MaxQ, dura-
tion, average loss, and timesteps of the full training episodes. Number of action Q-values

Figure 5. The implementation of the deep Q-neural network agent model initiation with the tracking
process by calculating the intersection over union of two predicted bounding boxes from targeted
action values.

In the first step of implementation, we configure the parameters of the DQN agent
model with initial setup, where an action value model will be used by the agent to interact
with the virtual simulation environment. A target model is used to compute the target
Q-values in training, and is updated less frequently to increase the stability of the learning
procedure of the DQN agent. The network model is built using a sequential mode by
applying an LSTM layer with a deeply connected dense layer to change the dimensions
of the vector from 64 to 32 with the activation-relu function. The network outputs will be
state, Q, and action values to provide the drone agent with crucial information. A number
of Q-value actions allow the agent to select the next action to perform in regard of the

Appl. Sci. 2022, 12, 3220 9 of 18

current state of the environment. Subsequently, the drone agents’ next targeted action will
be chosen dependently by following predicted feature information of the trackable objects
via LSTM network that are stored in a long–short term memory unit. Correspondingly, the
drone agent takes best targeted action Q-values while tracking objects over time.

The network model’s observation unit allows the agent to observe the number of
Q-values through action functions on the old state. If finished, the process will be reset
in the network’s short-term memory, where it gives summary outcomes about one-time
exploration episodes and summaries of learning procedures and appends to the network’s
long-term memory.

Network training’s output summary includes total rewards, average MaxQ, duration,
average loss, and timesteps of the full training episodes. Number of action Q-values
emphasize different types of movement in terms of tracking objects in different trajectories.
Given signs in a network model represent the direction of the drone agent’s interaction
with object locations and movement. For example, the following signs on the flow chart
present (starts from right sight) up, down, left, right, two times up and down, two times
left and right, resizing the object on the inner and outer side, and stopping action Q-values,
respectively. Targeted action Q-values shown in Figure 5 are taken after predicting object
locations relatively.

3.3. Training the DQN Network Model

The training process allows the agent to train itself to better understand the environ-
ment dynamics and compute the expected rewards for the next state (t + 1). Additionally,
it allows the agent to update the expected reward at step t according to the first training
episode outcomes of the network model. The target expectation is computed through the
targeted Q-values of the actions, which is a more stable version of the action value for
increasing training stability. In actual cases, the target network is a frozen copy of the action
value network updated as regular intervals. After the training process, the network clips
all positive rewards at 1 and all negative rewards at −1, leaves 0 rewards unchanged, trains
the network again for the next episode, updates the target network, and eventually saves
the network output files into a fixed path. There is an extension of the train function that
calls the batch generation and graph computations for sampling random minibatches of
transitions from the replay memory unit. We set the hyperparameters and their default
values for the deep Q-agent before training the network. At the end, we summarize all the
learned values of total reward, average MaxQ, duration, and average loss, and save them
into the adjusted path location.

Training Dataset

For the training of RNN-based object prediction and DQN network modules, we
created our own dataset from the VCE simulation model. We captured images for training
and testing purposes, totaling 727 and 195 images, respectively. To ensure compatibility
with the training and testing processes, all images were manually labeled. Images include
two types of objects: pedestrians and cars. Overall, 922 images were used for the training
and testing process, which is sufficient to produce accurate outputs for analyzing proposals.
Training parameters were fine-tuned with several different values while examining the
algorithm under different conditional changes. Additionally, the tracking algorithm was
tested in runtime on a simulation platform to observe the tracking performance.

3.4. Tracking Baseline of the DQN Network Model

In the tracking implementation section, we utilized a supervised approach to identify
object classes, information, and properties, and we combined it with the DQN agent sim-
ulation network architecture. While testing the suggested tracker, the tracking approach
employed a pretrained object classifier model to detect targets from a virtual simulation
platform. Our proposed tracker was implemented by integrating a DQN network as a
sequential decision-making procedure with a drone agent in the VCE simulation plat-

Appl. Sci. 2022, 12, 3220 10 of 18

form. Moreover, the network model observation part represents the virtual environment
sequences and recurrent network-based architecture layers and provides an output with
predicted bounding box locations in each frame, as shown in Figure 5. We first trained
our network to predict target classes in proper action to provide environment states. The
network was then updated with a deep q-learning approach to ensure that the drone agent
continued to learn effectively from high-dimensional virtual simulation environment inputs
via end-to-end reinforcement learning.

The network gives the output prediction from learning process, and we integrated
tracking units by calculating the intersection over union (IoU) of bounding boxes. The origin
from the Cartesian coordinate system at the center of the right frame and in the top position
was considered as a positive axis. Then, the coordinates of the intersection rectangle were
determined by identifying the maximum and minimum values. The intersection area of
the two axis-aligned bounding boxes was always considered as an axis-aligned bounding
box value. Then, we computed the area of both axis-aligned bounding boxes. Intersection
over union was calculated by taking the computational intersection area and dividing it by
the sum of the prediction plus ground truth areas minus the intersection area. The result
is asserted to be a value between zero and one. The next step was to interpret the action
sequence using a simulation environment and tracking calculation activity, which was
applied to the interpreted action sequence.

The reward function was calculated as a scaled sum of the Euclidean distance between
the center of the bounding box and the center of the frame, intersection over union of bound-
ing boxes, and an imaginary box centered with parameters threshold height and weight.
The completed portion will be determined by taking reward values at predetermined
intervals. The final stage was to create a reinforcement agent to configure the specified
parameters and test the algorithm using virtual environment simulation model inputs.

4. Experiment Results and Discussion
4.1. Datasets for Evaluation: VisDrone2019 and OTB-100

There are various opensource datasets available for measuring and evaluating the
suggested method, as well as comparing with other state-of-the-art models. Applying
the identical image or video sets technique to the algorithm reveals the advantages and
weaknesses of the recommended method while evaluating it among other state-of-the-art
models in different criteria of the learning field. VisDrone2019 [54] and OTB-100 [55]
datasets are opensource dataset benchmarks for evaluating measures and competing in
different challenges for object detection/tracking techniques.

The VisDrone2019 [54] dataset was collected by the AISKYEYE team at the Lab of
Machine Learning and Data Mining, Tianjin University, China. The dataset benchmark
consists of 288 video clips formed by 261,908 frames and 10,209 static images, captured by
various drone-mounted cameras and covering a wide range of aspects including location
(taken from 14 different cities separated by thousands of kilometers in China), environment
(urban and rural), objects (pedestrian, vehicles, bicycles, etc.), and density (sparse and
crowded scenes). Notably, the dataset was collected using various drone platforms (i.e.,
drones with different models), in different scenarios, and under various weather and
lighting conditions. These frames are manually annotated with over 2.6 million bounding
boxes of targets of frequent interests, such as pedestrians, cars, bicycles, and tricycles. Some
important attributes including scene visibility, object class, and occlusion are also provided
for better data utilization.

The full OTB-100 [55] benchmark contains 100 sequences from recent literatures that
address an extensive evaluation of the state-of-the-art online object tracking algorithms
with various evaluation criteria to understand how these methods perform within the same
framework. The authors initially constructed a large dataset with ground-truth object posi-
tions and extents for tracking, and introduced the sequence attributes for the performance
analysis. Additionally, they integrated most of the publicly available trackers into one code
library with uniform input and output formats to facilitate large-scale performance evalua-

Appl. Sci. 2022, 12, 3220 11 of 18

tion. Moreover, extensive evaluation was conducted by the performance of 31 algorithms
on 100 sequences with different initialization settings. By analyzing the quantitative results,
an effective approach for robust tracking was identified and provided along with potential
future research directions in this field.

4.2. Evaluation and Discussion

The proposed reinforcement learning-based object tracking algorithm has been ex-
plored and evaluated using AirSim [22], a well-known simulation platform that is highly
useful and advantageous for exploring freely in a realistic environment simulation. The
implementation of the proposed algorithm was connected to the VCE simulation platform
with AirSim Python Client that was accomplished by Microsoft developers.

Firstly, we trained the network to learn the object classes with environmental feature
information, so that it was ready for training with a reinforcement learning approach.
After completing the object classification learning process, the output was used in an
integrated tracking framework to track objects with a drone agent. Figure 6 shows the
evolution of the learning rate and loss function of the trained tracker. It can be seen that
learning rate image on the left side illustrates small variation of the learning outcome; due
to the environmental conditions, that drone flew in an extensive area and provided a small
learning rate. Alternatively, on right side, loss functions results increase during training
epochs relatively by learning a large-scale area of the virtual environment.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 19

useful and advantageous for exploring freely in a realistic environment simulation. The
implementation of the proposed algorithm was connected to the VCE simulation platform
with AirSim Python Client that was accomplished by Microsoft developers.

Firstly, we trained the network to learn the object classes with environmental feature
information, so that it was ready for training with a reinforcement learning approach. Af-
ter completing the object classification learning process, the output was used in an inte-
grated tracking framework to track objects with a drone agent. Figure 6 shows the evolu-
tion of the learning rate and loss function of the trained tracker. It can be seen that learning
rate image on the left side illustrates small variation of the learning outcome; due to the
environmental conditions, that drone flew in an extensive area and provided a small
learning rate. Alternatively, on right side, loss functions results increase during training
epochs relatively by learning a large-scale area of the virtual environment.

Learning Rate

Loss

Figure 6. Output of the Learning Rate (left) and Loss (right) function. The blue and red lines repre-
sent actual and targeted learned values, respectively. The left side of the learning rate figure y axis
represents given parameter learning rate variation value and the x axis represents training epoch
numbers. The right side of the image y axis represents loss variation values and the x axis is training
epoch value. The shadow copies of trained variables and ops that maintain a moving average of the
trained variables in their shadow copies are shown.

This training was conducted in offline mode to understand the characteristics and
details of the object class. For the training method, numerous sequential image sets taken
from a realistic virtual world were employed as inputs. Only VCE realistic virtual model
pictures were used in the trials to train the DQN tracker, which is based on a recurrent
neural network. The figures shown below represent the average predicted action-value
MeanQ and MaxQ computed over the held-out set of states.

Figure 7 shows the training epochs outcome for computing average action values for
MeanQ/MaxQ that examines learning and predicting procedures of the recurrent neural
network-based DQN tracker. Figure 7 (left) portrays the evolution of the training proce-
dure by using the virtual realistic images as training data. Figure 8 represents the evolu-
tion of both the epsilon score and the used replay memory during the tracker training
process. The epsilon greedy exploration graph represents a chosen random action with a
probability of epsilon that exploits the best-known action value and can probably reach
nearly one epsilon value. Figure 8 (right) displays replay memory, also known as the re-
play buffer or experience buffer, and contains a collection of experience tuples (s, a, r, s’)
with training information. They were added gradually to the buffer as we interacted with
the virtual realistic environment. This act of sampling a small batch of tuples from the
replay buffer in order to learn the environment is also known as experience replay. It al-
lowed us to learn the environment more deeply with individual tuples multiple times and
make better use of learning experiences during training.

Figure 6. Output of the Learning Rate (left) and Loss (right) function. The blue and red lines
represent actual and targeted learned values, respectively. The left side of the learning rate figure y
axis represents given parameter learning rate variation value and the x axis represents training epoch
numbers. The right side of the image y axis represents loss variation values and the x axis is training
epoch value. The shadow copies of trained variables and ops that maintain a moving average of the
trained variables in their shadow copies are shown.

This training was conducted in offline mode to understand the characteristics and
details of the object class. For the training method, numerous sequential image sets taken
from a realistic virtual world were employed as inputs. Only VCE realistic virtual model
pictures were used in the trials to train the DQN tracker, which is based on a recurrent
neural network. The figures shown below represent the average predicted action-value
MeanQ and MaxQ computed over the held-out set of states.

Figure 7 shows the training epochs outcome for computing average action values for
MeanQ/MaxQ that examines learning and predicting procedures of the recurrent neural
network-based DQN tracker. Figure 7 (left) portrays the evolution of the training procedure
by using the virtual realistic images as training data. Figure 8 represents the evolution of
both the epsilon score and the used replay memory during the tracker training process.
The epsilon greedy exploration graph represents a chosen random action with a probability
of epsilon that exploits the best-known action value and can probably reach nearly one
epsilon value. Figure 8 (right) displays replay memory, also known as the replay buffer
or experience buffer, and contains a collection of experience tuples (s, a, r, s’) with training
information. They were added gradually to the buffer as we interacted with the virtual

Appl. Sci. 2022, 12, 3220 12 of 18

realistic environment. This act of sampling a small batch of tuples from the replay buffer in
order to learn the environment is also known as experience replay. It allowed us to learn
the environment more deeply with individual tuples multiple times and make better use of
learning experiences during training.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 19

MeanQ

MaxQ

Figure 7. The average predicted action value of the MeanQ (left) and MaxQ (right) values with two
colored lines (red—target and blue—DQN value loss). The MeanQ figure (left) represents the vari-
ation values of the average Q on the y axis along with the number of training epochs, and MaxQ on
the right figure shows the maximum achieved Q value variation while training on the y axis jointly
with the number of epochs on the x axis. Shadow variables are copies of the main train variables
that are used to maintain the moving average. The idea is that they follow the main variable like a
shadow.

Epsilon Memory-GB

Figure 8. The average achieved epsilon score (Epsilon, left) and used replay memory (Memory-GB,
right) value during the training process (red—target and blue—DQN value loss in epsilon graph;
orange—used replay memory unit in GB). Epsilon graph shows the balances exploration and ex-
ploitation by choosing randomly in y axes that refers to the probability of choosing to explore, while
x axes depict the training epochs. The memory graph represents the used memory space during
training in the y axes as well as training epochs in the x axes.

In summary, the basic idea of using replay buffer memory, or experience replay
memory, is to take advantage of a strong experience and use a random subset of the ex-
perience to update the Q-network. Rather than using the last single experience outcome
during the tracking process, this action was originally used for the learning tuples of ob-
servation state, action, reward, done flag, and next state parameters to keep the obtained
transitions from the virtual environment.

After an offline training process of the tracker, the network was updated and con-
nected to the virtual realistic environment in order to be tested in real time. A drone agent
gave several output parameter results (shown in Table 1), which were configured before
the testing process, illustrating the virtual drone agent’s behavior during the testing pro-
cess as well as providing summarizing episode (Table 2) results.

Table 1. DQN agent drone testing output parameters.

Parameters
Episodes (Randomly Chosen)

276 279 287 315 333 382 768 815 921 999
Delta X 17.08 67.51 23.14 43.24 51.45 31.46 45.12 18.53 14.36 24.47
Delta Y −56.3 −43.16 −53.64 −66.56 −61.03 −68.00 −64.96 −59.21 −51.65 −74.82
Delta Z −20.89 -11.40 −20.66 −10.07 15.00 18.31 −0.36 −20.66 −20.46 −8.57

Figure 7. The average predicted action value of the MeanQ (left) and MaxQ (right) values with
two colored lines (red—target and blue—DQN value loss). The MeanQ figure (left) represents the
variation values of the average Q on the y axis along with the number of training epochs, and MaxQ
on the right figure shows the maximum achieved Q value variation while training on the y axis jointly
with the number of epochs on the x axis. Shadow variables are copies of the main train variables
that are used to maintain the moving average. The idea is that they follow the main variable like
a shadow.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 19

MeanQ

MaxQ

Figure 7. The average predicted action value of the MeanQ (left) and MaxQ (right) values with two
colored lines (red—target and blue—DQN value loss). The MeanQ figure (left) represents the vari-
ation values of the average Q on the y axis along with the number of training epochs, and MaxQ on
the right figure shows the maximum achieved Q value variation while training on the y axis jointly
with the number of epochs on the x axis. Shadow variables are copies of the main train variables
that are used to maintain the moving average. The idea is that they follow the main variable like a
shadow.

Epsilon Memory-GB

Figure 8. The average achieved epsilon score (Epsilon, left) and used replay memory (Memory-GB,
right) value during the training process (red—target and blue—DQN value loss in epsilon graph;
orange—used replay memory unit in GB). Epsilon graph shows the balances exploration and ex-
ploitation by choosing randomly in y axes that refers to the probability of choosing to explore, while
x axes depict the training epochs. The memory graph represents the used memory space during
training in the y axes as well as training epochs in the x axes.

In summary, the basic idea of using replay buffer memory, or experience replay
memory, is to take advantage of a strong experience and use a random subset of the ex-
perience to update the Q-network. Rather than using the last single experience outcome
during the tracking process, this action was originally used for the learning tuples of ob-
servation state, action, reward, done flag, and next state parameters to keep the obtained
transitions from the virtual environment.

After an offline training process of the tracker, the network was updated and con-
nected to the virtual realistic environment in order to be tested in real time. A drone agent
gave several output parameter results (shown in Table 1), which were configured before
the testing process, illustrating the virtual drone agent’s behavior during the testing pro-
cess as well as providing summarizing episode (Table 2) results.

Table 1. DQN agent drone testing output parameters.

Parameters
Episodes (Randomly Chosen)

276 279 287 315 333 382 768 815 921 999
Delta X 17.08 67.51 23.14 43.24 51.45 31.46 45.12 18.53 14.36 24.47
Delta Y −56.3 −43.16 −53.64 −66.56 −61.03 −68.00 −64.96 −59.21 −51.65 −74.82
Delta Z −20.89 -11.40 −20.66 −10.07 15.00 18.31 −0.36 −20.66 −20.46 −8.57

Figure 8. The average achieved epsilon score (Epsilon, left) and used replay memory (Memory-
GB, right) value during the training process (red—target and blue—DQN value loss in epsilon
graph; orange—used replay memory unit in GB). Epsilon graph shows the balances exploration and
exploitation by choosing randomly in y axes that refers to the probability of choosing to explore,
while x axes depict the training epochs. The memory graph represents the used memory space during
training in the y axes as well as training epochs in the x axes.

In summary, the basic idea of using replay buffer memory, or experience replay
memory, is to take advantage of a strong experience and use a random subset of the
experience to update the Q-network. Rather than using the last single experience outcome
during the tracking process, this action was originally used for the learning tuples of
observation state, action, reward, done flag, and next state parameters to keep the obtained
transitions from the virtual environment.

After an offline training process of the tracker, the network was updated and connected
to the virtual realistic environment in order to be tested in real time. A drone agent gave
several output parameter results (shown in Table 1), which were configured before the
testing process, illustrating the virtual drone agent’s behavior during the testing process as
well as providing summarizing episode (Table 2) results.

Appl. Sci. 2022, 12, 3220 13 of 18

Table 1. DQN agent drone testing output parameters.

Parameters
Episodes (Randomly Chosen)

276 279 287 315 333 382 768 815 921 999

Delta X 17.08 67.51 23.14 43.24 51.45 31.46 45.12 18.53 14.36 24.47

Delta Y −56.3 −43.16 −53.64 −66.56 −61.03 −68.00 −64.96 −59.21 −51.65 −74.82

Delta Z −20.89 −11.40 −20.66 −10.07 15.00 18.31 −0.36 −20.66 −20.46 −8.57

UAV Vel
0.77,
−0.83,
1.03

1.29, −0.1,
0.12

1.36,
−0.79,
−0.75

0.63,
−0.36,
0.61

1.19,
−0.12,
0.10

0.12,
−0.07,
1.59

1.80,
−0.70,
1.13

0.64,
−0.92,
−1.01

0.89,
−0.73,
−1.55

0.83,
−0.89,
1.42

UAV Pos
17.54,
−56.78,
−40.51

68.23,
−43.26,
−30.36

23.94,
−54.10,
−40.12

43.61,
−66.79,
−28.74

52.16,
−61.09,
−3.96

31.54,
−68.05,

0.11

46.15,
−65.35,
−18.72

18.91,
59.74,
−40.28

14.91,
−52.07,
−40.41

24.99,
−75.36,
−26.72

Distance
XY 60.01 80.49 59.69 80.07 80.46 75.50 80.26 63.33 54.87 80.04

Distance Z 21.49 11.34 21.09 9.72 15.06 19.13 0.29 21.26 21.39 7.70

Reward XY 0.24 −0.006 0.25 −0.0009 −0.005 0.05 −0.003 0.20 0.31 −0.0005

Reward Z −73.56 −9.66 −68.01 −6.98 −20.33 −45.96 −0.05 −70.27 −72.16 −4.667

Reward
(+T) −73.31 −9.67 −67.75 −6.99 −20.335 −45.91 −0.06 −70.06 −71.84 −4.668

Reward −10 −10 −10 −10 −10 −10 −10 −10 −10 −10

Action RL (0.25, 0,
0) +m/s

(0, −0.25,
0) +m/s

(0.25, 0,
0) +m/s

(0, −0.25,
0) +m/s

(0, −0.25,
0) +m/s

(0.25, 0, 0)
+m/s

(0, −0.25,
0) +m/s

(0, −0.25,
0) +m/s

(0, −0.25,
0) +m/s

(0, −0.25,
0) +m/s

Done 1 1 1 1 1 1 1 1 1 1

Table 2. Action-value based testing output of the DQN tracker.

Summary
Episodes (Randomly Chosen)

276 279 287 315 333 382 768 815 921 999

Time step 1924 1947 2001 2188 2300 2604 5170 5633 5912 6341

Duration 28 89 29 69 68 97 47 33 22 60

Epsilon 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Total
Reward −609.86 −995.15 −640.83 −1084.84 −360.74 −475.99 −341.57 −665.84 −402.24 −1586.36

Avg_Max_Q 0.1837 0.1839 0.1834 0.1958 0.1258 0.0874 0.1352 0.1549 0.1442 0.1733

Avg_Loss 0.052 0.063 0.062 0.069 0.051 0.047 0.066 0.061 0.073 0.071

Mode random random random random random random random random random random

Table 1 depicts the parameters of the drone agent while testing it in the VCE model.
Information given in Table 1 provides the drone agent’s coordinates while learning the
environment in random episodes as well as rewards of the DQN model drone. In every
randomly chosen episode of the training, the location parameters show the drone agent’s
tracking path in a virtual environment. Reward XY, Z, and +T parameters emphasize
the drone agent’s adaptation to environmental conditions while analyzing it in sequential
actions. It can be seen that while training the realistic VCE, the drone agent obtains negative
values by flying in different directions because of environmental space and conditions;
behavior of the VCE model affects the result of the rewards. Additionally, Table 2 shows a
summarized action Q-value result during the testing process.

The result of the tracker in the realistic VCE model is presented in Table 2. The
summary results of randomly selected episodes, such as time steps, duration, total reward,
average max Q-value, and average loss results of the testing procedure, are displayed in
this table. The drone traveled in a random area and identified the item sites to track during
the testing phase, which means that the drone flew in a random location and identified the
object locations to track.

Appl. Sci. 2022, 12, 3220 14 of 18

4.3. Comparison and Qualitative Results

The suggested tracking model was evaluated using VisDrone2019 [54] and OTB-
100 [55] to compare it to recent state-of-the-art object tracking models based on deep
reinforcement learning techniques. These datasets are available on the internet in a variety
of image and video sets, including training, testing, and challenge sets.

Figure 9 compares the performance of the proposed tracking methodology with that
of recent state-of-the-art trackers, such as ADNet [52] and ASRL Track [56], which are
both based on the DRL (Deep Reinforcement Learning) strategy. Comparison was carried
out by testing video sets of the two public datasets VisDrone2019 [54] and OTB-100 [55]
respectively. The graphic above depicts precision performance with regard to local error
threshold outcomes in two public datasets. Table 3 (below) shows the precise results of the
numerical comparison:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 19

Figure 9 compares the performance of the proposed tracking methodology with that
of recent state-of-the-art trackers, such as ADNet [52] and ASRL Track [56], which are both
based on the DRL (Deep Reinforcement Learning) strategy. Comparison was carried out
by testing video sets of the two public datasets VisDrone2019 [54] and OTB-100 [55] re-
spectively. The graphic above depicts precision performance with regard to local error
threshold outcomes in two public datasets. Table 3 (below) shows the precise results of
the numerical comparison:

(a) (b)

Figure 9. In this plot,comparison results of three different types of RL-based recent works are
shown. The red (ADNet [52]), green (ASRL_Track [56]), and blue (ours) colors show the result of
comparison in testing the (a) VisDrone2019 and (b) OTB-100 datasets respectively.

Table 3. Comparison results of recent tracking algorithms with proposed method on VisDrone2019
and OTB-100 datasets.

Algorithms
VisDrone2019 OTB-100

Precision FPS IOU Precision FPS IOU
ADNet [52] 89.69% 4.45 0.599 80.52% 4.03 0.492

ASRL_Track [56] 90.70% 6.94 0.602 81.62% 6.41 5.99
Ours 92.07% 9.11 0.785 82.35% 7.18 0.662

In Table 3, the results of a comparison of recent RL-based object tracking approaches
and the proposed model are emphasized. The table compares the accuracy, frames per
second (FPS), and intersection over union (IoU) outcomes of two current approaches with
our model. Among these approaches, our strategy outperformed the others when tested
on the identical open-source datasets. For the testing process, video inputs were used to
examine the tracking capabilities of the approaches. Moreover, we provide some qualita-
tive results below in Figure 10.

Figure 9. In this plot, comparison results of three different types of RL-based recent works are shown.
The red (ADNet [52]), green (ASRL_Track [56]), and blue (ours) colors show the result of comparison
in testing the (a) VisDrone2019 and (b) OTB-100 datasets respectively.

Table 3. Comparison results of recent tracking algorithms with proposed method on VisDrone2019
and OTB-100 datasets.

Algorithms
VisDrone2019 OTB-100

Precision FPS IOU Precision FPS IOU

ADNet [52] 89.69% 4.45 0.599 80.52% 4.03 0.492

ASRL_Track [56] 90.70% 6.94 0.602 81.62% 6.41 5.99

Ours 92.07% 9.11 0.785 82.35% 7.18 0.662

In Table 3, the results of a comparison of recent RL-based object tracking approaches
and the proposed model are emphasized. The table compares the accuracy, frames per
second (FPS), and intersection over union (IoU) outcomes of two current approaches with
our model. Among these approaches, our strategy outperformed the others when tested
on the identical open-source datasets. For the testing process, video inputs were used to
examine the tracking capabilities of the approaches. Moreover, we provide some qualitative
results below in Figure 10.

Appl. Sci. 2022, 12, 3220 15 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 19

Figure 9 compares the performance of the proposed tracking methodology with that
of recent state-of-the-art trackers, such as ADNet [52] and ASRL Track [56], which are both
based on the DRL (Deep Reinforcement Learning) strategy. Comparison was carried out
by testing video sets of the two public datasets VisDrone2019 [54] and OTB-100 [55] re-
spectively. The graphic above depicts precision performance with regard to local error
threshold outcomes in two public datasets. Table 3 (below) shows the precise results of
the numerical comparison:

(a) (b)

Figure 9. In this plot,comparison results of three different types of RL-based recent works are
shown. The red (ADNet [52]), green (ASRL_Track [56]), and blue (ours) colors show the result of
comparison in testing the (a) VisDrone2019 and (b) OTB-100 datasets respectively.

Table 3. Comparison results of recent tracking algorithms with proposed method on VisDrone2019
and OTB-100 datasets.

Algorithms
VisDrone2019 OTB-100

Precision FPS IOU Precision FPS IOU
ADNet [52] 89.69% 4.45 0.599 80.52% 4.03 0.492

ASRL_Track [56] 90.70% 6.94 0.602 81.62% 6.41 5.99
Ours 92.07% 9.11 0.785 82.35% 7.18 0.662

In Table 3, the results of a comparison of recent RL-based object tracking approaches
and the proposed model are emphasized. The table compares the accuracy, frames per
second (FPS), and intersection over union (IoU) outcomes of two current approaches with
our model. Among these approaches, our strategy outperformed the others when tested
on the identical open-source datasets. For the testing process, video inputs were used to
examine the tracking capabilities of the approaches. Moreover, we provide some qualita-
tive results below in Figure 10.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 19

Figure 10. Qualitative results of the proposed tracking algorithm with two object classes: person
and car.

Figure 10 shows the qualitative results of the tracking model with two types of tar-
geted objects. As we can see in Figure 10, the percentages of predicted and targeted object
classes indicate how well the object classes were predicted. The result in Figure 10 demon-
strates a good performance in terms of predicted and tracked object classes. We tested our
proposed algorithm only in this virtual environment, and it performed much better com-
pared to the other models, which, in the majority, have been tested with real video se-
quences. We have tested our algorithm only with the default simulation environment
case, which is the normal weather condition.

5. Conclusions
In this research, we have proposed a novel tracking technique that integrates the vir-

tual simulation platform VCE using the AirSim python client that performs in virtual re-
alistic environment as a drone agent. In order to predict and track the objects and to learn
the environment, we used a mutually integrated recurrent neural network-based DQN
tracker that was trained with several virtual image-based video sequences. The AirSim
simulation platform allowed us to test our model in a virtual environment, gather crucial
feature information, and identify the object classes autonomously. AirSim API allowed us
to test our DQN agent-based tracker easily by connecting it directly to the virtual drone
simulation platform. Even though there are several challenges in terms of a three-dimen-
sional virtual realistic model environment, our proposed model was successfully trained
and achieved better performance with a recurrent prediction-based network integrated
with an action decision technique. Our model can work autonomously in a virtual simu-
lation model by applying deep RL agent solutions. Additionally, we tested our model
with two different data sets, VisDrone2019 and OTB-100, and compared our model per-
formance with recent state-of-the-art techniques. Testing evaluation showed that our pro-
posed technique displayed better performance among recent methods, with 92.07% and
82.35% precision in VisDrone2019 and OTB-100 data sets, respectively.

In our future works, we plan to improve the performance by using fine-tuning meth-
odology and performing more simulation experiments with different weather conditions.
Moreover, we plan to test our model with other open-source video sequences in order to
compare it with other conventional RL-based DQN trackers.

Figure 10. Qualitative results of the proposed tracking algorithm with two object classes: person and car.

Figure 10 shows the qualitative results of the tracking model with two types of targeted
objects. As we can see in Figure 10, the percentages of predicted and targeted object classes
indicate how well the object classes were predicted. The result in Figure 10 demonstrates a
good performance in terms of predicted and tracked object classes. We tested our proposed
algorithm only in this virtual environment, and it performed much better compared to
the other models, which, in the majority, have been tested with real video sequences. We
have tested our algorithm only with the default simulation environment case, which is the
normal weather condition.

5. Conclusions

In this research, we have proposed a novel tracking technique that integrates the
virtual simulation platform VCE using the AirSim python client that performs in virtual
realistic environment as a drone agent. In order to predict and track the objects and to
learn the environment, we used a mutually integrated recurrent neural network-based
DQN tracker that was trained with several virtual image-based video sequences. The
AirSim simulation platform allowed us to test our model in a virtual environment, gather
crucial feature information, and identify the object classes autonomously. AirSim API
allowed us to test our DQN agent-based tracker easily by connecting it directly to the
virtual drone simulation platform. Even though there are several challenges in terms
of a three-dimensional virtual realistic model environment, our proposed model was
successfully trained and achieved better performance with a recurrent prediction-based
network integrated with an action decision technique. Our model can work autonomously

Appl. Sci. 2022, 12, 3220 16 of 18

in a virtual simulation model by applying deep RL agent solutions. Additionally, we tested
our model with two different data sets, VisDrone2019 and OTB-100, and compared our
model performance with recent state-of-the-art techniques. Testing evaluation showed that
our proposed technique displayed better performance among recent methods, with 92.07%
and 82.35% precision in VisDrone2019 and OTB-100 data sets, respectively.

In our future works, we plan to improve the performance by using fine-tuning method-
ology and performing more simulation experiments with different weather conditions.
Moreover, we plan to test our model with other open-source video sequences in order to
compare it with other conventional RL-based DQN trackers.

Author Contributions: Conceptualization, J.-H.P.; funding acquisition, K.F., S.-H.L. and K.-R.K.;
investigation, J.-H.P.; methodology, J.-H.P.; project administration, K.F., S.-H.L. and K.-R.K.; software,
J.-H.P., K.F., S.-H.L. and K.-R.K.; supervision, K.F., S.-H.L. and K.-R.K.; validation, K.F., S.-H.L. and
K.-R.K.; writing—original draft, J.-H.P.; writing—review and editing, J.-H.P., K.F. and S.-H.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Brain Korea 21 project (BK21).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The original VisDrone2019 and OTB-100 datasets are available online
at https://paperswithcode.com/dataset/otb (accessed on 1 January 2022) and http://aiskyeye.
com/download/ (accessed on 1 January 2022). These datasets used for comparing with algorithm
performance with recent state-of-the-art models.

Acknowledgments: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea(NRF) funded by the Ministry of Education (2020R1I1A306659411,
2020R1F1A1069124) and MSIT (Ministry of Science and ICT), Korea, under the ITRC (Informa-
tion Technology Research Center) support program (IITP-2022-2020-0-01797) supervised by the
IITP(Institute for Information & Communications Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, H.; Lin, Z.; Action, S.T. FAST: Fast and accurate scale estimation for tracking. IEEE Signal Process. Lett. 2019, 27, 161–165.

[CrossRef]
2. Zhang, Y.; Wang, C.; Wang, X.; Wen-Jun, Z.; Liu, W. FairMOT: Fairness of detection and re-identification in multi object tracking.

Int. J. Comput. Vis. (IJCV) 2021, 129, 3069–3087. [CrossRef]
3. Liu, Q.; Liu, B.; Wu, Y.; Li, W.; Yu, N. Real-time online multi-object tracking in compressed domain. IEEE Access 2019, 7,

76489–76499. [CrossRef]
4. Wang, G.; Luo, C.; Sun, X.; Xiong, Z.; Zeng, W. Tracking by instance detection: A meta-learning approach. In Proceedings of the

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6288–6297.
5. Danelljan, M.; Hager, G.; Khan, F.S.; Felsberg, M. Convolutional features for correlation filter based visual tracking. In Proceedings

of the IEEE International Conference on Computer Vision Workshops, Washington, DC, USA, 7–13 December; pp. 58–66.
6. Iswanto, I.A.; Chao, T.W.; Li, B. Object tracking based on Meanshift and Particle-Kalman filter algorithm with multi features.

Procedia Comput. Sci. 2019, 157, 521–529. [CrossRef]
7. Xie, J.; Stensrud, E.; Skramstad, T. Detection-Based Object Tracking Applied to Remote Ship Inspection. Sensors 2021, 21, 761.

[CrossRef]
8. Riahi, D.; Bilodeau, G. Online multi-object tracking by detection based on generative appearance models. Comput. Vis. Image

Underst. 2016, 152, 88–102. [CrossRef]
9. Lan, X.; Yuen, P.C.; Chellappa, R. Robust MIL-based feature template learning for object tracking. In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 September 2017.
10. Hare, S.; Golodetz, S.; Vineet, V.; Cheng, M.; Hicks, S.L.; Saffari, A.; Torr, P.H. Struck: Structured output tracking with kernels.

IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2096–2109. [CrossRef]
11. Park, E.; Ju, H.; Jeong, Y.M.; Min, S. Tracking-learning-detection adopted unsupervised learning algorithm. In Proceedings of the

7th International Conference on Knowledge and System Engineering (KSE), Ho Chi Minh City, Vietnam, 8–10 October 2015.
12. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siemence networks for object tracking. In

European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 850–865.

https://paperswithcode.com/dataset/otb
http://aiskyeye.com/download/
http://aiskyeye.com/download/
http://doi.org/10.1109/LSP.2019.2963147
http://doi.org/10.1007/s11263-021-01513-4
http://doi.org/10.1109/ACCESS.2019.2921975
http://doi.org/10.1016/j.procs.2019.09.009
http://doi.org/10.3390/s21030761
http://doi.org/10.1016/j.cviu.2016.07.012
http://doi.org/10.1109/TPAMI.2015.2509974

Appl. Sci. 2022, 12, 3220 17 of 18

13. Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In European Conference on Computer
Vision; Springer: Cham, Switzerland, 2016; pp. 749–765.

14. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. arXiv 2015, arXiv:1510.07945.
15. Farhodov, X.; Oh-Heum, K.; Kwang-Seok, M.; Oh-Jun, K.; Suk-Hwan, L.; Ki-Ryong, K. A New CSR-DCF Tracking Algorithm

based on Faster RCNN Detection Model and CSRT Tracker for Drone Data. J. Korea Multimed. Soc. 2019, 22, 1415–1429.
16. Gordon, D.; Farhadi, A.; Fox, D. Re3: Real-time recurrent regression networks for visual object tracking of generic objects. IEEE

Robot. Autom. Lett. ICRA 2018, 3, 788–795. [CrossRef]
17. Hong, S.; You, T.; Kwak, S.; Han, B. Online tracking by learning discriminative saliency map with convolutional neural network.

In Proceedings of the International Conference on Machine Learning PMLR, Lille, France, 6–7 July 2015.
18. Wang, N.; Li, S.; Gupta, A.; Yeung, D.Y. Transferring rich feature hierarchies for robust visual tracking. arXiv 2015,

arXiv:1501.04587.
19. Kristan, M.; Pflugfelder, R.; Leonardis, A.; Matas, J.; Cehovin, L.; Nebehay, G.; Felsberg, M.; Joni-Kristian, K.; Danelljan, M.;

Drbohlav, O.; et al. The eighth visual object tracking VOT2020 challenge results. In Proceedings of the Visual Object Tracking
Workshop 2020 at ECCV, online, 23–28 August 2020.

20. Fan, H.; Miththanthaya, H.A.; Rajan, S.R.; Liu, X.; Zou, Z.; Lin, Y.; Ling, H. Transparent object tracking benchmark. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021;
pp. 10734–10743.

21. Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T. Long-term recurrent
convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2625–2634.

22. Qasim, A.B.; Pettirsch, A. Recurrent neural networks for video object detection. arXiv 2020, arXiv:2010.15740.
23. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field

and Service Robotics; Springer: Cham, Switzerland, 2018.
24. Mnih, V.; Koray, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.;

et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
25. Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN variants for computer vision:

History, architecture, application, challenges and future scope. Electronics 2021, 10, 2470. [CrossRef]
26. Wang, Y.; Velswamy, K.; Huang, A.B. Long-Short Term Memory Recurrent Neural Network Based Reinforcement Learning

Controller for Office Heating Ventilation and Air Conditioning Systems. Processes 2017, 5, 46. [CrossRef]
27. Kristan, M.; Matas, J.; Leonardis, A.; Felsberg, M.; Cehovin, L.; Fernandez, G.; Vojir, T.; Hager, G.; Nebehay, G.; Pflugfelder, R.

The visual object tracking vot2015 challenge results. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, Washington, DC, USA, 7–13 December 2015; pp. 1–23.

28. Guo, D.; Wang, J.; Cui, Y.; Wang, Z.; Chen, S. SiamCAR: Siamese fully convolutional classification and regression for visual
tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
14–19 June 2020; pp. 6269–6277.

29. Salscheider, N.O. Object tracking by detection with Visual Motion Cues. arXiv 2021, arXiv:2101.07549v1.
30. Maras, B.; Arica, N.; Ertuzun, A.B. Object tracking by combining tracking-by-detection and marginal particle filter. In Proceedings

of the 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; IEEE: Piscataway,
NJ, USA, 2016.

31. Chahyati, D.; Fanany, M.I.; Arimurthy, A.M. Tracking people by detection using CNN features. Procedia Comput. Sci. 2017, 124,
167–172. [CrossRef]

32. Wang, N.; Shi, J.; Yeung, D.Y.; Jia, J. Understanding and diagnosing visual tracking systems. In Proceedings of the IEEE
International Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 3101–3109.

33. Rahman, M.; Ahmed, R.; Laishram, L.; Kim, S.H.; Jung, S.K. Siamese high-level feature refine network for visual object tracking.
Electronics 2020, 9, 1918. [CrossRef]

34. Zhang, K.; Liu, Q.; Wu, Y.; Yang, M.-H. Robust visual tracking via convolutional networks. arXiv 2015, arXiv:1501.04505.
35. Xiao-Qin, Z.; Run-Hua, J.; Chen-Xiang, F.; Tian-Yu, T.; Wang, T.; Peng-Cheng, H. Advances in deep learning methods for visual

tracking: Literature review and fundamentals. Int. J. Autom. Comput. 2021, 18, 311–333.
36. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for

visual tracking. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016.
37. Kahou, S.E.; Michalski, V.; Memisevic, R. Ratm: Recurrent attentive tracking model. arXiv 2015, arXiv:1510.08660.
38. Gan, Q.; Guo, Q.; Zhang, Z.; Cho, K. First step toward model-free, anonymous object tracking with recurrent neural networks.

arXiv 2015, arXiv:1511.06425.
39. Farhodov, X.; Moon, K.; Lee, S.; Kwon, K. LSTM network with tracking association for multi-object tracking. J. Korea Multimed.

Soc. 2020, 23, 1236–1249.
40. Ning, G.; Zhang, Z.; Huang, C.; He, Z.; Ren, X.; Wang, H. Spatially supervised recurrent convolutional neural networks for visual

object tracking. arXiv 2016, arXiv:1607.05781.
41. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2016; pp. 779–788.

http://doi.org/10.1109/LRA.2018.2792152
http://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://doi.org/10.3390/electronics10202470
http://doi.org/10.3390/pr5030046
http://doi.org/10.1016/j.procs.2017.12.143
http://doi.org/10.3390/electronics9111918

Appl. Sci. 2022, 12, 3220 18 of 18

42. Sutton, R.S. Introduction to Reinforcement Learning; MIT Press: London, UK, 2015; Volume 135.
43. Luo, W.; Sun, P.; Zhong, F.; Zhang, T.; Wang, Y. End-to-end active object tracking and its real-world deployment via reinforcement

learning. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–19 June 2019.
44. Nabati, R.; Harris, L.; Qi, H. CFTrack: Center-based Radar and camera fusion for 3D multi-object tracking. In Proceedings of the

IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021.
45. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M. Mastering the game of go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
[PubMed]

46. Barreto, A.; Hou, S.; Borsa, D.; Silver, D.; Precup, D. Fast reinforcement learning with generalized policy updates. Proc. Natl. Acad.
Sci. USA 2020, 117, 30079–30087. [CrossRef] [PubMed]

47. Caicedo, J.C.; Lazebnik, S. Active object localization with deep reinforcement learning. In Proceedings of the IEEE International
Conference on Computer Vision, Washington, DC, USA, 7–13 December 2015; pp. 2488–2496.

48. Jayaraman, D.; Grauman, K. Look-ahead before you leap: End-to-end active recognition by forecasting the effect of motion. arXiv
2016, arXiv:1605.00164.

49. Zhang, D.; Maei, H.; Wang, X.; Wang, Y. Deep Reinforcement Learning for Visual Object Tracking in Videos. arXiv 2017,
arXiv:1701.08936.

50. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. arXiv 2015, arXiv:1509.06461.
51. Wang, Z.; de Freitas, N.; Lanctot, M. Dueling network architectures for deep reinforcement learning. arXiv 2015, arXiv:1511.06581.
52. Yun, S.; Choi, J.; Yoo, Y.; Yun, K.; Choi, J.Y. ADNet: Action-Decision Networks for visual tracking with deep reinforcement

learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017.

53. Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.; de Maria, A.; Panneershelvam, V.; Suleyman, M.; Beattie, C.;
Petersen, S.; et al. Massively parallel methods for deep reinforcement learning. arXiv 2015, arXiv:1507.04296. Available online:
http://arxiv.org/abs/1507.04296 (accessed on 10 September 2021).

54. Zhu, P.; Wen, L.; Du, D.; Bian, X.; Hu, Q.; Ling, H. Vision meets drones: Past, present and future. arXiv 2020, arXiv:2001.06303.
55. Wu, Y.; Lim, J.; Yang, M. Object tracking benchmark. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE:

Piscataway, NJ, USA, 2015; Volume 37, pp. 1834–1848.
56. Go’zen, D.; O’zer, S. Visual object tracking in drone images with deep reinforcement learning. In Proceedings of the 25th

International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021.

http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://doi.org/10.1073/pnas.1907370117
http://www.ncbi.nlm.nih.gov/pubmed/32817541
http://arxiv.org/abs/1507.04296

	Introduction
	Related Work
	Visual Object Tracking
	Regression-Based Trackers
	Recurrent Neural Network-Based Tracking

	Deep Reinforcement Learning

	Deep Reinforcement Learning-Based DQN Agent Drone Algorithm for Visual Object Tracking in a Virtual Environmental Simulation Platform
	DQN Network Architecture
	Deep Q-Agent with Tracking Unit
	Training the DQN Network Model
	Tracking Baseline of the DQN Network Model

	Experiment Results and Discussion
	Datasets for Evaluation: VisDrone2019 and OTB-100
	Evaluation and Discussion
	Comparison and Qualitative Results

	Conclusions
	References

