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Featured Application: According to the high-resolution typhoon loss zoning map of rural hous-
ing provided in this paper, local emergency management departments can carry out timely and
targeted reinforcement and repair of rural housing in key townships before the typhoon comes
to minimize the casualties and economic losses caused by wind collapse.

Abstract: The purpose of this paper was to provide a new approach to achieve quantitative and
accurate typhoon loss assessment of disaster-bearing bodies at township-level resolution. Based on
the policy insurance data of Ningbo city, this paper took rural housing as the target disaster-bearing
body and analyzed the aggregated data of disaster losses such as payout amount and insured loss rate
of rural housing in Ningbo area under the influence of 25 typhoons during 2014–2019. The intensity
data of disaster-causing factors such as the maximum average wind speed in Ningbo area under the
influence of 25 typhoons were simulated and generated with the wind field engineering model, and a
township-level high-resolution rural housing typhoon loss assessment model was established using
a RBF artificial neural network. It was found that the insured loss rate of rural housing under wind
damage was higher in the townships of southern Ningbo than in the townships of northern Ningbo, and
the townships with larger insured loss rates were concentrated in mountainous or coastal areas that are
prone to secondary disasters under the attack of the typhoon’s peripheral spiral wind and rain belt. The
RBF neural network can effectively establish a typhoon loss assessment model from the causal factors to
the losses of the disaster-bearing bodies, and the RBF neural network has a faster convergence speed
and a smaller overall prediction error than the commonly used BP neural network.

Keywords: typhoon; RBF neural network; township-level resolution; loss assessment

1. Introduction

Ningbo is located in the southeast coast of China and is seriously affected by typhoon
disasters every year. For example, the Super Typhoon Lekima hit Ningbo in 2019, causing
408 houses to collapse and damage to 1594 houses citywide. Compared with urban houses,
rural houses are less wind-resistant, especially some old houses in disrepair, which are
highly susceptible to typhoon damage. Among the existing rural houses in Ningbo, only
14.8% are reinforced concrete houses, 69.9% are brick and concrete houses, and 14.9%, 0.1%,
and 0.3% are brick (stone) wooden houses, bamboo and grass adobe houses, and other
structures, respectively, according to the data of the third agricultural census in Ningbo
(http://www.cnnb.com.cn/xinwen/system/2018/03/05/008731132.shtml, accessed on
1 May 2021). Except for the reinforced concrete structure, which has better wind resistance,
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houses of brick and concrete, brick and stone, bamboo and grass structures may collapse
due to typhoons. Therefore, it is increasingly important to make reasonable disaster loss
assessments and predictions for rural housing.

Many scholars in China and abroad have conducted a lot of research on the hazard
analysis of typhoon causal factors and vulnerability analysis of disaster-bearing bodies. In
the assessment of typhoon causal factors, benefited from the rapid growth of the Monte
Carlo method and computer technology, extreme typhoon wind speed simulation has
mushroomed in the past twenty years, which is mainly composed of two parts: (1) typhoon
track simulation, and (2) wind field simulation. There are two commonly used methods, the
circular sub-region method (CSM) and full-track method, which were put forward one after
another to serve the typhoon track simulation. Studies in the literature that have indicated
the use of CSM to assess the typhoon wind hazards for the coastal region of mainland China
or the hurricane wind hazards for the United States have been carried out by Batts et al. [1],
Georgiou [2], Vickery and Twisdale [3], Ou et al. [4], Zhao et al. [5], Xiao et al. [6], Li and
Hong et al. [7], Hong et al. [8], and Fang et al. [9]. This approach (referred to as the CSM)
requires the assignment of probabilistic models for the characteristics of historical track
segments within a specified radius of the site of interest such as translational speed, heading,
and intensity. However, there could be insufficient historical track data to adequately define
the probabilistic models in this approach. To overcome the lack of historical track data,
Vickery et al. [10] pioneered a full-track method to generate synthetic hurricane tracks from
genesis to lysis based on the historical track records in the National Hurricane Center’s
North Atlantic hurricane database (HURDAT). The development and utilization of the
full-track models for wind hazard assessment have since been considered and expanded
(Powell et al. [11]; James and Mason [12]; Emanuel et al. [13]; Lee and Rosowsky [14];
Vickery et al. [15]; Li and Hong [16,17]; Chen and Duan [18]). Li and Hong [16,17] simplified
the Vickery’s regression model to assess the hurricane/typhoon wind hazards on the U.S.
gulf coast and the coastal region of mainland China, respectively. So far, storm tracks can
be synthesized rapidly from purely statistical intensity algorithms. However, the effects
of natural or anthropogenic climate change could not be encompassed through the above
empirical models. Today, some novel intensity models considering environment variables
that can be obtained from reanalysis or global climate models have the potential to estimate
the future wind hazards under future climate projections. For example, by taking the effects
of ocean coupling and environmental wind shear into account, Emanuel [19] presented a
fast, physically motivated intensity algorithm and verified the model’s validity. Reanalysis
data were adopted by Chen and Duan [18] to develop an improved full track model for
TCs based on a statistical dynamics method, described as a beta-and-advection model, to
estimate wind hazards on the coast of southeast China. Jing and Lin [20] developed a hidden
Markov model (MeHiM), which is dependent on the surrounding large-scale environment
such as vertical wind shear, relative humidity, and ocean feedback from reanalysis to
simulate the whole process of hurricane intensity evolution. Huang et al. [21] verified the
applicability of MeHiM in the Northwest Pacific Ocean and presented a general framework
of typhoon full-track simulation. For engineering applications, the wind field model can be
classified as the gradient wind field model [1,2,14] and the planetary boundary layer (PBL)
model [15,16,22]. Meng et al. [22] proposed an analytical model with an upper inviscid layer
of cyclostrophic balance and a lower friction layer to calculate the wind field in a moving
typhoon boundary layer. Thompson and Cardone [23] upgraded a PBL model by increasing
the spatial resolution to simulate a wider variety of radial pressure and wind profile forms.
These PBL models have been widely applied in the assessment of hurricane/typhoon wind
hazards for the coastal region of the United States and China [5–9,16,17].

In terms of vulnerability analysis of disaster-bearing bodies, Niu et al. [24] analyzed
the vulnerability of disaster-bearing bodies in coastal areas of China by considering the char-
acteristics of disaster-causing factors based on natural disaster system theory; Yin et al. [25]
assessed the risk of disaster-bearing bodies caused by typhoons in coastal areas of China
by establishing an indicator system based on hierarchical analysis; Pielke et al. [26], com-
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bined with socioeconomic factors, pointed out that the degree of disaster loss was mainly
related to population and economic currency; and Fang et al. [27] established a typhoon
vulnerability equation for rural housing in Zhejiang Province using insurance data and
provided relevant parameters. Chen et al. [28] established a typhoon disaster prediction
model based on comprehensive disaster correlation and typhoon disaster-causing factors;
and Lou et al. [29] established a neural network based on the principal component analysis
method and used the direct economic loss index as an assessment index for five typhoons
in Zhejiang Province.

Up until now, there have been few studies on the typhoon loss assessment of disaster-
bearing bodies based on township-level high-resolution due to the scarcity of public
information on township-level disaster loss data. The existing studies [24–29] have mainly
focused on macro-provincial resolution, which is mainly attributed to the limitation of
domestic disaster statistics. Although typhoon disaster statistics in China have made great
progress in the past decades, there are still many deficiencies in disaster statistics in different
provinces, different generations, and different departments, and the lack of uniform data
standards makes it difficult to predict quantitative and accurate disaster losses. At present,
emergency management departments around China mainly collect and summarize typhoon
disaster data through grassroots disaster informants, and although the data time series
is long, there are many human interference factors, the quality of historical data is not
ideal, and it focuses on statistics of civil indicators such as the number of affected residents,
casualties, and direct economic losses. In addition, the typhoon disaster data provided
by meteorological and water conservancy departments have low spatial resolution and
mainly focus on disaster-causing factor statistics, lacking disaster-bearing body statistics.
Therefore, it is urgent to reconstruct the bottom-up data of disaster-bearing bodies from
the county and township levels to provincial and municipal levels for historical typhoon
disaster events in China. In recent years, the public catastrophe insurance work carried out
by commercial insurance companies can better compensate for the above deficiencies in
disaster statistics, the location of insurance targets can be precisely located to townships
and villages, and the payout amount can accurately reflect the actual economic losses of
the targets, which can be used to quantitatively assess typhoon loss risks. Therefore, this
paper used rural housing as the target disaster-bearing body and proposed a new approach
to establish a typhoon loss assessment model in rural housing based on township-level
resolution by utilizing a RBF neural network with the help of policy insurance data, which
can provide a scientific basis for the subsequent formulation of typhoon disaster insurance
policies and typhoon emergency plans.

2. Data Sources

The typhoon path and intensity information used in this paper came from the CMA-
STI Best Track Dataset for Tropical Cyclones over the western North Pacific compiled by
the China Meteorological Administration (CMA) and Shanghai Typhoon Institute (STI).
The detailed specification of the CMA-STI Best Track Dataset can be referred to in the work
of Ying et al. [30] and the dataset can be obtained from the website (www.typhoon.gov.cn,
accessed on 1 May 2021). Based on the screening principle that the typhoon center enters
within 500 km of Ningbo meteorological station and the disaster loss information is com-
plete, 25 typhoons affecting Ningbo area during 2014–2019 were selected for analysis, and
the specific path information is shown in Figure 1. According to the distance from the
typhoon landing site to Ningbo, typhoon paths can be divided into three types: Type I,
with landing sites in coastal areas of Zhejiang such as Ningbo and Taizhou; Type II, with
landing sites in adjacent provinces and cities such as Fujian and Shanghai; and Type III,
with landing sites in more distant areas such as Guangdong or without landing but whose
central path entered within 500 km of Ningbo meteorological station.

www.typhoon.gov.cn
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Figure 1. Twenty-five typhoon paths affecting Ningbo area during 2014–2019.

The Ningbo policy rural housing insurance data used in this paper were provided
by the Ningbo branch of the People’s Insurance Company (Group) of China Limited. The
data include underwriting and claims data. Underwriting data include policy number,
number of insured households, underwriting address, insurance amount per household,
total insurance premium, etc.; claims data include policy number, date of insurance, reason
for insurance, address of insurance, loss of insurance subject, actual compensation amount,
etc. The policy number corresponded to each other in the two types of data, and the
insurance address detailed the village, town, or street where the accident was located,
which can be used to assess the typhoon losses in rural housing in each township.

3. Methods
3.1. RBF Neural Network Fundamentals

The RBF (radical basis function) neural network is an efficient feed-forward network
that has the best approximation performance and global optimum properties that other
forward networks do not have, and has a simple structure and fast training speed. Its
network topology is shown in Figure 2, which contains an input layer, a radial basis
function hidden layer, and an output layer. The main advantage is that it can approximate
and predict any continuous nonlinear function within arbitrary accuracy and has global
approximation capability, which fundamentally solves the local optimum problem of the
BP neural network, the topology is compact, and the structural parameters can be separated
for learning [31]. In addition, the generalization ability of the RBF network is also better
than the BP network in several aspects. In the RBF neural network, the input data enter the
input layer without any transformation. When the data enter the hidden layer, the hidden
layer neural nodes perform a kind of spatial nonlinear mapping transformation on the data
through the basis function. The output layer uses a linear optimization strategy, so the
learning speed can be faster. Finally, the mapped values are output by a linearly weighted
combination of the output layer neural nodes.
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Figure 2. RBF neural network structure.

The input layer of RBF neural network realizes the spatial nonlinear mapping trans-
formation xp → R(xp − ci) by a radial basis function, where the commonly used basis
functions are Gaussian functions with the following activation functions:

R(xp − ci) = exp(− 1
2σ2

∥∥xp− ci‖2) (1)

where
∥∥xp− ci‖ is the Euclidean norm; xp =

(
xp

1 , xp
2 , . . . , xp

m

)T
representing the pth input

data; ci is the implicit layer node center; and σ is the variance of the basis function.
The output layer of the RBF neural network achieves a linear mapping R(xp − ci)→ yj

by weighted combinations, denoted as:

yj = ∑h
i=1 ωijR(xp − ci)j = 1, 2, . . . , n (2)

where ωij is the connection weight from the implicit layer to the output layer;
i = 1, 2, 3, . . . , h, h is the number of nodes in the hidden layer; and yj is the jth actual
output value corresponding to the data.

3.2. BP Neural Network Fundamentals

The BP (back propagation) neural network is a multilayer feedforward network trained
according to the error back propagation algorithm and is one of the most widely used
neural network models, whose network structure is shown in Figure 3. The standard BP
network generally consists of three neuron layers: the input layer, the hidden layer, and
the output layer, and the neurons in the layers form a fully interactive connection with
each other, and the neurons within the layers are independent of each other. The BP neural
network algorithm is based on the error between the true value and the output value, and
adjusts its weights and threshold values backward to finally achieve the minimum mean
square error. Since the learning speed of BP neural network is fixed, the network converges
slowly and requires a long training time.
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3.3. Construction of Typhoon Loss Assessment Model for Rural Housing

The flow chart for the construction of a typhoon loss assessment model for rural
housing is shown in Figure 4. As can be seen, the simulated typhoon wind speed was
selected as input layer data, and the output layer data were the insured loss rate of each
township due to typhoons, and the statistical data covered 139 townships in Ningbo.
Based on the available data of the typhoon causal factors and the losses of the disaster-
bearing bodies, the typhoon loss assessment models of rural housing based on the RBF
neural network and BP neural network can be established, respectively. Among them, the
construction of the RBF neural network is simpler than a BP neural network. Based on
the existing data samples, a neural network with a radial basis function expansion factor
of 1.2 was created by the “newrb” function, and the mean square error target was set to
0.001. The training algorithm of RBF neural network can be divided into two steps: the
first step is to decide the number of nodes in the hidden layer and the center ci of the basis
function according to the distribution of training samples; and the second step is to obtain
the connection weights ωij based on the determined network parameters.
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The BP neural network was designed as a typical 3-layer network model. The number
of neurons in the hidden layer was determined as five by the empirical formula and trial-
and-error method, and the transfer functions were tangent S-type transfer function “tansig”
and linear transfer function “purelin”, respectively. The system default “trainlm” function
was used for training, and the training number was set to 1000, the training target was
0.001, and other parameters were taken as default values.

4. Results
4.1. Typhoon Characteristics and Wind Field Simulation

The daily wind speed data of Ningbo ground meteorological stations (58,562 Yinzhou
and 58,467 Cixi) were extracted from the China Meteorological Data System (CMDS)
(http://data.cma.cn/, accessed on 1 May 2021). According to the meteorological data
specification, the collected wind speed data were carefully calibrated by adjusting the ob-
servation height, observation time interval, and so on, to the standard condition. However,
it was found that the daily maximum 10 min average wind speeds observed at the meteo-

http://data.cma.cn/
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rological stations during the typhoon strike were small, so additional numerical simulation
of the typhoon wind field was needed. The reason for the low observed typhoon wind
speeds may be due to the change of the terrain near the meteorological station. Attributable
to the rapid urbanization in China since the 1980s, the terrain near the meteorological
station might have changed dramatically so that the exposure category in the vicinity
of the original anemometer site might become very different from the initial open rural
exposure [32]. Therefore, it is questionable to directly utilize the observed wind speed series
to represent true typhoon wind speeds near the ground. In this paper, the Yan Meng wind
field model [22] was used to simulate the near-surface typhoon wind speeds in the Ningbo
area. The schematic diagram of the activating wind field model is shown in Figure 5. The
Vickery empirical model [33] was used to determine the values of key wind field parameters
such as the maximum wind speed radius Rmax and Holland pressure profile parameter B.
The roughness length was taken as 0.05 m. The 10 min average maximum wind speeds at a
height of 10 m near the ground in the Ningbo area under the influence of 25 typhoons were
obtained by wind field simulation. The specific characteristics of 25 typhoons are shown in
Table 1. From Table 1, it can be seen that the simulated typhoon wind speeds were larger
than the observed wind speeds. The average number of typhoons affecting the Ningbo area
is four to five per year from 2014 to 2019. Among these, type I typhoons that landed on the
coast of Zhejiang and caused serious impacts on Ningbo occurred on average one time per
year. The 25 selected typhoons affected Ningbo for three to four days on average, with the
shortest lasting effect of only one day (Typhoon Mitag 1918) and the longest lasting effect
of eight days (Typhoon Jongdari 1812).
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Table 1. Specific characteristics of 25 typhoons affecting the Ningbo area.

Year Impact Time
(Month/Day)

Typhoon Number
and Name Landing Location Path Type

(Meteorological Station
Observation) 10 min

Average Maximum Wind
Speed in Ningbo (m/s)

(Yan Meng Wind Field
Model) 10 min Average
Maximum Wind Speed

in Ningbo (m/s)

2014 6/15–6/17 1407 Hagibis Shantou, Guangdong Type III 6.3 5.3
2014 7/8–7/9 1408 Neoguri Not landed in China Type III 6.4 7.6
2014 7/23–7/27 1410 Matmo Taiwan; Fuzhou, Fujian Type II 7.8 8.6
2014 8/1–8/2 1412 Nakri Not landed in China Type III 6.0 8.4
2014 9/21–9/24 1416 Fung-wong Taiwan; Ningbo, Zhejiang Type I 7.9 18.4
2015 7/9–7/13 1509 Chan-hom Zhoushan, Zhejiang Type I 9.0 33.0
2016 9/12–9/16 1614 Meranti Xiamen, Fujian Type II 5.8 6.2
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Table 1. Cont.

Year Impact Time
(Month/Day)

Typhoon Number
and Name Landing Location Path Type

(Meteorological Station
Observation) 10 min

Average Maximum Wind
Speed in Ningbo (m/s)

(Yan Meng Wind Field
Model) 10 min Average
Maximum Wind Speed

in Ningbo (m/s)

2016 9/16–9/17 1616 Malakas Not landed in China Type III 9.2 10.9
2016 10/3–10/5 1618 Chaba Not landed in China Type III 8.5 3.8
2017 7/2–7/4 1703 Nanmadol Not landed in China Type III 9.7 6.0
2017 7/27–7/30 1709 Nesat Taiwan; Fuqing, Fujian Type II 6.3 5.0
2017 7/31–8/2 1710 Haitang Taiwan; Fuqing, Fujian Type II 7.7 5.6
2017 9/13–9/17 1718 Talim Not landed in China Type III 8.4 11.4
2018 7/9–7/11 1808 Maria Lianjiang, Fujian Type II 9.3 11.5
2018 7/21–7/23 1810 Ampil Shanghai Type II 7.9 20.1
2018 7/26–8/03 1812 Jongdari Shanghai Type II 9.5 23.1
2018 8/10–8/14 1814 Yagi Wenling, Zhejiang Type I 7.5 19.2
2018 8/16–8/19 1818 Rumbia Shanghai Type II 8.4 22.2
2018 8/22–8/23 1819 Soulik Not landed in China Type III 6.0 9.5
2018 10/4–10/6 1825 Kong-rey Not landed in China Type III 11.0 4.6
2019 7/17–7/19 1905 Danas Not landed in China Type III 7.0 6.6
2019 8/9–8/11 1909 Lekima Wenling, Zhejiang Type I 12.3 28.2
2019 9/6–9/7 1913 Lingling Not landed in China Type III 8.8 12.6
2019 9/21–9/22 1917 Tapah Not landed in China Type III 9.8 5.4
2019 10/1–10/3 1918 Mitag Zhoushan, Zhejiang Type I 15.5 32.4

4.2. Typhoon Loss Statistics in Rural Housing in Ningbo

The insured loss rate of rural housing in each township under the influence of different
typhoon paths from 2014 to 2019 was counted, and representative typhoons were selected
for analysis, as shown in Figures 6–8. Combined with the typhoon wind speed data in
Table 1, it can be seen that the disaster losses of rural housing in the Ningbo area under
the influence of different typhoon paths varied greatly. In general, the insured loss rate of
townships and the wind speed of typhoons affecting Ningbo area were positively correlated.
Specifically, typhoons landing on the coast of Zhejiang (i.e., type I typhoons such as 1509
Typhoon Chan-hom and 1909 Typhoon Lekima) caused more damage to rural houses in
Ningbo area than typhoons landing in neighboring provinces and cities such as Fujian (i.e.,
type II typhoons). Type III typhoons such as 1616 Typhoon Malakas, although they did not
make landfall in China and the affected typhoon wind speeds in Ningbo were small, the
typhoon centers entered within the 500 km range of Ningbo during their evolution and
still caused great damage to the rural houses in Ningbo townships. The main reason is that
under the attack of the typhoon’s peripheral spiral wind and rain belt, secondary disasters
such as floods, landslides, and mudslides occurred in the mountainous areas of Ningbo,
and rural housing was highly susceptible to damage from secondary disasters.
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A summary of the underwriting data and claims data due to typhoons from 2014–2019
according to district and county scales (as shown in Table 2) showed that the 6-year
total coverage varied widely among districts and counties, and the total coverage was
significantly higher in Cixi than in other districts and counties due to the largest population
base. The zoning map of Ningbo districts and counties is shown in Figure 9. As can be seen
from Table 2, Yuyao, Xiangshan, Ninghai, and Cixi had a higher total payout amount, and
Xiangshan, Beilun, Ninghai, Yuyao had larger insured loss rates. It is worth mentioning that
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in the insurance claims data, “fire”, “rainstorm”, “accident”, and other factors accounted for
the majority of the insurance records, while typhoons only accounted for a small percentage
of the insurance records. Therefore, the overall value of the insured loss rate caused by
typhoons is small. Second, it is also common that the cause of insurance was not clearly
marked, and the insurance estimator only marked “typhoon” when marking the cause of
insurance, while other secondary disasters such as landslides, floods, and mudslides caused
by typhoons were not recorded, resulting in some claims records not corresponding to the
specific typhoon causal factors, and therefore, the total payout amount will be omitted in
the statistics. The overall average insured loss rate was 0.00106%.
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Table 2. Summary of insurance claims for rural housing in the Ningbo districts and counties caused
by typhoons.

District and County 6-Year Total Payout (¥) 6-Year Total Coverage (¥) Insured Loss Rate The Township with the Largest
Insured Loss Rate

Beilun 188,000 11,336,218,951 0.00166% Meishan Township (0.007252%)
Cixi 309,000 60,500,740,600 0.00051% KuangYan Township (0.001439%)

Fenghua 152,600 23,526,372,972 0.00065% Shangtian Township (0.001381%)
Haishu 183,600 21,288,276,900 0.00086% Hengjie Township (0.00474%)
Jiangbei 48,000 5,741,707,313 0.00084% Hongtang Street (0.001141%)
Ninghai 382,049 25,547,294,750 0.00150% Chayuan Township (0.003258%)

Xiangshan 393,900 20,265,580,500 0.00194% Maoyang Township (0.009984%)
Yinzhou 145,950 26,797,96,800 0.00054% Jungi Township (0.001853%)
Yuyao 543,400 37,188,688,850 0.00146% Luting Township (0.009502%)

Zhenhai 53,035 7,841,041,500 0.00068% Luotuo Street (0.001003%)
Average insured loss rate 0.00106%

In order to more visually analyze the impact of typhoon disasters on rural housing in
each township in Ningbo, Figure 10 shows the zoning map of the total insured loss rate
of rural housing in each township due to typhoons from 2014 to 2019. Combined with
Table 2, it can be seen that Ningbo Xiangshan County, which is a place where typhoons
have landed many times historically, had the largest insured loss rate amongst the Ningbo
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districts and counties, and the insured loss rate of Maoyang Township within Xiangshan
County was close to 0.01%. In addition, the insured loss rate of Beilun, Ninghai, and Yuyao
counties was higher than the average value in Ningbo, with the largest loss rate of Meishan
Township in Beilun, Chayuan Township in Ninghai, and Luting Township in Yuyao being
0.007252%, 0.003258%, and 0.009502%, respectively. The rural houses in these townships
are mainly of a brick (stone) mixed structure, and such structural systems find it difficult to
resist the strong wind and rain impact brought by typhoons. Therefore, the insured loss
rate in these areas is larger, and rural houses have a greater risk of damage.
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4.3. Model Training and Verification

A total of 20 rural housing typhoon damage samples from 2014–2018 were selected to
train the RBF and BP neural network models, and a total of five typhoon damage samples
from 2019 were used for model verification. The predicted values of the BP model were
used for comparison. During the training process of the RBF neural network, the number
of nodes in the hidden layer can be automatically increased until it reaches the maximum
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number of nodes in the hidden layer or the accuracy requirement. In the BP neural network
training process, in order to make the output results closer to the training target, it is
necessary to debug the number of nodes in the hidden layer within the model, the training
function, and other related parameters for a long time. When the neural network model is
trained, the corresponding training curve can be obtained, as shown in Figure 11. As can be
seen from the figure, when the training accuracy was set to 0.001, both models converged
under the given conditions, and the BP neural network model needed 110 steps to reach the
accuracy requirement. The RBF neural network model required only 12 steps to achieve the
same condition, and its training speed was significantly better than that of the BP neural
network. The above analysis shows that the RBF neural network has more advantages over
the BP neural network in the training speed.
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Figure 11. Model training curve. (a) BP neural network. (b) RBF neural network.

To calibrate the models, the predicted values of the BP and RBF neural network models
were compared with the actual values (i.e., the average insured loss rate of rural housing
under the impact of five typhoons in 2019) and the mean square error was used as the
evaluation indicator. The results are shown in Figures 12 and 13. A total of 139 townships in
Ningbo were numbered sequentially. It can be seen that both two models could accurately
predict the insured loss rate for most townships. However, due to the single input typhoon
causal factor (i.e., simulated typhoon wind speed) and the small training sample size
(i.e., 20 typhoon damage samples), the two models were less effective in predicting some
townships with sudden changes in insured loss rates. In addition, both the BP model and
the RBF model had a limited prediction effect for the townships with 0 insured loss rate.
Therefore, the predicted values of insured loss rate for some townships were overestimated.
In Figure 13, it is noteworthy that the maximum mean square error of the BP model was
18 × 10−6, which was less accurate and had a larger fluctuation in the error range than
the RBF model with a maximum mean square error of 8 × 10−6. Overall, the mean square
error of the predicted values of the RBF neural network was smaller than that of the BP
neural network.
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To calibrate the models, the predicted values of the BP and RBF neural network mod-

els were compared with the actual values (i.e., the average insured loss rate of rural hous-

ing under the impact of five typhoons in 2019) and the mean square error was used as the 

evaluation indicator. The results are shown in Figures 12 and 13. A total of 139 townships 

in Ningbo were numbered sequentially. It can be seen that both two models could accu-

rately predict the insured loss rate for most townships. However, due to the single input 

typhoon causal factor (i.e., simulated typhoon wind speed) and the small training sample 

size (i.e., 20 typhoon damage samples), the two models were less effective in predicting 

some townships with sudden changes in insured loss rates. In addition, both the BP model 

and the RBF model had a limited prediction effect for the townships with 0 insured loss 

rate. Therefore, the predicted values of insured loss rate for some townships were overes-

timated. In Figure 13, it is noteworthy that the maximum mean square error of the BP 

model was 18 × 10−6, which was less accurate and had a larger fluctuation in the error 

range than the RBF model with a maximum mean square error of 8 × 10−6. Overall, the 

mean square error of the predicted values of the RBF neural network was smaller than 

that of the BP neural network. 
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Figure 12. Comparison of average insured loss rate by township due to five typhoons in 2019. 
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Figure 13. Comparison of mean square error of prediction results between the BP and RBF models. Figure 13. Comparison of mean square error of prediction results between the BP and RBF models.

In order to compare the prediction accuracy of the RBF and BP neural network models
more intuitively, the data in Figure 12 were visualized and the zoning maps are shown
in Figure 14. In the figure, the RBF prediction results were basically consistent with the
actual situation, while in contrast, the BP prediction results had obvious errors with the
actual situation; in particular, some townships in the highlighted circles in Figure 14 failed
to achieve the loss prediction effect. The most severely affected townships obtained from
Table 2 were selected for comparative analysis (see Table 3). According to the comparison,
although problems such as small sample size led to some deviations between the predicted
values and the actual values in each township, the errors in the predicted values of the RBF
model were smaller than those of the BP model in most of the severely affected townships.
The results showed that the RBF neural network model is more advantageous than the
BP model in reflecting the change in the average insured loss rate of rural houses in each
township for the purpose of disaster loss assessment.

4.4. Model Prediction

The trained RBF neural network model can be used to predict the insured loss rate
of rural housing in each township under different design wind speeds in Ningbo. The
corresponding design wind speeds in Ningbo (input layer data) were calculated according
to the wind pressures of 10, 50, and 100 year return periods as specified in the current Build-
ing Structure Load Code (GB50009-2012) [34], and their values were 21.9 m/s, 28.3 m/s,
and 31.0 m/s, respectively. The output layer results are shown in Figure 15. Overall, the
RBF neural network model showed a positive correlation between the insured loss rate of
rural housing and the design wind speeds (i.e., the higher the wind speed, the higher the
disaster loss). Under the same design wind speed, the insured loss rate of rural houses in
the townships of Fenghua District, Ninghai County, and Xiangshan County in the south
of Ningbo was much higher than that in the northern townships. Under the design wind
speed of a 100-year return period (31.0 m/s), the insured loss rate of rural housing in
more than 100 out of 139 townships would be greater than 0.1%, which indicates that rural
houses in Ningbo will suffer great damage. According to the above quantitative typhoon
loss prediction results, the local emergency management bureau can carry out timely and
targeted reinforcement and repair of rural housing in key townships before the typhoon
arrives to minimize casualties and economic losses caused by wind collapse.
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Table 3. Average insured loss rates in 2019 for rural housing in the most severely affected townships.

Township
Number Township Name Actual Value

(×10−2)
RBF Predicted
Value (×10−2)

RBF Error Value
(×10−2)

BP Predicted
Value (×10−2)

BP Error Value
(×10−2)

4 Kuangyan Town 0.097% 0.103% 0.006% 0.090% 0.007%
15 Chayuan Township 0.058% 0.026% 0.032% 0.356% 0.298%
24 Maoyang Township 0.106% 0.095% 0.011% 0.023% 0.083%
35 Luotuo Street 0.077% 0.156% 0.079% 0.302% 0.225%
37 Shangtian Town 0.098% 0.416% 0.318% 1.456% 1.358%
47 Meishan Township 0.103% 0.080% 0.023% 0.283% 0.180%
48 Zhenqi Town 0.085% 0.054% 0.031% 0.259% 0.174%
69 Luting Township 0.519% 1.058% 0.539% 0.812% 0.293%
73 Hengjie Town 0.073% 0.039% 0.034% 0.270% 0.197%
87 Hongtang Street 0.096% 0.069% 0.027% 0.345% 0.249%

5. Conclusions

This paper proposed a new approach to achieve quantitative and accurate typhoon
loss assessment of disaster-bearing bodies at township-level high-resolution. The rural
housings in Ningbo area were taken as the target disaster-bearing bodies and a typhoon
loss assessment model in rural housing based on township-level resolution was established
by utilizing the RBF neural network with the help of public catastrophe insurance data.
The specific findings are as follows:

(1) The RBF neural network could effectively establish a typhoon loss assessment model
from the causal factors to the losses of the disaster-bearing bodies, and the RBF neural
network converged faster and had a smaller overall prediction error compared to the
commonly used BP neural network.

(2) Overall, the insured loss rate of rural housing due to typhoons showed a positive
correlation with the typhoon wind speed affecting Ningbo area. Under the impact of
typhoon disaster, the insured loss rate of rural housing was higher in the townships
of southern Ningbo than in the townships of northern Ningbo. The townships with
larger insured loss rates were concentrated in mountainous and coastal areas that are
prone to secondary disasters under the attack of the typhoon’s peripheral spiral wind
and rain belt.

It should be noted that although the typhoon loss assessment model for rural houses
proposed in this paper was well applied in most townships in Ningbo, there were still a
few townships where the predicted value of insured loss rate decreased with the increase
in design wind speed, and even the situation of 0 insured loss rate exists. In order to
further improve the model prediction accuracy, subsequent improvements can be made
in terms of increasing the model input layer variables and improving the completeness
of insurance claim records. For example, the model can be improved by adding typhoon
rainfall, typhoon central pressure, distance from typhoon landfall to target site, and other
disaster-causing factors as model inputs. In addition, the insurance loss estimator should
clearly distinguish typhoon disaster-causing factors and secondary disasters such as strong
wind, heavy rain, landslide, flood, mudslide, etc. when making notes on the cause of the
subject matter.

Since the RBF neural network-based typhoon loss assessment model for disaster-bearing
bodies proposed in this paper was purely data-driven, future research work will build on
this research to analyze the structural vulnerability and damage mechanisms of disaster-
bearing bodies under extreme typhoon loads by establishing physical finite element models
for disaster-bearing bodies, and then establish a link with economic losses to finally realize a
physically-driven quantitative typhoon loss assessment model for disaster-bearing bodies.
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