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Abstract: Instance segmentation of overlapping plants to detect their grasps for possible robotic
grasping presents a challenging task due to the need to address the problem of occlusion. We
addressed the problem of occlusion using a powerful convolutional neural network for segmenting
objects with complex forms and occlusions. The network was trained with a novel dataset named the
“occluded plants” dataset, containing real and synthetic images of plant cuttings on flat surfaces with
differing degrees of occlusion. The synthetic images were created using the novel framework for
synthesizing 2D images by using all plant cutting instances of available real images. In addition to
the method for occlusion handling for overlapped plants, we present a novel method for determining
the grasps of segmented plant cuttings that is based on conventional image processing. The result
of the employed instance segmentation network on our plant dataset shows that it can accurately
segment the overlapped plants, and it has a robust performance for different levels of occlusions.
The presented plants’ grasp detection method achieved 94% on the rectangle metric which had an
angular deviation of 30 degrees and an IoU of 0.50. The achieved results show the viability of our
approach on plant species with an irregular shape and provide confidence that the presented method
can provide a basis for various applications in the food and agricultural industries.

Keywords: deep learning; instance segmentation; occlusion handling; vision-based robotic grasping

1. Introduction

Robotic pick-and-place systems have proven to be essential for increasing production
throughput, productivity, and efficiency in numerous industrial applications [1]. The term
“robotic pick-and-place” refers to any application in which an object is picked up by a
robot at one location, moved, and placed at another location. Traditionally, four main
areas of application exist for pick-and-place robots: assembly, packaging, bin-picking,
and inspection. In these applications, a target object is grasped by the robot either from
a conveyor belt or from a container (bin) and, depending on the application, placed on
another conveyor belt, a packaging container, or at another location [2,3]. Such robotic
systems are usually equipped with vision systems used for the recognition of target objects
to be grasped and moved by the robot. Recent advances in sensor and robotic gripper
technology, as well as advances in artificial intelligence (AI), particularly in the area of
deep learning (DL), have enabled the use of pick-and-place robots in a broad range of
different industrial applications, ranging from traditional applications such as assembly
of workpieces to more recent applications in the food industry and agriculture [4–7]. This
spread across a wide range of potential applications is characterized by the transition
from traditional robotic grasping of exclusively rigid objects, mainly of a standardized
size and shape, to the robotic grasping of soft, deformable, and complex-shaped objects.
The latter is the case in various applications in agriculture, where complex objects with
high variability and heterogeneity, such as fruits and plants, need to be manipulated by
the robots. The particular challenge in such robotic applications is dealing with occluded
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objects or occluded parts of objects to enable reliable robotic grasping of the target object.
Some examples include fruit harvesting [8], plant phenotyping [9], and robotic plant
propagation [10]. In the case of fruit harvesting, target crops are often occluded by leaves,
and in robotic plant propagation applications where the plant cuttings are transported on
conveyor belts, the plants tend to overlap on the conveyor belt. Therefore, vision-based
detection of the target objects is a challenging task, which needs to address the problem
of occlusion. Once the target object is detected, it is necessary to accurately determine
its optimal grasping point so that the robotic grasping can be realized. Depending on
the application and vision sensor technology employed, grasping points are calculated
directly in a three-dimensional (3D) data-format using the object point cloud [9] or they
are first detected in a two-dimensional (2D) single camera image using the result of object
segmentation [11]. In the latter case, the 3D coordinates of the object grasping points, as
needed for robotic grasping, are calculated using an approach of mapping from a 2D image
to 3D working space.

In this paper, novel methods are presented for the detection of target plants among
the overlapped plants placed on a flat surface such as a conveyor belt, as well as for finding
optimal grasps in a 2D image for possible robotic grasping of the detected target plants.
Bearing in mind that considered objects of interest—plants—are flat and flexible (non-rigid)
objects with complex shapes, the presented work and the achieved results represent a
contribution to further progression in the field of vision-guided robotic grasping of non-
rigid objects, which until now has been less researched and developed than robotic grasping
of rigid objects [12]. The presented work is divided into two parts. The first presents a
novel method for segmenting overlapping plants and classifying the segmented plants into
different categories, aiming at the category of target plant cutting that shall be grasped
by the robot. The second part presents a novel solution to the problem of finding the
optimal robotic grasp of the identified target plant cutting. Solutions to the considered
two problems are essential to enable reliable robotic grasping of plants in an application
where plants need to be grasped and moved from one position to another, such as robotic
plant propagation.

The presented method for target plant detection involves using a high-performance
convolutional neural network (CNN) for instance segmentation of objects even in the
presence of object occlusion. For training of this CNN, firstly, a dataset from images of plant
cuttings placed in random positions on a flat surface with varying degrees of occlusion
was created. The dataset is a combination of real and synthetic images, as explained
below. Using all available plant cuttings instances from real images, we have developed
a framework to synthesize two-dimensional (2D) images as described in Section 3.1. The
dataset of overlapping plant cuttings was created using Vaccinium cuttings, which means
that the objects of interest are characterized by a thin stem with a number of overlapping
leaves, as can be seen in Figure 1.

To grasp the plant cuttings for vision-guided robotic grasping applications, each cut-
ting should first be segmented. For this purpose, the problem of possible occlusions should
be addressed. In the work presented in this paper, the occlusion problem is addressed using
the method presented in [13], which details a robust network for segmenting objects with
complex shapes and severe occlusion. The grasp should be detected for each segmented
targeted plant cutting. In the presented system, a single RGB camera is assumed to remain
in a fixed position and at a constant distance from the flat surface with the plant cuttings,
thus an approach to detect the plant grasp in a 2D RGB image was followed. To cope with
the specific shape characteristics of the considered objects of interest, plant cuttings with
thin stems and a number of overlapped leaves, we developed a novel effective conventional
image processing (CIP)-based method for finding the optimal plant cutting grasp. Figure 1
presents our proposed pipeline for grasp detection of plant cuttings on a flat surface to
enable their further grasping by a robot.
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Figure 1. Pipeline of the proposed system for detection of robotic grasps of plant cuttings on a flat
surface such as a conveyor belt.

The rest of the paper is organized as follows. In Section 2, an overview of related
work is given, with a focus on instance segmentation methods for occlusion handling
and detection of target objects’ grasps in 2D images based on object segmentation results.
Section 3 presents our dataset named the “occluded plants” dataset, as well as the details
of the developed methods for segmentation of plant cuttings and detection of grasps. The
evaluation results of both methods are given in Section 4.

2. Related Work

Recently, along with many advances in DL, the problem of occlusion in scenes for the
instance segmentation tasks has been studied [12–16]. Instance segmentation, a computer
vision task for detecting and localizing instances of each object class in an image, represents
one of the most challenging problems and encompasses a variety of aspects that are attract-
ing increasing research interest in the computer vision community. Instance segmentation
of occluded objects is difficult due to the lack of a complete shape of the object, and only
a few methods, such as those presented in [13,14], consider both the complex shape and
occlusions of the objects.

The method presented in [17] is a CNN-based method that works with overlapping
objects in 2D images and simultaneously segments and classifies objects. Sheared 2D and
3D masks of the overlapping objects are encoded in a volumetric image, and this method
performs 3D object segmentation. The main contribution of this network is its ability to
generate class-specific instance masks of overlapping biological objects. This method works
with 2D images of translucent objects, which makes it easier for the network to lift the
label space from 2D to 3D. Presented results in [18] showed that this method achieved
high accuracy in overlapping and cluttered situations. However, this method does not
suit the solution of the problem of overlapped plants, considered in this paper, as plant
objects are not translucent. In [19], a three-layer model is proposed to jointly represent
hypotheses, voting elements, instance labels, and their connections for plant imaging
analysis. This method deals with partial occlusions as well. The first step in this method
is the detection of object centers by Hough voting, and then the instance is segmented
around the detected focused point. With updating the Hough votes, all the assignments and
weights are updated, and the process is repeated until a stop criterion is met. The possible
application of this method for the segmentation of plant cuttings has some limitations. One
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of them is the inability to correctly detect plant stems, as the framework of this method is
designed for the specific application of plant leaf segmentation. In addition, in cases of
heavy occlusion or small leaves, plants’ leaves cannot be accurately segmented.

Some existing methods for handling occlusion are dependent on the objects’ bounding
boxes proposals problem. For example, the method presented in [12] is dependent on
the bounding boxes proposal and makes use of image synthesis of objects with occlusion,
which is an extension of methods presented in [18,20]. The authors of [12] use a novel relook
architecture, which makes use of instance density to segment multi-class masks, extending
so the methods already implemented in [21,22]. In addition to segmenting the visible
objects, it also generates the invisible parts of the objects. The method presented in [23] is
another bounding box-dependent method that performs segmentation and generates the
invisible parts of the objects. As this method jointly segments and generates the invisible
object’s parts, it gets more information about the dependencies of the objects with each
other and their occluded regions, their shapes, and appearances. Authors of [24] present a
method using oriented boxes instead of axis-aligned boxes for instance segmentation. This
method shows that oriented boxes achieve better results and improve the mask predictions
especially when the objects are diagonally aligned, overlapping, or touching each other.
However, Refs. [12,23,24] considered simple shape objects such as screws, pill bags, and
furniture, which are not complex shape objects such as the plant cuttings in our dataset,
and therefore the corresponding methods are not suitable for the segmentation problem
considered in this paper.

The method given in [14] is a proposal-free method that is capable of dealing with
complex shapes with a high number of crossovers. It has shown good performance for small
biomedical applications with datasets having complicated shapes and dense crossovers
with only one class of objects method rather than a multi-class dataset such as that of our
dataset. In addition, this method is computationally expensive, thus the images should
be drastically reduced in resolution size, and this means the loss of effective features
for segmentation of plant cuttings, which are characterized by a thin stem. Because of
these shortcomings, this method is not suitable for the application presented in this paper,
segmentation of overlapped plant cuttings placed on flat surfaces.

The network named AdaptIS, presented in [13], is the network that we used in the
work presented in this paper, and it is an end-to-end class agnostic method. It takes the
raw image as input along with a point on the object and generates a segmentation mask for
the object positioned at that point location. It generates pixel-level accurate segmentation
and it can also deal with complex object shapes. AdaptIS is not dependent on the object
bounding box proposals, and it is performing superior to those that depend on bounding
boxes, even better than [24], which makes use of oriented boxes, especially for complex
occluded objects. AdaptIS also outperforms “detection first methods” for occluded objects.

Because of cost-effectiveness, real-time performance, and simplicity of vision systems
set-up, in a number of vision-based robotic grasping applications, the calculation of object
grasps was based on image processing of the 2D images. For example, in [25,26] traditional
image processing methods such as contour extraction and morphological operations were
used. However, these methods were developed to determine optimal grasps for robotic
grasping of fixed structure objects and thus were not suitable for the application considered
in this work, which involves robotic grasping of very thin-stemmed plant cuttings that
have irregular shapes.

In [11], a combination of DL and conventional image processing was used to detect
stem in images and find a grasping point so to enable automatic grasping of the stem
and measurement of its diameter of maize and sorghum plants. Since sorghum bears
a large and vertical stem, the presented method uses a bounding box detection rather
than instance segmentation and then finds the center of the bounding box for grasp point
detection. The method does not consider any occlusion and the geometry of the plant is
such that there are large empty stem spaces without leaves, so leaf avoidance by the robotic
gripper does not need to be considered when determining the grasps. Since the presented
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method considers plants with a much simpler complexity than the plants considered in
our intended application, it was not possible to apply its straightforward approach for
sorghum to our complex plants.

The authors of [27] presented a method for the calculation of grasping points to enable
an automatic machine vision-guided grasping system for Phalaenopsis tissue culture
plantlets. However, the presented scenario assumes an occlusion-free scene where the
segmentation of individual plantlet objects is possible with a simple thresh-old. Starting
from a segmented plantlet, a skeleton of the plant is extracted, and the root is distinguished
from the leaves, allowing consideration of the middle point of the root as the grasping
point. The skeleton of plant cuttings representing the object of interest in our application
is much more complex, thus the presented approach could not be followed. This and
the above examples illustrate the fact that previously published methods are applicable
to specific cases of simple irregular shapes of objects, which cannot be reused for more
complex objects, such as complex irregular shape plants in our application. For this reason,
a novel method for determining optimal grasps in 2D images had to be developed, as
explained in Section 3.4.

3. Materials and Methods
3.1. Dataset

The dataset of overlapping plant cuttings placed on a flat surface such as a conveyor
belt was created using Vaccinium cuttings. Two unique appearances of each cutting, front
and back, were used to create different overlap cases of the cuttings on the flat background.
The RGB images of the overlapped cuttings with a resolution of 2048 × 1536 pixels were
captured with a stereo camera set. In total, 650 images were captured, and they were
annotated for instance segmentation.

Since plants do not have a fixed structure, their overlap can be so complicated that in
some cases it is not possible even for human annotators to distinguish between different
plant instances. In the context of the present work, several terms are defined to narrow
down the cases of occlusion:

• An occlusion patch is a group of pixels in the image for which one part of a plant
cutting is occluded by other plant cuttings and, thus, this part is not visible in the
image. Based on this definition, one cutting can have several occlusion patches with a
single cutting or multiple other cuttings.

• A normal occlusion patch is the occlusion patch in the image for which a part of
only one plant cutting is not visible. It should be noted that one plant cutting can
have multiple normal occlusion patches. The red windows in Figure 2 illustrate some
locations where normal occlusion patches are present.

• A complex occlusion patch is the occlusion patch in the image for which parts of more
than one plant cuttings are not visible. One plant cutting might have multiple complex
occlusion patches or even a mixture of several normal and complex occlusion patches.
The purple windows in Figure 2 illustrate some locations where complex occlusion
patches are present.

• A normal occlusion image is an image that contains at least one normal occlusion
patch and no complex occlusion patches.

• A complex occlusion image is an image that contains at least one complex occlu-
sion patch.

Figure 3 shows examples of normal and complex occlusion images with annotations of
plant cuttings as belonging to different object classes. As it can be seen, the following four
object classes are introduced: Target Cutting, Occluded Cutting, Singularized Cutting, and
Remains. The cuttings that occlude other cuttings and that are not occluded themselves as
they are on the top of other cuttings are classified as Target Cuttings. The cuttings which
are occluded by other cuttings are classified as Occluded Cuttings. The cuttings that are
not occluded and also do not occlude other cuttings are classified as Singularized Cuttings.
Individual plant parts such as a single leaf or a stem part or cuttings that have two or fewer
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leaves are classified as Remains. In total, 25% of all images in the presented dataset are
complex occlusion images.

Figure 2. Example of an image from the occluded plants dataset with normal and complex occlusion
patches. The red windows illustrate some locations where normal occlusion patches are present, and
the purple windows show some locations of complex occlusion patches.

Figure 3. Examples of annotated images from the occluded plants dataset. (a) Normal occlusion
image. (b) Complex occlusion image.

The overlap of sum (OoS) [28] metric can indicate the occlusion and crowding level of
images in a dataset. This metric OoS for an image of a dataset is defined as follows:

OoS =

{
1 − |∪

n
i = 1Ci|

∑n
i = 1|Ci |

, n > 0

0, n = 0
(1)

where Ci is the area of the bounding box (bbox) or convex hull (convex) of instance i in an
image, n is the number of instances in an image, and ∪ is the union operation [28]. Table 1
presents the average OoS over all images of the dataset of occluded plants presented in this
paper, as well as for several standard datasets.
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Table 1. Comparison of the OoS measure with different datasets containing images with occlusions.

Dataset Bbox Convex

COCO [28,29] 0.14 0.07
Cityscapes [28,30] 0.15 0.09
OC Human [15,28] 0.25 020

Occluded plants (normal occlusion) 0.19 0.13
Occluded plants (complex occlusion) 0.28 0.20

As the OoS metric in Table 1 shows, images of the presented occluded plants dataset
contain by far more occlusions than the COCO and Cityscape datasets. In the case of
complex occlusions, the occluded plants dataset has an even higher degree of occlusion
than the OC Human dataset, which focuses on heavily occluded people in crowded scenes.

3.2. Synthesizing 2D Images

A novel framework for synthesizing 2D images was developed using the ground truth
of real RGB images. In this approach, the instances of the plant cuttings derived from
the annotation of real RGB images were firstly transformed by applying some geometric
transformations such as rotation and scaling, after which they were placed in a random
order on empty background images (i.e., images of flat surfaces without any objects placed
on them). The plant cutting instances belonging to the Singularized Cutting and Target
Cutting classes were used for generating synthetic images, since the instances of these
classes have a complete shape of the cuttings in existing real RGB images. The algorithm
for image synthesis was designed in such a way that the entire process did not follow
any particular pattern. This means that the generated synthetic images do not have any
similarities in the overlapping cases. In this approach, the ground truth annotations of
synthetic images were performed in parallel with the process of creation of synthetic images
themselves. The framework generates images with both normal and complex occlusions,
and the percentage of complex occlusion images can be set in advance. 5000 synthetic
images were generated, including 30% complex occlusion images. Figure 4 shows an image
resulted from the process of synthesizing 2D images (the left bottom image in Figure 4) and
several intermediate views of the synthesis process. The intermediate views correspond
to intermediate steps of addition of the plant cuttings to the viewed scene. The example
resulted synthetic image is a complex occlusion image.

Figure 4. A synthesized image and several intermediate views of the synthesis process.
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3.3. Occlusion Handling

AdaptIS is essentially a class-agnostic instance segmentation method that can perform
multi-class instance segmentation or a panoptic segmentation [31] using a standard seman-
tic segmentation pipeline [13]. Since the occluded plants dataset is a multi-class dataset, we
implemented AdaptIS to perform panoptic segmentation that unifies semantic and instance
segmentation, thereby assigning a class label to each pixel and recognizing and segmenting
each object instance. AdaptIS uses point proposal to generate masks of objects located
at the proposed points. It creates an object mask for each proposed point without any
heuristic post-processing [13]. Figure 5 shows the instance segmentation masks produced
by AdaptIS for different proposed points on the plant cutting objects in the top right image.
As it can be seen, for the points corresponding to the same object, AdaptIS creates very
similar masks.

Figure 5. Instance segmentation masks produced by AdaptIS for various point proposals.

AdaptIS optimizes a target loss function for a given image I and a proposed point at
image coordinate (x, y). It uses a pixel-wise loss function for comparing the prediction with
the mask of the target object located at the point (x, y). Since AdaptIs provides pixel-precise
segmentation, it is suitable for objects with complex shapes and can handle cases of heavy
occlusion [13].

AdaptIS includes a specific head for point proposal that proposes about 100 points per
image in the inference time. The instance segmentation output of AdaptIS at inference time
is a pixel-wise mask for a single object. For segmenting all objects in the image, different
point proposals are made to create masks for multiple objects in sequence. The iteration
only needs to be conducted for a lightweight AdaptIS head, while the backbone should be
run once. Moreover, after creating a mask for a proposed point, all point proposals located
in the created mask are excluded from the set of point proposals. These two techniques
significantly reduce the computation time and make the iterative method applicable in
practice [13].

3.4. Grasp Detection

We developed a novel method for detecting the robotic grasp of a segmented plant
cutting based on Conventional Image Processing (CIP). In general, a grasp specifies how
a robot end-effector (gripper) can be arranged to safely grip an object and lift it without
slipping it off. A grasp holds the information about the grasping point, the grasping
orientation, and the opening width of the robot gripper [32]. Since the objective of the
intended robotic grasping application is to grasp the plant cuttings classified as Target
Cuttings and Singularized Cuttings (see Section 3.1), the developed method was designed
to detect the grasps for full plant cuttings and not for the Occluded Cuttings or Remains.
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Since the plant cuttings are small and delicate, a small two-finger gripper or tweezers with
adequate distance between the tips can serve as a gripper for grasping the plant cuttings
from flat surfaces. The oriented rectangle [33] is used here for the grasp representation,
which indicates the position and orientation of a two-finger gripper before closing on
an object:

g = {x, y, θ, h, w} (2)

where (x, y) is the center of the rectangle in the image coordinate system, θ is the orientation
of the rectangle with respect to the horizontal axis of the image coordinate system, h is the
height of the rectangle or, here, it is the thickness of each finger that is a constant value,
and w is the width or the distance between the two robotic gripper fingers. The grasp
representation with a pair of points [34], where each point is the end position of each finger
of the gripper, was also used during the grasp detection process to find the optimal oriented
rectangle. To succeed in an actual grasp of a plant cutting, the predicted grasps must meet
the following criteria:

• The center of the gripper (center of the oriented rectangle) must be on the stem of the
plant cutting.

• The orientation of the predicted grasp should be aligned with the direction of the plant
cutting’s stem.

• The grasping point must have sufficient distance to the plant leaves to accommodate
the open gripper and to avoid collision with leaves.

The pipeline of the developed algorithm for grasp detection is shown in Figure 6 and
the algorithm is explained in detail in the following subsections.

Figure 6. Pipeline of the proposed algorithm for detection of the robotic grasp of a segmented
plant cutting.
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3.4.1. Regions of Interest (RoIs) Segmentation

RoIs are regions in the bounding box of a plant cutting where no plant parts are
present, and robotic gripper fingers should be placed in two different RoIs to grasp the
cutting. The method employed to determine RoIs is based on the method presented in [26].
The input to the developed algorithm is the binary segmentation mask of a full plant
cutting. Firstly, at preprocessing stage, multiple morphological transformations and filters
(Opening, Dilation, and Smoothing) are applied to the segmentation mask to smooth its
boundaries and to fill small gaps in the mask. The plant cuttings inherent feature that their
stems usually are lying along the longest side of the cutting’s bounding box was used for
the subsequent steps by rotating the segmentation mask so that its longer side becomes
vertical (Figure 7b).

Figure 7. RoIs segmentation pipeline. (a) Segmented plant cutting extracted from an original RGB
image. (b) Segmented plant cutting’s mask after preprocessing. (c) Convex hull mask. (d) RoIs mask
where each color represents one RoI.

In order to identify the RoIs for a plant cutting mask, first, the convex hull of the
cutting mask is determined, and a binary mask is generated for it. Afterward, the plant
cutting mask (Figure 7b) is subtracted from the convex hull mask (Figure 7c), and an
opening morphological transformation is applied to the mask, resulted from performed
subtraction, to separate the individual RoIs. By finding contours on the resulted mask, all
the RoIs can be segmented separately. Figure 7 illustrates the RoIs segmentation pipeline.

3.4.2. Grasp Proposal

Representation of the grasp by a pair of points is used to determine the grasp proposals.
As mentioned in the previous section, the robotic gripper fingers should be placed in two
different RoIs to grasp the plant cutting, which means that each point of a grasp should
also be in separate RoIs. The stem of a plant cutting is the suitable part for possible stable
robotic grasping of the cutting because it is firm enough to withstand the weight of the
plant cutting after grasping in addition to the pressure of the robotic gripper fingers. For
plant cuttings, the edge of RoIs is suitable for the choice of a point from the grasp pair of
the points because it offers features to determine whether the grasp is on the stem of the
cutting or not. We consider several points on the contour of each RoI, and in principle, any
pair of points from two separate RoIs represent a proposed grasp. However, only a few of
the proposed grasps can succeed in actual plant cutting grasping.

3.4.3. Optimal Grasp Detection

To find the optimal grasp among the grasp proposals, in the first stage, the unstable
grasps are filtered out, and in the second stage the orientation of the remaining grasp
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proposals is refined, then the grasps are evaluated against a defined optimality measure to
find the optimal grasp.

To filter out the most likely unstable grasps, the following two characteristics of plant
cuttings are considered. First, the distance between the two points of each proposed grasp
should be within an acceptable range determined by the minimum and maximum possible
width of the cutting’s stem in the pixel unit. Second, the so-called “Cutting’s Interested
Region” (CIR) is defined as a region in the bounding box of a plant cutting where all
possible grasps should be placed in. Furthermore, CIR is a portion of the bounding box
of the plant cutting, and its center is aligned with the center of the bounding box. Since
the plant cuttings are oriented vertically and the stems are almost in the middle of the
bounding boxes of the cuttings, the horizontal ratio of the CIR and the bounding box of
the cuttings should be much smaller than the vertical one. The set ratios between the
CIR and the bounding box of the cuttings for horizontal and vertical sides are 0.5 and 0.9,
respectively.

After applying the above constraints to the grasp proposals, the bulk of the unstable
grasps are filtered out. In the next step, the orientation of the remaining grasp proposals is
refined to be aligned with the direction of the plant cutting’s stem. Since the plant cutting’s
stem is roughly cylindrical, the orientation of a grasp proposal would be aligned along
the stem if the distance between the points of the grasp is approximately as large as the
width of the stem. To refine the orientation of a grasp proposal, one point of the grasp
remains fixed and another is moved along the stem to minimize a function that calculates
the distance between two points of a grasp proposal. The remaining grasp proposals are
refined based on this method to increase the precision of the grasps’ orientation.

Finally, for finding the optimal grasp, we defined a metric called Overlapped Grasp
Index (OGI). This metric uses both the pair of points and the rectangle representations
of grasps.

OGI =
Grasp rectangle ∩ Plant Cutting mask

(Distance o f the points o f the grasp ) × (Grasp height)
(3)

OGI indicates the overlap of the grasp rectangle with the leaves of the cutting. The
minimum, indeed the optimal value of this metric, is 1, and the higher values show the
overlap of the grasp with the cutting’s leaves. Thus, the proposed grasp with the smallest
OGI is the optimal local grasp for the cutting. Figure 8 shows the key intermediate results
of the grasp proposal and optimal grasp detection pipeline.

Figure 8. Key intermediate results of the grasp proposal and optimal grasp detection pipeline. (a) All
grasp proposals are marked as green points on the boundaries of ROIs. In principle, any pair of the
points from two separate RoIs is a proposed grasp (b) Grasp proposal after filtering out the most likely
unstable grasps. (c) Refined proposed grasps. Grasps marked with red rectangles are excluded due to
overlap with leaves as determined by high OGI. (d) Local optimal grasp, which has the smallest OGI.
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4. Results and Discussion
4.1. Occlusion Handling

The occluded plant dataset was split into sets of 500, 50, and 100 real images for
training, validation, and testing, respectively. The test dataset itself included 50 normal
occlusion images and 50 complex occlusion images. In addition to the real images, we
included 5000 synthetic images in the training set. AdaptIS was trained through a two-stage
training procedure. The backbone and segmentation head were first trained for 230 epochs,
then these parts were frozen, and only the point proposal head was trained for additional
15 epochs. The first stage consisted of 220 epochs of training with real and synthetic images,
followed by 10 epochs of fine-tuning training with real images. In the second stage of the
training procedure, only the real images were used.

For the backbone, we used ResNet50 [35] and trained the network using Adaptive Mo-
ment Estimation (Adam) Optimizer with 2 GPUs and batch size 4. At both training stages,
the base learning rate was 0.0005 and it was reduced by the cosine learning rate scheduler.
Each original image contained a region of interest with a resolution of 1536 × 1536 pixels,
such that all cutting instances were always placed in this region of interest. The input size
of the network was 512 pixels, thus, downscaling the original image from 1536 to 512 pixels
resulted in a drastic loss of information. To reduce this downscaling in the training step,
first, the part of the image where the plants were placed was cropped out and then scaled
down to 512 pixels. An additional advantage of this method is that it acts as a random
scaling augmentation in the range of (0.33 to 0.66). Apart from scale augmentation, we also
used random rotation, brightness, contrast, and color data augmentation.

Table 2 presents the panoptic segmentation result of AdaptIS for normal and complex
occlusion. The standard metrics of panoptic segmentation are Panoptic Quality (PQ),
Segmentation Quality (SQ), and Recognition Quality (RQ) [31]. Each of the panoptic
metrics is split into metrics for the Stuff (PQSt, SQSt, RQSt) and Thing classes (PQTh, SQTh,
RQTh) [31]. In the presented work, only the Image Background represented a Stuff class,
and the results for that were about 100 on all metrics, so we present here the panoptic
segmentation result only for Thing classes to show more clearly the performance of AdaptIS
on the occluded plants dataset. The optimal input size of the network in inference was
640 pixels. The inference time was 650ms per image on the used local machine, with a
single RTX 2080 Ti GPU, MXNET 1.7, and CUDA 10.2.

Table 2. Panoptic segmentation results with AdaptIS on the presented occluded plants dataset.

Classes
Normal Occlusion Complex Occlusion

PQTh SQTh RQTh PQTh SQTh RQTh

Singularized Cutting 85.8 93.6 91.7 89.1 94.5 94.4
Remains 91.0 94.0 96.9 86.0 94.1 91.4

Occluded Cutting 76.5 88.5 86.5 72.0 83.2 86.5
Target Cutting 78.2 89.9 87.1 86.8 91.4 95.0

Average 82.9 91.5 90.6 83.5 90.8 91.8

Surprisingly, as the results in Table 2 show, the accuracy of AdaptIS for Occluded and
Target Cutting classes is very close for the normal and complex occlusion, confirming the
robustness of AdaptIS in segmenting severe occluded scenes. As expected, the Occluded
Cutting instances are the most challenging class for segmentation, and the accuracy of the
network is lower for them than for other classes. Figure 9 shows examples of panoptic
segmentation results with AdaptIS for normal and complex occlusion. It can be seen that
the Occluded Cutting instances in almost all examples are split into multiple parts, or the
large portion of a cutting in the example at the bottom left is hidden. Although these are
difficult cases for a segmentation task, AdaptIS successfully handled them and accurately
segmented these Occluded Cuttings. The network moreover makes a precise distinction
between the Target cutting and Occluded cuttings in the cases of complex occlusions.
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Figure 9. Examples of panoptic segmentation results with AdaptIS network on occluded plants
dataset. (a) Ground truth of normal occlusion images. (b) Segmentation results of normal occlusion
images. (c) Ground truth of complex occlusion images. (d) Segmentation results of complex occlusion
images. In order to have a clearer visualization of cutting masks, the mask of the Stuff classes (here
the image background) is not visualized.

Generally, the stems of the plant cuttings are thin, thus it is a challenge for the segmen-
tation networks to segment them completely and without any discontinuities. This makes
the stems of the cuttings the most difficult part of the plant cuttings for segmentation. Since
the input size of the AdaptIS network is 640 pixels, the width of the stems ranges from 2
to 7 pixels, which makes their segmentation even more difficult. As the sample results in
Figure 9 show, the stems of the plant cuttings are segmented by AdaptIS completely and
without any discontinuities, which proves the robustness of this network in segmentation.

The goal of the intended robotic grasping application is to grasp the instances of Target
Cuttings and Singularized Cuttings. Therefore, the segmentation masks of plants of these
classes are used for grasp detection, and the precision of these masks impacts the result of
grasp detection. As Table 2 shows, the SQ, i.e., the percentage of average IoU (Intersection
over Union) of the matched segments, for these two classes is around 90%, which is a high
precision for the purpose of our intended robotic grasping. However, in some rare cases
such as in the top left example in Figure 9, the segmentation result of a Target Cutting
instance is incorrect, and as it can be seen, one leaf is inaccurately segmented, which may
affect the accuracy of the grasp detection for this instance.

4.2. Grasp Detection

The presented grasp detection method was applied to 100 images of the test dataset,
which included around 250 instances of grasping target classes (Target Cutting and Sin-
gularized Cutting). Some features used for grasp detection are related to the resolution of
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the image. Two of these features are the minimum and maximum possible width of the
plant cutting stem and the minimum acceptable area of RoI. Since the optimal input size of
the AdaptIS for inference was 640 pixels, these features were set for an image resolution of
640 pixels. The range of the cutting stem was set to 2 to 7 pixels, and the smallest acceptable
area of the RoI was set to 125 pixels. As mentioned in Section 3.4.3, the CIR value, which is
independent of the image resolution, was set to 0.5 and 0.9 for the horizontal and vertical
sides of the CIR, respectively.

To evaluate the achieved results in grasp detection, we used the rectangle metric [36].
Based on this metric, a predicted grasp is correct if the deviation of grasp orientation
between the predicted grasp and the ground truth grasp is less than 30◦ and the IoU
(intersection over union) value between the predicted rectangle and the ground truth
is more than 0.5. To analyze the performance of our grasp detection method, we used
the rectangle metric at different orientation angle criteria (5, 15, 30, and 45 degrees) and
different IoU criteria (0.25, 0.5, and 0.75). The runtime was 15ms per image on the local
machine with an Intel® Xeon® Silver 4216 processor. Table 3 presents the evaluation results
of grasp detection on the test dataset.

Table 3. Evaluation results of grasp detection on the test dataset.

IoU
Rectangle Metric [%]

Angle 5◦ Angle 15◦ Angle 30◦ Angle 45◦

0.25 68 93 95 95
0.50 67 92 94 94
0.75 50 66 67 67

As the result in Table 3 shows, the standard rectangle metric for the presented method
is 94%, which is a high performance and 50% of the predicted grasps are correct in the most
constrained case, namely with an angular deviation of 5◦ and an IoU of 0.75, demonstrating
the high robustness of our method for grasp detection of plant cuttings. Conversely, the
predicted grasps that belong to the least restricted case (angular deviation 45◦ and IoU 0.25)
lead to successful grasping but also cause rotation of the plant cuttings due to the moderate
angular deviation, and the accuracy of our method in this regard is 95%.

As the examples in Figure 10 show, the predicted grasps are on the stem with sufficient
clearance to accommodate the open gripper as well as with a small angular deviation. In
Figure 10a, the segmented Target Cutting at the bottom left corner has a partial segmenta-
tion inaccuracy. Despite this inaccuracy, the grasp is correctly predicted, demonstrating the
robustness of our method for grasp detection.

The stem around the tip of the plant cutting is thinner and softer, thus, grasping and
picking the cutting at this point may cause bending the cutting toward the ground, though
it will not lead to falling. In Figure 10b, the grasp shown in the bottom left corner is an
example of this rare occurrence. The reason that such cases are rare is that the tips of
cuttings usually have several dense leaves, thus the stem around the tip of the cutting does
not have enough room to accommodate the gripper. For this reason, in the last step of our
proposed method, most of the grasp proposals near the tip of the cutting are excluded.
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Figure 10. Examples of grasp detection on the test dataset. (a) Normal occlusion image. (b) Complex
occlusion image.

5. Conclusions

In this paper, we presented a novel method for determining grasps for robotic grasping
of plant cuttings from a flat surface such as a conveyor belt. The method consists of using
a CNN for handling plant occlusions when segmenting individual plant cuttings and
detection of optimal grasps based on the segmentation results of the CNN. We compared
the performance of the used CNN, AdaptIS, using the custom-made occluded plants
dataset with two different levels of occlusion severity. The results show that AdaptIS
can accurately segment the overlapping plants and its performance is robust at various
levels of occlusion. Moreover, although precise segmentation of the stem of a plant cutting
represents a challenging task for the segmentation networks, the achieved segmentation
result of AdaptIS for this part of the plant cuttings was complete and free from any
discontinuities. AdaptIS segmented the target classes for the robotic grasping (Target
Cuttings and Singularized Cuttings) with 90% accuracy according to the SQ metric, which
is promising for the purpose of our intended robotic grasping. Our CIP-based method for
grasp detection of plants achieved 94% for the rectangular metric, and in fact, 50% of the
predictions had the highest accuracy in the evaluation range, i.e., an angular deviation of
5 degrees and an IoU of 0.75. We have shown the feasibility of our approach on a plant
genus with an irregular object shape similar to many other plant genera in nature so that our
method could build a basis for different applications in the food and agricultural industries.

Our future work will focus on the implementation of the presented method in a robotic
pick-and-place system and conducting field tests of the system, with the objective of picking
the identified target plant cuttings from the pile of plant cuttings to enable their sorting
and placing them to another station of a robotic plant propagation system. In this way,
future evaluation of the proposed method will be performed by evaluating the success rate
of robotic grasping. In addition to the implementation and subsequent evaluation of the
presented method in practice, our future work will also involve its further improvement.
Namely, as the occlusion is a 3D feature, using the depth information can improve the
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occlusion handling accuracy, thus the occlusion handling will be investigated with the
segmentation networks using RGB-D images. Moreover, our future work will focus on the
generalization of the presented method by extending the training dataset with images of
different plant genera, so that the limitation of applicability of the presented methods to
only one considered plant genus is overcome.
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