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Abstract: Carbonation is one of the critical durability issues in reinforced concrete structures in
terms of their structural integrity and safety and may cause the fatal deterioration and corrosion of
steel reinforcement if ignored. Many researchers have performed a considerable number of studies
to predict the carbonation of concrete structures. However, it is still challenging to predict the
carbonation depth or carbonation coefficient, as they depend on various factors. Therefore, creating
a model that can learn from available data using Data Driven Techniques (DDT) is a step forward
in this research field. This study provides new approaches to predict the carbonation coefficient
of concrete through Model Tree (MT), Random Forest (RF) and Multi-Gene Genetic Programming
(MGGP) approaches. With 827 case studies, the predicted models can be seen as a function of a set of
conditioning factors, which are statistically significant in explaining the carbonation mechanism. The
results obtained through MT, RF and MGGP were compared with those obtained through Multiple
Linear Regression (MLR), Artificial Neural Networks (ANNs) and Genetic Programming (which
were previously developed). The results reveal that the MT, RF and MGGP perform better than the
previous models. Moreover, the MT technique displays its output in terms of series of equations, RF
as multiple trees and MGGP in form of a single equation, which are more user-friendly and applicable
in practice.

Keywords: carbonation coefficient; concrete; Model Tree; Random Forest; Multi-Gene Genetic
Programming

1. Introduction

Carbonation is one of the major causes of deterioration in reinforced concrete struc-
tures [1]. Carbonation can reduce the alkalinity of concrete, thereby making it lose the
protection of steel, which is a prerequisite for concrete reinforcement corrosion in the com-
mon atmospheric environment. The carbonation of concrete is a natural phenomenon that
is commonly defined as the chemical reaction between carbon dioxide (CO2) and cement
hydration products such as Ca (OH)2 and calcium–silicate–hydrate (C-S-H). The process
of concrete carbonation begins at exposed surfaces immediately upon exposure to CO2,
and carbonation rates increase for poor quality, porous concretes and grouts. The con-
sumption of Ca (OH)2 reduces the concrete pH to levels where thin oxides film around the
steel surface, which protects it from corrosion, becomes unstable, allowing steel corrosion
onset [2,3]. Conventionally, concrete carbonation depth at a given time under steady-state
conditions can be fairly predicted by Fick’s second law of diffusion in which the significant
parameters are claimed to be the water/cement (w/c) ratio, binder constituents and content
and the exposure conditions (e.g., relative humidity) [1–5]. These factors can cause the
concrete carbonation coefficient to vary a great deal, as they influence the pore system
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of hardened concrete (affected by w/c ratio), the amount of Ca (OH)2 to react with CO2
(affected by binder type and content), the dissolution of Ca (OH)2, which is required for
it to react with CO2 (affected by relative humidity), and the concentration of CO2 at the
concrete surface [5,6]. Developing a holistic and accurate carbonation prediction model is a
challenging task, as it is difficult to mathematically describe the several phenomena that
occur and, most of all, their interactions. Various theoretical and experimental studies have
been carried out to estimate the concrete carbonation depth [7–9] and most of them are
focused on the estimation of the carbonation rate, through a carbonation coefficient based
on the Fick’s second law of diffusion [5]. Even so, it is still difficult to build a prediction
model for carbonation depth that can describe all conditions of concrete carbonation.

New age techniques to develop models were defined to describe the complex be-
haviour of the carbonation coefficient. Data Driven Techniques (DDT) such as Artificial
Neural Networks (ANNs) and Genetic Programming (GP), among others, have been used
to predict the carbonation depth and carbonation coefficient. Carbonation depth prediction
through neural networks (NNs), using the acknowledged input parameters, has been
tried [4]. Diffusion coefficients of CO2 were estimated through a neural network algo-
rithm, confirming the decrease in the diffusion coefficient with the increase of relative
humidity (RH) and with the decrease of the w/c ratio [10]. Neural network and genetic
programming were used to predict the carbonation coefficient and strength of concrete
with a correlation coefficient of 0.90 and higher [11]. ANNs have been used for the analysis
of the corrosion of steel in concrete to quantify the chloride diffusion in concrete, and it
was found that the predictions given by the NNs were adequate [12,13]. Kewalramani and
Gupta [14] conducted a study for the prediction of the compressive strength of concrete,
using multiple regression analysis and ANNs. Deep neural network architectures provide
capabilities to learn hierarchical features from the dataset while providing a more efficient
representation than more classic models, improving the generalisation capability of the
models [15]. A study by Brusaferria et al. [16] presented a novel probabilistic method for
forecasting day-ahead electricity prices based on Bayesian deep learning and deployed a
Bayesian inference framework introducing probability distributions over neural network
weights and a Gaussian likelihood function. Bayesian linear regression is seen as a suitable
tool to revise and update design codes; e.g., the creep correction coefficients are estimated
using Bayesian linear regression [17]. Tesfamariam and Martín-Pérez [18] proposed the
implementation of a Bayesian Belief Network model for carbonation-induced corrosion of
reinforced concrete, which highlighted the impact of various exposure conditions on the
rate of carbonation ingress and the potential for reinforcing steel.

Therefore, new models to describe the complex behaviour of the concrete carbonation
coefficient still have to be defined, aiming at improving the reliability concerning corrosion
prevention. The recent DDTs of Model Tree (MT) and Random Forest (RF) can be suitable
vehicles for this task owing to their learning ability from the available data. Carbonation
depth has been predicted by adopting decision trees such as the regression tree, bagged
ensemble and reduced bagged ensemble regression tree, with excellent performance and
understanding of the influential variables [19]. The carbonation depth of concrete using
Gene Expression Programming (GEP) was modelled and validated by Murat et al. [20]
using the six parameters that predominantly control the carbonation depth of concrete.
Currently, there is a trend to carry out concrete mix design and concrete strength prediction
through RF and Multi-Gene Genetic Programming (MGGP) [21,22].

In the studies presented so far, no agreement on the way that the carbonation coefficient
should be determined has been found. As concrete carbonation depends on many factors
and the interactions between them, the modelling of carbonation depth evolution is indeed
a complex task. Multiple Linear Regression (MLR) models developed earlier (by some
of the authors) displayed a satisfactory performance that can still be improved. Due
to the linear nature of MLR, this technique was not capable of modelling the nonlinear
relationship between RH and carbonation, and thus the sample analysed was then divided
into two subsamples, and two different models were developed: one for an RH of 70% or
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less and one for an RH higher than 70%. This calls for the use of DDTs such as MT (with M5
Algorithm as splitting criterion), RF and MGGP. The major advantage of these techniques
lies in their method of presenting the output and understanding the influential variables.
Model Tree displays the output in the form of series of equations, RF in the form of trees
and MGGP as equations. The respective outputs are the main innovation of the current
work, along with the understanding of the influential parameters in all the techniques.
This understanding of the influential parameters gives the researcher more insight into
the problem of selecting the most suitable variables and subsequently the models. The
current study is a horizontal extension of the studies performed using MLR [23], ANNs
and GP [11]. Models are developed to predict the carbonation coefficient of concrete with
relevant input parameters, and the performance of the models is compared with that of
the existing models [11,23]. The techniques used for this study are Model Tree with M5
Algorithm (MT), Random Forest (RF) and Multi-Gene Genetic Programming (MGGP).

The next section presents a brief introduction of these DDTs, followed by details of the
data used in the model development. The methodology adopted for creating the prediction
models is discussed further. The results along with the discussion are presented in the
subsequent section. This article ends with concluding remarks.

2. Tree Based Modelling Techniques

In the current study, MT, RF and MGGP techniques are grounded on the tree-based
approach. Tree-based models use decision trees to present how different input variables
can be used to predict a target value and can be used for both classification and regression
problems. The basic advantage of tree-based models is that decision trees are easy to
understand and interpret, and outcomes can be easily explained. Splitting variables into
branches and combining the predictions can aid in maximising information gain and thus
obtaining better predictions. The techniques used in the current study are Model Tree with
M5 Algorithm (MT), Random Forest (RF) and Multi-Gene Genetic Programming (MGGP).

2.1. Model Tree (MT)

The M5 Model Tree algorithm, used as a splitting criterion, was originally established
by Quinlan in 1992 [24]. MT combines a conventional decision tree with the possibility
of generating linear regression functions at the leaves. The M5 tree is a piecewise linear
model, standing between linear models such as ARIMA (Autoregressive Integrated Moving
Average) and nonlinear models as ANNs. Smoothing and pruning is performed to the trees
to overcome the over-fitting problem. For decision tree, the splitting criterion is based on
the standard deviation error reduction of the values in the subset T of the training data
that reaches a particular node (which is an analogue of entropy). For further details of M5
Model Tree, readers are directed to [24,25]. The figure below shows how the M5 algorithm
is used for inducing a Model Tree [24] in the present study. A typical Model Tree is shown
in Figure 1.

2.2. Random Forest (RF)

Random Forest is a non-parametric and semi-unsupervised algorithm within the
decision tree family, encompassing a collection of uncorrelated trees to generate predictions
for regression and classification purposes [26]. It combines bagging and ensemble learning
theory with the random subspace method. This method allows the combination of multiple
decision trees to obtain the output, instead of only depending on individual decision trees.
Random Forest applies multiple decision trees as base learning models. One can randomly
perform row and feature sampling from the dataset forming sample datasets for every
model (bootstrapping [27]). Random Forest is a classifier involving a compendium of
tree-structured classifiers: {h(x, Θi), i = 1 . . . }, where {Θi} are independent and similarly
scattered random vectors and each tree forms a unit vote for the most popular class of
input x. The splitting continues until the error goal is met. A bootstrap re-sampling is
applied to sample the initial data and create a set of training samples. Each training sample
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randomly includes the relevant attributes across random subspace techniques to build the
decision tree. The optimal result is achieved by voting or averaging method. The analysis
of the variable importance in modelling the behaviour of response variables is feasible
with RF, using variable importance metrics in two stages [27,28]. Figure 2 shows a Random
Forest regression for a typical model.

Figure 1. An example of a typical Model Tree (adapted from [26]).

Feature importance analysis is also an interesting characteristic of RF. Breiman [27]
also refers to permutation importance, which quantifies the significance of a variable based
on the standard accuracy (classifier) or R2 coefficient (explanatory variable) by evaluating
the validation set or the out-of-bag (OOB) samples through the RF. The importance of that
variable is the difference between the starting point and the decrease in overall accuracy
or R2 affected by transposing the column, and the results are more reliable [27,28]. The
higher the value of out-of-bag, the more important the input [29]. The relative position of a
variable used as a decision node in a tree establishes the comparative significance of that
variable for the prediction of the explanatory variable.

2.3. Multi-Gene Genetic Programming (MGGP)

Genetic programming (GP), usually represented by a tree structure, is a machine
learning method that is biologically inspired. To perform a task, GP evolves equations
or computer programmes and then breeds together the best performing trees to create
a new population. Cross-over, mutation and reproduction are the genetic operations
used in GP [30]. MGGP, a variant of GP, consists of one or more traditional trees known as
genes [31]. Genes are acquired incrementally by individuals in order to improve fitness (e.g.,
to reduce a model’s sum of squared errors on a data set). The overall model is a weighted
linear combination of each gene. Multigene symbolic regression can be implemented
using GPTIPS toolbox for Matlab [32,33]. The resulting pseudo-linear model can capture
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non-linear behaviour. Forcing the transformations to be low order (by restricting the GP
tree depth) allows the evolution of accurate, relatively compact mathematical models of
predictor–response (input–output) data sets, even when there is a large number of input
variables. For example, the multigene model shown in Figure 3 predicts an output variable
using the input variables x1, x2 and x3. This model structure contains non-linear terms (e.g.,
the hyperbolic tangent) but is linear in the parameters with respect to the coefficients a0,
a1 and a2. In practice, the user specifies the maximum number of genes, Gmax, a model is
allowed to have and the maximum tree depth, Dmax, any gene may have and therefore can
exert control over the maximum complexity of the evolved models. In particular, it was
found that enforcing stringent tree depth restrictions (i.e., maximum depths of four or five
nodes) often allows the evolution of relatively compact models that are linear combinations
of low-order non-linear transformations of the input variables.

Figure 2. Typical Random Forest tree (adapted from [26]).

Figure 3. Illustration of a Multi-Gene model (adapted from [26]).
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A Multi-Gene Genetic Programming-based model automatically evolves a mathemati-
cal expression in a symbolic form, which can be analysed further to find which variables
affect the final prediction and in what trend, and this is the unique aspect of the tech-
nique [23]. To provide the identification of input variables that are significant to the output,
graphical input frequency analysis of single model or of a user-specified fraction of the
population is used [34].

3. Materials and Methods
3.1. Data Used in the Study

As stated earlier, this work is an extension of previous ones and is intended to predict
the carbonation coefficient and strength of concrete using Multiple Linear Regression [23],
Artificial Neural Networks and Genetic Programming [11]. Therefore, the same data
collated from 17 studies (827 values) found in the literature are used. These encompass
data from concrete mixes with different types of binder and binder contents, different
water/binder ratios and compressive strengths, as well as types of curing and workability.
Approximately half of the data concern concrete in service conditions, i.e., natural expo-
sure, whereas the remaining data concern concrete subjected to accelerated carbonation
conditions (laboratory CO2 enriched environment). To ensure that the complete data of
all variables could be used to determine the value by default, the missing values in any
variable were taken as the mean value of the respective [23]. The checking of the data was
carried out, and the outliers (points more than three standard deviations away from the
mean value of the respective variable) were removed. Further details of the data can be
found in [23], while a summary using variable abbreviations is shown in Table 1. These
input parameters are the same as those considered in [23], which were selected according
to the analysis of variance technique.

Table 1. Details of the data used for model development.

Parameters Min Max Mean Mode

Clinker (kg/m3)—CC 66.000 529.150 292.196 362.990

Clinker/binder ratio (%)—CR 20.000 100.000 80.228 95

28-day compressive strength in MPa—fc 8.800 127.500 48.823 37.000

CO2 content—CO 0.020 50.000 15.490 0.040

Number of curing days—d 7 91 - 28

Water/binder ratio—w/b 0.240 1.000 0.501 0.370

Relative humidity (%)—RH 50 90 - 65

Exposure class—X 1 3 - 1

Carbonation coefficient in
(mm/year0.5)—k 0.180 60.420 14.585 1.730

For the variable “Exposure class” (X), the value of 1 means that the results concern
an exposure to an environment that causes concrete to be permanently dry (e.g., building
interior) or permanently wet (e.g., totally immersed). The value of 2 is for concrete exposed
to environments with moderate humidity (e.g., concrete in open air structures sheltered
from rain). Finally, the value of 3 stands for results from concrete exposed to dry–wet cycles
(e.g., concrete in open air structures not sheltered from rain) and for concrete with long
periods in contact with water (e.g., rainwater drainage systems).

Various methods of pre-processing data are used by various researchers, such as
rescaling, binarising or standardising the data using Gaussian distribution. One of the
commonest problems in pre-processing data is missing values. One way of dealing with
this is eliminating the variables with missing values, only using the variables with complete
data. Despite its simplicity, this approach has several disadvantages, namely because, on
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several occasions, the dataset is reduced to an insufficient size [35]. Therefore, different
methods have been developed to deal with missing values. Simple imputation and multiple
imputation are the most common approaches [23]. Here, the missing predictor values
are replaced by the mean value of the variable under analysis, considering the physical
meaning of the mean value for the reliability of the predictions. Based on this approach,
the complete data of the variable can be used to estimate the value by default [23]. The
data were carefully analysed, and the outliers for each model to be developed in this study
are removed. In this study, all the points whose standard deviation values relative to the
average were higher than three were considered influential.

It is widely accepted that the carbonation rate increases with the relative humidity (RH)
until a threshold value, beyond which it starts to decrease, becoming virtually nil when
concrete becomes saturated [23]. In [23], the sample was divided in two sub-samples, using
as a splitting criterion an RH of 70% This procedure was used to allow the use of linear
functions. Then, two distinct linear models, instead of a single model, were developed.
This study intends to overcome this limitation, proposing a single model to predict the
concrete carbonation coefficient for each approach, based on the whole sample. Moreover,
the herein proposed models are supposed to provide more accurate predictions, founded
on their capability of learning and generalising through behaviour patterns. Furthermore,
the models proposed in this study aim at providing a single equation that can be easily
used in practice, providing a more transparent model when compared with ANNs [11],
which are usually seen as “black boxes”. Additionally, the range of relative humidity found
in the samples from which the models are developed is from 50% to 90%, which matches
the interval where the higher carbonation rates occur [36].

3.2. Methodology Adopted

To predict the carbonation coefficient (k), the factors affecting the carbonation of
concrete were considered. The data mentioned in the previous section were used, and
three models were developed using MT, RF and MGGP—one for each tree-based approach.
These global models eliminate the use of different models for different humidity levels.
The data characteristics of MT, RF and MGGP models are as shown in Table 1.

Model Tree models were developed in WEKA, software version 3.9, developed by Uni-
versity of Waikato, New Zealand [37], and the M5P algorithm developed by Quinlan [24]
was used. Random Forest was developed in Python through Jupyter notebook (a web-based
interactive computing platform). For RF, the number of trees was selected between 100 and
500, and the bagging iterations and the tree size were selected, anticipating that these were
those that yielded the best performance by a low Mean Square Error (MSE). Multi-Gene
Genetic Programming was developed in Matlab 2017 using GPTIPS-2 (an open-source
toolbox for MGGP). Readers are referred for features of GPTIPS to [31,32]. The Root Mean
Square Error (RMSE) function was adapted for error minimisation during runs [31,32].
The parameters were selected as those that yielded the best performance of the models. A
large population and generations were assessed to find models with minimum error. The
programs were run until the specified number of generations was reached. The allowable
number of genes and tree depth were, respectively, set to optimal values as trade-offs
between the running time and the complexity of the evolved solutions [31,32]. The best
MGGP models were chosen based on providing the best fitness value on the training data
as well as the simplicity of the models [32]. These settings in RF and MGGP were based on
existing knowledge about the predictive modelling of other data sets of similar size, and so
they may not be optimal. The MGGP parameters and their settings are as shown in Table 2.
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Table 2. Parameter setting for MGGP.

MGGP Parameters Parameter Settings

Population size 500–900
Number of generations 200–500

Selection method Tournament
Tournament size 13–15
Cross-over rate 0.78–0.84
Mutation rate 0.14–0.20

Termination criteria 500 generation or fitness value less than 0.00
whichever is earlier.

Maximum number of genes and tree depth 4–5
Mathematical operations +, −, ×, /, sin, cos, exp,

√
, {}

Variable or parameter importance is also a distinctive feature of the current work. The
influential parameters in MT can be highlighted through the values of the standardised
coefficients of the parameters, while in RF and MGGP, these can be shown through the
variable/parameter permutation importance and the input frequency, respectively. The
parameter influence analysis enhances the concept understanding of the algorithm and
aids in its validation.

In this investigation, 70% of the data were used for model calibration, while the
remaining 30% were used for testing. The model calibration stops when the error in the
validation dataset starts increasing—a phenomenon known as over fitting. Statistical
metrics such as the correlation coefficient (r), Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) were used to assess models’ performance [38]. High prediction
accuracy was expected for lower error statistics (RMSE, MAE), while the opposite was valid
for the correlation coefficient. Further, the degree by which RMSE exceeded MAE was an
indicator of the extent to which outliers (or variance in the differences between the modelled
and observed values) existed in the data [38–40]. The results of the models (for testing data
set) were also evaluated graphically in the form of scatter plots and hydrograph.

4. Results and Discussion

This section presents the developed models and their performance in testing (i.e., for
30% of the unseen data) and discusses the results.

The number of rules (equations) developed for MT is 6. Figure 4 displays the decision
tree of the model and the identification of the leaves’ equations, with these being presented
in Equation (1).

LMnum : 1
k = 2.0647× w/b− 0.0317× f c− 0.1763× RH + 3.7078× CO− 0.4215× X + 18.2778

LMnum : 2
k = 1.1429× w/b− 0.1064× f c− 0.0014× RH + 1.4393× CO− 0.4215× X + 9.3049

LMnum : 3
k = −0.0584× f c + 0.0051× RH + 1.9178× CO− 1.3093× X + 8.3759

LMnum : 4
k = −0.2653× f c− 0.4663× RH + 0.0849× CO− 0.1624× X + 60.371

LMnum : 5
k = 4.8709× w/b + 44.1425× f c− 0.0335× RH + 0.0536× CO− 0.1624× X + 3102.7607

LMnum : 6
k = 6.4793× w/b− 0.0291× f c− 0.0335× RH + 0.0536× CO− 0.1624× X + 35.0456

Numberofrules : 6

(1)
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Figure 4. Model for MT approach.

Concerning the MT model, when new data are presented, the first step is to analyse
the CO2 content, i.e., to check whether CO is ≤3 or >3. If CO is >3, the next branch is
selected, and it is again determined whether the CO value is ≤15 or >15. If it is ≤15, the
LM 4 equation can be used for the prediction of k. Each variable at each node is analysed
by estimating the expected decrease in error. The variable that is selected for separating
maximises the expected error reduction at that node. The decision criteria rely on CO2
levels, w/b ratios and compressive strength, corresponding to their higher significance.
Furthermore, despite the empirical/statistical nature of the model, it is interesting to notice
a positive association of k with w/b ratio and with CO2 content, while the association
between k and RH is varying, which is in tune with the fundamental knowledge on
concrete carbonation. In general, the negative influence of X and fc is observed through
their negative coefficients.

Random Forest (RF) has the unique characteristic of splitting the data randomly
and building decision trees and further bagging or averaging the values. This feature of
RF stands out in these models’ families and can be also stated as non-linear modelling
technique. Random Forest displays the output in terms of the regression trees developed.
Random Forest has a unique characteristic of splitting the data randomly and building
decision trees and further bagging or averaging the values. This feature of RF stands out in
these models’ families and can be also stated as a non-linear modelling technique.

The splitting starts with the randomly selected parameters and determines which
parameter value would lead to the “best split” i.e., the least MSE (mean squared error) as
its objective or cost function, which needs to be minimised—in this case MSE. The output
values at the end of each tree are subjected to averaging. Such a regressor can be useful
for a set of equally well-performing models in order to offset their individual weaknesses
and can also be called ensemble prediction. RF has the characteristic of the selection of
parameters that are highly influential in predicting the output. The permutation feature
importance is defined as the reduction in a model result when a single variable value is
arbitrarily rearranged. This approach unplugs the connection between the explanatory
variable and the response variable; consequently, the decrease in the model ranking reveals
how much the variation of the model is explained by that variable. This technique is model-
agnostic and can be applied several times, testing various combinations of the explanatory
variable [27]. Figure 5 shows the permutation importance of the RF model parameters,
where the higher importance of CO is followed by fc, which is in accordance with the
fundamental knowledge of the concept.
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Figure 5. Permutation importance of RF model parameters.

The third technique of study, MGGP, was employed to develop the MGGP model. The
MGGP algorithm merges the model architecture choice proficiency of GP with the variable
estimation ability of conventional regression to describe the nonlinear interactions [41,42].

Figure 6 shows the expressional trees developed for the MGGP model. The trees are
combined using different weights of genes. Table 3 summarises the equations developed
from the trees (genes) and the weights of each gene.

Figure 6. Expressional tree for MGGP approach.

Table 3. Equations and weights for each gene.

Term Value Weight

Bias 9.83 9.83

Gene 1 −0.138w/b− 0.138 f c− 0.415CO− 0.692X −0.138

Gene 2 451 f c2×w/b
√

CO
RH3

451

Gene 3 83.2×103w/b
RH( f c−CO)( f c−RH+ CO

w/b )
83,300

Gene 4 4.39
√

RH×CO
f c

4.39

The solution is given by a linear sum of the outputs and a bias value, the weights of
which are shown in Table 3. Using the least squares method, the weight related to each tree
is determined by minimising the goodness-of-fit error between the model and the training
set [38]. The regression equation developed by MGGP is as shown in Equation (2).
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k = 4.39
√

RH×CO
f c − 0.138( f c + w/b)− 0.415CO− 0.692X + 451 f c2×w/b

√
CO

RH3 + 83.3×103w/b
RH( f c−CO)( f c−RH+ CO

w/b )
+ 9.83 (2)

The standalone equation, besides being user-friendly, also reflects the importance of
each parameter by its inclusion in the equation. GP has a unique characteristic in which
the parameter that does not contribute significantly to prediction is removed. MGGP
also displays the importance feature in prediction through input frequency analysis. The
importance parameter CO has prominently been seen to be followed by w/b, fc, RH and
X parameters. This input frequency analysis (Figure 7) also adheres to the fundamental
knowledge on the concrete carbonation process.

Figure 7. Input frequency of MGGP model parameters.

Figure 8 shows the accuracy versus the complexity of the developed models through
a Pareto chart. There, the models with good performance are shown to be far less complex,
as seen in the green dots in the Pareto chart. The red circle in Figure 8 for MGGP designates
the best model described in this study, which is not outperformed by any other model
regarding its simplicity and fitness. Thus, the equation of the MGGP model is the least
complex and best fitted model out of the 1500 developed. From the Pareto front (Figure 8),
developers can decide whether the incremental gain in performance is worth the related
model complexity. The MGGP concept considers the analysis of multiple models, offering
a superior number of alternatives to the stakeholder. A single model can also be chosen
according to specific application constraints or demands.

Figure 8. Pareto chart for MGGP model.
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According to the coefficients of Equations (1) and (2), as well as the variable impor-
tance in RF, the most important parameter in concrete carbonation is the concentration
of carbon dioxide [23]. In fact, the literature indicates that the concrete carbonation rate
fundamentally depends on the CO2 diffusivity, which, besides depending on the concrete’s
porous structure and on its subsequent filling by other substances, particularly water,
depends on the CO2 gradient from the concrete surface to carbonation front [23].

Performance indicators of the developed models, obtained from the testing samples,
are shown in Table 4. The computational time to build the Model Tree (MT) is 0.08 s and
0.01 s to test the model, for Multi-Gene Genetic Programming (MGGP), the computational
time is 14 min and 88 s, while for Random Forest (RF) the computational time is 40.5104 s.
The performances of MT and RF are on par with the excellent performance of r = 0.953
and r = 0.955, respectively. MGGP, with r = 0.936, is close to, but below, the accuracy
displayed by MT and RF, presenting simultaneously higher RMSE and MSE values. All
these new models present lower RMSE values than those proposed in [11], developed using
ANN and GP techniques. The former were developed with the purpose of overcoming
the issue of having to consider two models when using the MLR technique, as in [23], due
to the non-monotonic influence of RH in carbonation, as explained before. However, this
use of two models, with RH playing the role of the splitting criterion, may be faced as a
particular Model Tree. Thus, the performance indicators for the ensemble of the two MLR
models proposed in [23] were computed, delivering values of r = 0.867, RMSE = 7.344 and
MAE = 4.904. Therefore, MT, RF and MGGP models constitute an improvement concerning
concrete carbonation coefficient prediction.

Table 4. Performance indicators of the developed models.

MT RF MGGP

Time required for modelling Building the model: 0.08 s
Testing the models: 0.01 s 40.5104 s 14 min

88 s

r 0.953 0.955 0.936

RMSE 3.871 3.584 4.453

MAE 2.341 2.032 2.546

The scatter plot for MT, RF and MGGP models in Figures 9–11 show a balanced scatter
with no obvious under or over-prediction.

Figure 9. Scatter plot and hydrograph for MT model.
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Figure 10. Scatter plot and hydrograph for RF model.

Figure 11. Scatter plot and hydrograph for MGGP model.

Furthermore, the performance of the model developed using MGGP, MT and RF were
compared with the model developed using Artificial Neural Networks, Genetic Program-
ming and Multiple Linear Regression [11]. Tables 4 and 5 allow the comparison of the
performance of the models, revealing that tree-based models display greater performance
as compared to ANNs, GP and MLR.

Table 5. Performance of models developed using ANNs, GP and MLR.

Artificial Neural Network
(ANNs) Genetic Programming (GP) Multiple Linear Regression

(MLR)

Correlation coefficient—r 0.940 0.937 0.917

Root mean square
error—RMSE 4.554 4.510 5.019

Mean Absolute Error 2.991 2.598 3.371

Standard Random Forest (SRF) is a powerful method for high-dimensional regression
and classification. For Random Forest, SRF gives an accurate approximation of the con-
ditional mean of a response variable, revealing that RF provides information about the
full conditional distribution of the response variable, not only about the conditional mean.
Further conditional quantiles can be inferred with quantile regression forests (QRF)—a
generalisation of random forests. Thus, quantile regression forests give a non-parametric
and accurate way of estimating conditional quantiles for high-dimensional predictor vari-
ables that can be further studied for better predictions and accuracy [43,44]. The Gaussian
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Process Regression (GPR) can also be used, which is formulated in the Bayesian context.
Specifically, the outputs of the GPR are assumed with a Gaussian process (GP) characterised
prior by a mean function and covariance function. The adoption of sparse Gaussian process
regression (GPR) allows the improvement of the short-term and long-term forecasting
accuracy [45].

5. Conclusions

The present investigation constitutes a first approach towards modelling concrete
carbonation using three data-driven techniques: Model Tree (MT), Random Forest (RF) and
Multigene Genetic Programming (MGGP). Three models to predict concrete carbonation
coefficient were developed and analysed, using MT, RF and MGGP. The performance of
these models was compared with assembled MLR models, ANNs and GP models, which
were previously applied in this field. In the different models proposed, MT, RF and MGGP
have shown good performance in predicting the concrete carbonation coefficient. Further,
these models revealed similar performance between them and an enhanced performance
when compared with MLR, ANN and GP.

In all the models discussed, RF on average scores well on performance, as it leverages
the power of multiple decision trees and it does not rely on the feature importance given
by a single decision tree. MT coupled with the divide and conquer technique acquires
the advantage of splitting until the lowest standard deviation error is reached and thus
contributes to the good performance of models rather than a single tree. On the other
hand, MGGP, with its evolution structure and operators such as reproduction, cross-over
and mutation, offers the advantage of the selection of influential parameters deriving
equations that lower the mean squared error. The weighted linear combination number
of genes in MGGP helps to obtain better performance. Parameter influence in MT in
the form of coefficients, permutation importance in RF, input frequency in MGGP and
coefficients in MLR facilitate an understanding of the influential parameters, and thus we
attempt to shatter the myth that these DDTs are “black boxes” and can be at least labelled
as “grey boxes”.

This work also attempts to provide the readers with a tool in the form of series of
equations that can be easily used through MT; while RF with series of trees can be combined
further for easy deployment. MGGP presents a single equation that can be easily deployed
and is user-friendly.
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