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Abstract: System identification proves in general to be very efficient in the extraction of modal
parameters of a structure under ambient vibrations. However, great difficulties can arise in the
case of structures composed of many connected bodies, whose mutual interaction may lead to a
multitude of coupled modes. In the present work, a methodology to approach the identification
of interconnected diaphragmatic structures, exploiting a simplified analytical model, is proposed.
Specifically, a parametric analysis has been carried out on a numerical basis on the simplified model,
i.e., a multiple spring–mass model. The results were then exploited to aid the identification of a
significant case study, represented by the Pavilion V, designed by Riccardo Morandi as a hypogeum
hall of the Turin Exhibition Center. The structure is indeed composed of three blocks separated
by expansion joints, whose characteristics are unknown. As the main result, light was shed on the
contribution of the stiffness of the joints to the global dynamic behavior of structures composed of
interacting diaphragms, and, in particular, on the effectiveness of the joints of Pavilion V.

Keywords: system identification; simplified analytical models; interacting diaphragms; expansion
joints; structural health monitoring; operational modal analysis; Riccardo Morandi; Pavilion V

1. Introduction

The study of the dynamic response of structures under ambient vibrations is fun-
damental in many engineering fields, including, but not limited to, Structural Health
Monitoring (SHM). Even in the range of small linear deformations, such as are observed
under ambient excitation, understanding the dynamic behavior of a system might be
challenging, especially when testing rigid and massive structures. To make things more
difficult, there are then the interactions with the surrounding environment, the uncertainty
in geometry, materials characteristics, details, and above all the difficulty in defining the
constraints, which often call for simplified models to drive the modal identification process.

In its broadest sense, system identification can be defined as the field of study where
models are fitted into measured data [1]. In civil engineering, output-only modal identifica-
tion techniques allow to significantly extend the range of structures where modal analysis
can be applied [2], overcoming the difficulty deriving from producing and measuring
proper excitations in large-sized structures. Practically, ambient vibration testing is used in
all contexts in which only the dynamic response can be measured, while excitation (e.g.,
wind, traffic, environmental noise, etc.) is known only in a probabilistic sense or is even
unknown [3,4]. Like in any other kind of experimental modal analysis, the measured data
come from the record of the sensors at different locations of the structure [3]. A compre-
hensive amount of literature on the comparison of output-only modal techniques can be
found in [4–8].

Throughout the years, output-only dynamic identification relied primarily on the time-
domain approach, which declines in many robust and accurate algorithms [7]. Since the
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theoretical part overcomes the goal of this paper, references can be found in [9–13]. Time-
domain techniques, in particular, are demonstrated to be very effective in the detection of
closely spaced modes, easy to optimize, and automate [13]. It should be also pointed out
that, in the presence of strong non-stationary components, a possible option is recurring in
time–frequency representations and algorithms [14].

The main results deriving from linear identification techniques are the modal parame-
ters of the structure, as they result from diagrams of stabilization to the varying of the order
of the system used in the identification. The discrimination of authentic modal components
from spurious ones is achieved with the use of modal assurance criteria, and sometimes
exploiting clustering techniques, which consist in dividing different data from a data set
into property-based groups. However, the detection and classification of the authentic
modal parameters from the numerical solutions to the inverse problem are not exempt
from criticalities.

The main critical aspect certainly lies in the well-known limitations of experimental
modal analysis procedures in massive or otherwise rigid structures. Indeed, identifica-
tion algorithms have been successfully applied to structures presenting a diaphragmatic
behavior, for instance on multi-span concrete bridges, e.g., see [10,13,15,16]. However,
the sensitivity of the identification process to the external or mutual constraints of these
diaphragms has never been investigated.

The second criticality concerns the choice of the model used in the identification
process. In structures with complex, sometimes non-linear, interactions, a choice could
be to adopt black-box models [17,18]. In spite of many successful applications of such
an approach, the solution of the inverse problem strongly depends on the choice of the
parameters of the black-box model [19]. Thus, an alternative approach consists of the
improvement of analytical models using test data [20], possibly recurring to surrogate
models to increase the computational efficiency of the whole process [21]. In fact, this
tool not only allows to overcome the problem of the high number of modes resulting
from the identification but also to identify and differentiate local modes from global ones,
especially regarding tight couplings between vertical and horizontal modes. In the case of
bridges [22], the local damage can be detected often at very high modes, better identified
by a surrogate model. Similar results can be obtained on specific schemes by using model
reduction techniques, as far as applicable.

The main purpose of the present work is to propose a methodology to approach inter-
connected diaphragmatic structures (interacting at their joints, at the external constraints,
and the surrounding environment, e.g., embankment), and the identification of their modal
parameters, aided by parametric analyses on simplified/reduced analytical models.

To accomplish the scope stated above, the case study of the Pavilion V of Turin
Exhibition Center is analyzed. This hypogeum pavilion, designed in 1959 by Riccardo
Morandi, represents a fascinating case study of a structure composed of three macro blocks
separated by two joints. The fundamental static scheme of the structure is a version
of Morandi’s balanced beam. The diaphragmatic and massive behavior of the roofing
system, with post-tensioned concrete ribs, the uncertainties related to the soil-structure
interaction, and the effectiveness of the joints are just a few elements that contribute to the
high complexity of the building’s dynamics.

The paper is organized as follows. In Section 2, the dynamic equation for rigid
diaphragms interacting at linear elastic joints is developed. The methodology is then
applied in Section 3 on a numerical benchmark to demonstrate the effective contribution of
the joints to the dynamic behavior of the structure. As a result, the effects of the variation
of the stiffness of the springs governing the interaction are investigated, and, consequently,
a discrimination between the global and the local modes is provided. In Section 4, the
case study of Pavilion V is first introduced and then the description of the experimental
setups of a test campaign carried out in 2019 is reported. The modal identification of the
structure is then finally carried out by exploiting a simplified analytical model and the
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modal parameters are extracted in Section 5. The outcomes of an analysis to investigate the
effectiveness of the joints are reported in Section 6. Conclusions are drawn in Section 7.

2. Dynamic Equilibrium Equation for Structures with Interacting Diaphragms

For simplicity, diaphragms are assumed to have only three degrees of freedom, namely
two in-plane translations, along x- and y-directions, and the rotation around the z-direction.

Referring to the i-th diaphragm, one can define mi as the mass, J0,i as the polar moment
of inertia and mxγ

i and myγ
i as static moments, k

x
i and k

y
i as, respectively, the translational

stiffnesses in the x-direction and in the y-direction, k
γ
i as the torsional stiffness, k

xγ
i and k

yγ
i

mixed stiffness terms that regulate the coupling between the translational and rotational
degree of freedom, and ui, vi and γi as the displacements in the x-direction, in the y-
direction, and the rotation, respectively.

In free undamped vibration conditions, the dynamic equilibrium of the i-th diaphragm,
if connected only to the ground, writes: mi 0 mxγ

i
0 mi myγ

i
mxγ

i myγ
i J0,i


..
ui..
vi..
γi

+

 k
x
i 0 k

xγ
i

0 k
y
i k

yγ
i

k
xγ
i k

yγ
i k

γ
i




ui
vi
γi

 =


0
0
0

 (1)

Now assume that the generic i-th diaphragm is part of a system of n interacting
diaphragms. The interaction is assumed to be chain-like, i.e., only between adjacent
diaphragms, and it is described by means of linear springs.

In analogy with Equation (1), it is possible to define the mass matrices of the system
Mxx and Myy, the matrix of polar moments of inertia Mγγ and the matrices of the static
moments Mxγ and Myγ, as well as the stiffness matrices along the three directions Kxx,
Kyy and Kγγ, and the mixed terms stiffness matrices Kxγ and Kyγ, so that the equilibrium
equation in compact form writes in terms of 3n × 3n matrices: Mxx 0 Mxγ

0 Myy Myγ
Mxγ Myγ Mγγ


..
u
..
v
..
γ

+

 Kxx 0 Kxγ
0 Kyy Kyγ

Kxγ Kyγ Kγγ


u
v
γ

 =


0
0
0

 (2)

Defining then the translational stiffness of the springs connecting the i-th diaphragm
with two adjacent diaphragms in the x-direction as kx

i and kx
i+1, the stiffness matrix along

the x-direction Kxx writes:

Kxx =


kx

1 + kx
2 + k

x
1 −kx

2 . . . . . . 0
. . . . . . . . . . . . . . .
. . . −kx

i kx
i + kx

i+1 + k
x
i −kx

i+1 . . .
. . . . . . . . . . . . . . .
0 . . . . . . −kx

n kx
n + k

x
n

 (3)

Similarly to Equation (3), also the stiffness matrix along the y-direction, Kyy, and
rotation γ, Kγγ, can be formulated.

The interaction between the i-th diaphragm and the adjacent ones by means of linear
springs is described in Figure 1.
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Figure 1. Lumped mass model of the interacting i-th diaphragm.

3. Numerical Benchmark: System with Three Interacting Diaphragms

The lumped mass model of three adjacent interacting diaphragms represented in
Figure 2 is now considered. The system, presenting a diaphragmatic behavior with a
chain-like interaction, is composed of three masses m1, m2 and m3, and their respective
polar moments of inertia J0,1, J0,2 and J0,3.
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The values of the translational stiffnesses along the x-direction, k
x
1 , k

x
2 and k

x
3 , the

translational stiffnesses along the y-direction, k
y
1, k

y
2 and k

y
3, the torsional stiffnesses k

γ
1 , k

γ
2

and k
γ
3 around γ, were chosen to represent typical values of square concrete diaphragms of

50 m on each side. The mixed terms of stiffnesses k
xγ
1 , k

xγ
2 , k

xγ
3 and k

yγ
1 , k

yγ
2 , k

yγ
3 , and the

static moments Sx
1 , Sx

2 , Sx
3 and Sy

1 , Sy
2 , Sy

3 have been calculated accordingly. The numerical
values of masses, polar moments of inertia, static moments, and stiffnesses are reported in
Table 1.
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Table 1. Numerical values of parameters.

Parameter Numerical Value Unit

m1 = m2 = m3 4.2 × 106 kg

J0,1 1.0 × 1010 N·m2

J0,2 3.2 × 1010 N·m2

J0,3 7.5 × 1010 N·m2

myγ
1 1.1 × 108 kg·m

myγ
2 3.2 × 108 kg·m

myγ
3 5.4 × 108 kg·m

mxγ
1 = mxγ

2 = mxγ
3 −1.5 × 108 kg·m

k
x
1 = k

x
2 = k

x
3 8.7 × 108 N/m

k
y
1 = k

y
2 = k

y
3 3.4 × 108 N/m

k
γ
1 2.2 × 1012 N/m

k
γ
2 3.9 × 1012 N/m

k
γ
3 7.4 × 1012 N/m

k
xγ
1 = k

xγ
2 = k

xγ
3 −3.0 × 1010 N·m/m

k
yγ
1 8.6 × 109 N·m/m

k
yγ
2 2.6 × 1010 N·m/m

k
yγ
3 4.3 × 1010 N·m/m

kx
2 = kx

3 8.7 × 108 N/m

ky
2 = ky

3 3.4 × 108 N/m

kγ
2 = kγ

3 2.2 × 1012 N/m

The stiffnesses describing the interaction kx
2 , ky

2, kγ
2 , and kx

3 , ky
3, kγ

3 are set as a fraction
(factor varying between 0 and 2), defined as kvar, of the values reported in Table 1, which cor-
responds to the continuity of the spring. The eigenvalue problem of the above-mentioned
system has been then solved to extract the modal parameters, i.e., natural frequencies and
mode shapes of the system.

Parametric simulations were conducted to study the relative variation of the modal
frequencies of the system with respect to kvar. A simultaneous uniform variation of kx

2 ,
ky

2, kγ
2 , and kx

3 , ky
3, kγ

3 has been considered. To this aim, the modal frequencies of the
system, generally called fr (with r varying from 1 to 9), were normalized with respect to
the fundamental frequency.

Figures 3–5 represent the variation of the 9 modes and of the 9 natural frequencies of
the system with respect to kvar. To have a better visualization, the representation is divided
into groups of 3 modes each: Figure 3 represents the modes from 1 to 3, Figure 4 from 4 to 6,
and Figure 5 from 7 to 9. It is worth noting that the y-axis scales of Figures 3–5 are different.

Considerations can be made concerning the modal parameters of the system. In
general, an increasing linear trend can be observed in the case of the natural frequencies.
Figure 3 shows that the curve corresponding to the first natural frequency f1 is almost flat,
while a clear variation of fr can be observed for the curves corresponding to the second and
the third ones ( f2 and f3). A similar trend is observed for the other two groups reported in
Figures 4 and 5. Therefore, it can be said that increasing values of the stiffness characterizing
the interaction clearly affect the higher modal frequencies of each group more. Comparing
the three figures, it is noticeable that in the case of the groups of frequencies f1, f2, f3 and
f4, f5, f6, for values of kvar equal to 0, the numerical value of the frequencies is almost the
same. The same behavior is not found for the group of frequencies f7, f8 and f9, where the
numerical value of f9 is almost double the numerical values of f7 and f8.
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Concerning the mode shapes, when kvar is equal to 0 the diaphragms are uncoupled
and show the same three modes. The first mode corresponds to a translational mode along
the transversal direction (y-direction) of the system, while the second mode corresponds to
a rotational one. While the first mode does not change as a function of kvar, in the case of
the second mode, the stiffening effect of the springs characterizing the interaction can be
clearly observed: indeed, if the presence of the interaction is clearly visible for values of
kvar equal to 0.8, in the case of higher values of kvar the three masses tend to rotate as one
single mass, showing therefore a monolithic behavior (see Figure 3).

If the frequency curves present a crossing, the modes undergo the so-called re-ordering
phenomenon, consisting of a change of order of the modes of the system. In the case of this
numerical benchmark, a re-ordering can be observed in two cases, as reported in Figure 6.
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A first re-ordering of modes can be observed in correspondence with the third and
fourth natural frequencies f3 and f4 of the system for increasing values of kvar (Figure 6a):
indeed, in the case of the third one, a translational mode along the longitudinal direction
(x-direction) is observed for high values of kvar, instead of a mixed torsional-bending one,
observed at low values of kvar (the mode shapes can be found in Figures 3 and 4). A similar
situation (Figure 6b) can be observed for the sixth and seventh mode (the mode shapes can
be found in Figures 4 and 5).

Consequently, it can be said that for very high values of kvar, i.e., when the three
masses behave as one single mass, the first three modes result to be the global modes of the
system, corresponding to the translations in the directions x and y and to the rotation. On
the other hand, the modes from 4 to 9 can be defined as local modes of the system.

The application of the reported dynamic equation on a numerical benchmark high-
lights the influence of the interaction between adjacent diaphragms on the dynamic behav-
ior of the system.

4. The Case Study of Morandi’s Hypogeum Pavilion in Turin

Having numerically analyzed the interaction between adjacent diaphragms, which
plays a key role in the comprehension of the dynamic behavior of a system, the dynamic
model developed in Section 2 can be now exploited in the identification of the modal
parameters of a significant case study, represented by Morandi’s Pavilion V of the Turin
Exhibition Center. First, a description of the pavilion including some historical background
is provided. Then, the experimental setups of a vast dynamic test campaign carried out in
2019 are introduced and described.

4.1. Description of the Pavilion

The Pavilion V, also known as the hypogeum pavilion, was built by Riccardo Morandi
in the years 1958–1959 as part of the Turin Exhibition Center. The project was commissioned
by Società Torino Esposizioni, almost entirely owned by FIAT motor company, and it was
conceived as an extension of the existing Nervi’s halls, mainly aimed at hosting the annual
Automobile Show, also considering the upcoming celebrations for the 100th anniversary of
Italy’s unification [23].

The pavilion was not only an occasion for Morandi to show his structural art but
also an opportunity to exploit the long years of experimentation on prestressed reinforced
concrete. The scheme adopted by Morandi for Pavilion V is the so-called balanced beam
scheme, widely used by the designer between the 1950s and 1960s, for example in the
construction of bridges and overpasses [24]. In particular, Morandi used a version of the
balanced beam with subtended tie rods as the main resistant element.

The pavilion is composed of a single large hall with a width of 69 m and a length of
151 m positioned 8 m below the middle level of the surrounding streets. A general view of
the pavilion is reported in Figure 7.
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The structure is composed of three blocks linked by two expansion joints, crossing the
roof and the external walls. The division of the underground structure into three blocks is
clearly observable in Figure 8.
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Figure 8. Scheme of the plan of Morandi’s Pavilion V showing the division into three blocks linked
by joints.

A system of intertwining thin beams in prestressed reinforced concrete composes
the roof slab, defining the pavilion’s space. The roof is composed of hollow core concrete
and supported by 3.2 m spaced main ribs in prestressed concrete, resting on the pairs of
inclined intermediate struts and anchored to the perimeter walls by small strut beams 1 m
tall, 50 cm wide, and of variable section. Inside the small rods, the vertical prestressing
cables are placed, with the aim to reduce the moment stress arising in the span of the ribs.
The bending stresses in the roof and in the crossed ribs are reduced by the inclination of the
struts. The balance constraint is produced by the perimeter walls that contain the ground,
as well as support the roofing system. The thin ribs would be singularly unstable, but their
intertwining makes the structure mostly rigid and robust. One of the intersections is in
correspondence with the inclined struts, creating a dovetail geometry [25], as shown in
Figure 9.
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4.2. Dynamic Test Campaign

A vast test campaign was conducted in February 2019, as reported in [25]. Indeed,
non-invasive tests represent an efficient tool to investigate dynamic properties not only for
modern civil structures [26] but also for heritage buildings [27]. Among other tests, dy-
namic acquisitions were carried out employing 20 monoaxial piezoelectric accelerometers,
positioned on the ribs and struts. In greater detail, the acquisition system was composed
of 20 PCB piezoelectric monoaxial capacitive accelerometers with a sensitivity of 1 V/g,
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a measurement range between 0 and 3 g, and a resolution of 30µg, whose mass is 17.5 g.
The accelerometers were connected via coaxial cables to an acquirer that amplifies the
signals, then the signals are sent to a laptop on which the acquisition software was installed.
With the intention of favoring modal decoupling, the design of two setups was carried out,
based on a preliminary FE model. The first setup allowed to acquire information mainly on
the horizontal direction. In fact, the structure exhibits horizontal components of the three
diaphragmatic blocks, possibly interacting at their joints, and fixed at the vertical members
(longer and shorter strut beams), that define the translational and rotational stiffnesses. The
boundary conditions are very clear, in which they reflect the balanced beam conceived by
Morandi (see the restraints in Figure 9). A second setup focused instead on the vertical
dynamic behavior, which is not accounted for by the model described in Section 2.

Among the 20 accelerometers used, 8 were positioned in the x-direction, 10 in the y-
direction, and 2 in the vertical direction. Only the sensors measuring horizontal components
are reported in Figure 10 with red arrows.
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The positioning of sensors was designed to study both the global and the local behavior
of the structure. In particular, accelerometers 1 and 2 were positioned on the main ribs
composing the roof, while accelerometers 4 and 5 were positioned on the large struts.
Accelerometers 3 and 6 were positioned on the small struts.

Accelerometers with positions 7, 8, 9, and 10 were placed in correspondence with the
joints linking the blocks, to investigate how the interaction affects the dynamic horizontal
behavior of the three distinct bodies.

Only ambient excitation signals were used, with acquisitions length between 18 and
98 min and two different sampling frequencies (128 Hz and 256 Hz).

5. Dynamic Identification
5.1. System Identification Procedure

In the case of Pavilion V, the system identification was carried out with algorithm 3
of [28], belonging to the Stochastic Subspace Identification (SSI) family. The aim of this
procedure was to understand the horizontal dynamic behavior of the structures, potentially
ascribed to dynamic interactions at the joints.

The identification process resulted in the typical stabilization and clustering dia-
grams [29]. The assumed weighting scheme was that of the classical Canonical Variate
Analysis (CVA, SSI-CVA). For the clustering analysis, the Agglomerative Hierarchical
cluster method described in [29] has been adopted. The average criterion was then used to
identify the cluster reference points, focusing on a bandwidth of the spectrum limited in
the 0.5–25 Hz range, in accordance with the preliminary data cleansing.
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The data were sampled at 256 Hz, in accordance with typical values used for civil
structures. The retained signals (horizontal) were detrended and filtered with a band-pass
Butterworth filter between 0.5 and 25 Hz with order 5. The signal length is about 64 min;
thus, identification sessions were performed on both the entire signal and 8 sessions of
8 min each.

The measured acceleration responses and their Power Spectral Density (PSD) estimate
are reported in Figure 11.
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the first horizontal mode. 

Table 2. Identified modes of the entire pavilion. 

Description Mode Id. Natural Frequency (Hz) Damping Ratio (%) 
Horizontal (with roof bending) mode 1 2.57 2.11  

Mainly vertical mode 2 2.73 0.91 

Figure 11. Measured acceleration responses: (a) time−domain; (b) frequency−domain.

5.2. Identified Modes

The most recurrent experimental mode was seen to be the one at 2.57 Hz. By way of
example, the stabilization and clustering diagrams of the identification of a sub-signal are
reported in Figure 12.
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The main identified modes are reported in Table 2 in terms of natural frequency and
damping ratio. From Figure 12, it can be observed that several clusters are likely to indicate
authentic modes. For instance, additional modes are detectable at 3.24 Hz and 5.67 Hz.
However, it is worth pointing out that the results presented in this work descend from the
assumption that the three blocks belong to the same dynamic system, and a safe attribution,
in the presence of a limited number of sensors, will require an accurate mechanical FE
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model to be calibrated. Due to the redundancy of the measured degrees of freedom with
respect to the ones of the diaphragmatic model, the representation of the modal shapes
would require an optimization problem to be solved, as reported in Section 6 for the first
horizontal mode.

Table 2. Identified modes of the entire pavilion.

Description Mode Id. Natural
Frequency (Hz)

Damping
Ratio (%)

Horizontal (with roof bending) mode 1 2.57 2.11
Mainly vertical mode 2 2.73 0.91

6. Interpretation of the Results and Discussion

For a hypogeum pavilion, vertical modes are relatively more amplified than horizontal
ones, especially in the presence of important slab spans. Consequently, the identification
of horizontal modes can be affected by unfavorable levels of signal-to-noise ratio (SNR),
with respect to the vertical ones. This resulted from a comparison between the normalized
spectral entropy of vertical and horizontal channels data, which indicates how close is a
spectrum to the Gaussian noise condition. For further details about the relation between
entropy and SNR, one can refer to [30,31]. Furthermore, in Morandi’s pavilion, the roofing
system is connected at the extrados by non-structural materials, including waterproofing
layers. In particular, while the expansion joints between the blocks measure about 0.04 m,
the blocks are connected by a thin concrete screed (approximately 0.05 m tick) to create
continuity on the walking surface. It was precisely the uncertainty described above that
prompted the authors to aid the identifications with the analytical model reported in
Section 2.

As said before, since the model admits only diaphragmatic degrees of freedom, to
compare the experimental results with the model prediction, the horizontal components
of the first horizontal mode (identified at 2.57 Hz) have been estimated with the least
squares method, also to reduce spillover effects. If Θid denotes the identified eigenvector
matrix, the equivalent diaphragmatic body mode components of the eigenvectors can be
estimated with a linear transformation matrix D as ΘD,id = D Θid, where ΘD,id contains
the diaphragmatic components, i.e., the two horizontal translations and the rotation about
the vertical axis of each block, and D is the linear transformation matrix. In accordance
with the theoretical model of Section 2, Figure 13 limits the representation to the horizontal
components of the examined mode (undeformed configuration in dashed lines, with
sensor positions).
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From a preliminary analysis of the first mode, the blocks are not appreciably affected
by mutual interaction, this being indicative of the full effectiveness of the joints. In other
words, the three blocks are likely to behave as fairly separated dynamic systems. This
observation can be extended also to joints with relatively low nominal stiffnesses (see
Figures 3–5). On the other hand, this uncoupled behavior is reflected in Figure 13.

To shed light on the effectiveness of the joints, a numerical analysis was carried out
on the nominal values of the model stiffnesses of the joints. The multiplier of the three
stiffness components of each joint was varied between 0 and 1. In particular, with refer-
ence to Figure 10, two multipliers have been defined as kvar,le f t and kvar,right, respectively.
The Modal Assurance Criterion (MAC) [32] between the identified mode shape and the
predicted ones was then calculated for each combination of the two multipliers. Defin-
ing m as the double of the number of modes, the objective function J

(
kvar,le f t, kvar,right

)
writes [33,34]:

J
(

kvar,le f t, kvar,right

)
=

m/2

∑
j=1

αw

∣∣∣∣∣ f id
j − f j

f id
j

∣∣∣∣∣+ βw

∣∣∣∣∣∣
1 −

√
MACj

1

∣∣∣∣∣∣ (4)

where, for each j-th combination of the two multipliers, αw and βw are the weights of
the residuals in frequency and mode shapes, respectively, f id

j is the j-th identified natural
frequency, f j is the j-th predicted natural frequency, and MACj is the j-th MAC between
the identified mode shape and the j-th predicted mode shape.

Figure 14 reports the resulting plot of the objective function, with the assumption to
consider only the first vibration mode.
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It can be observed from Figure 14 that the objective function tends to decrease dramat-
ically for very low values of kvar,le f t and kvar,right, corresponding to full effectiveness of all
the joints. A local minimum is also visible, which is associated with the frequency residual
only. Therefore, a further investigation has been conducted for the values of kvar,le f t and
kvar,right varying between 0 and 1 × 10−3. The results obtained for very low values of the
joint stiffnesses are reported in Figure 15, showing that the absolute minimum happens
when the joints are fully effective.
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The above-described analyses also highlighted a high sensitivity of the joint stiffnesses
for values of kvar,le f t and kvar,right close to zero.

7. Conclusions

The dynamics of many civil engineering structures, e.g., multi-span bridges and
buildings with interacting bodies, are influenced by the presence of joints, this introducing
complexity in the modal response. In particular, uncertainties related to the possible
degradation of materials as well as in boundary conditions make it difficult to infer the
modal parameters. Consequently, modal identification, even if conducted in the linear field,
can become a difficult task, calling for simplified models to unravel different components
and aid the mode attribution process.

Morandi’s Pavilion V of the Turin Exhibition Center is an example of a building with
interacting bodies, thus reflecting all the previously stated criticalities. A further problem
of this structure is related to its underground configuration, which results in low SNR
unfavorably affecting the operational modal analysis.

From the results of this work, the following general conclusions can be drawn:

• Not only the presence of joints does result in modal complexity, but also in very high
sensitivity of the stiffness parameters, especially when the joints are fully effective.

• This complexity also affects the design of the experimental setups, which often are not
able to capture the whole-body dynamics.

Possible development of the analysis will contemplate the identification of the three
blocks as independent bodies with the consequent updating of a high-fidelity numerical
model. It is worth noting that the results reported in this paper are valid in operational
conditions. This means that, in the presence of a strong excitation (e.g., an earthquake), the
stiffness of the joints could be activated in the non-linear field, giving rise to even more
complex behavior.
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