
����������
�������

Citation: Rashid, M.; Kumar, H.;

Khan, S.Z.; Bahkali, I.; Alhomoud, A.;

Mehmood, Z. Throughput/Area

Optimized Architecture for

Elliptic-Curve Diffie-Hellman

Protocol. Appl. Sci. 2022, 12, 4091.

https://doi.org/10.3390/app12084091

Academic Editor: Arcangelo

Castiglione

Received: 27 February 2022

Accepted: 14 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Throughput/Area Optimized Architecture for Elliptic-Curve
Diffie-Hellman Protocol
Muhammad Rashid 1 , Harish Kumar 2 , Sikandar Zulqarnain Khan 3,* , Ismail Bahkali 4 ,
Ahmed Alhomoud 5 and Zahid Mehmood 6

1 Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
mfelahi@uqu.edu.sa

2 Department of Computer Science, College of Computer Science, King Khalid University,
Abha 61413, Saudi Arabia; hrangaiah@kku.edu.sa

3 Department of Aeronautical Engineering, Estonian Aviation Academy, 61707 Tartu, Estonia
4 Department of Information Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

Ibahkali@kau.edu.sa
5 Department of Computer Sciences, Faculty of Computing and Information Technology,

Northern Border University, Rafha 91911, Saudi Arabia; aalhomoud@nbu.edu.sa
6 Department of Computer Engineering, University of Engineering and Technology, Taxila 47050, Pakistan;

zahid.mehmood@uettaxila.edu.pk
* Correspondence: sikandar.khan@eava.ee; Tel.: +372-53503352

Abstract: This paper presents a high-speed and low-area accelerator architecture for shared key
generation using an elliptic-curve Diffie-Hellman protocol over GF(2233). Concerning the high speed,
the proposed architecture employs a two-stage pipelining and a Karatsuba finite field multiplier. The
use of pipelining shortens the critical path which ultimately improves the clock frequency. Similarly,
the employment of a Karatsuba multiplier decreases the required number of clock cycles. Moreover,
an efficient rescheduling of point addition and doubling operations avoids data hazards that appear
due to pipelining. Regarding the low area, the proposed architecture computes finite field squaring
and inversion operations using the hardware resources of the Karatsuba multiplier. Furthermore, two
dedicated controllers are used for efficient control functionalities. The implementation results after
place-and-route are provided on Virtex-7, Spartan-7, Artix-7 and Kintex-7 FPGA (field-programmable
gate arrays) devices. The utilized FPGA slices are 5102 (on Virtex-7), 5634 (on Spartan-7), 5957
(on Artix-7) and 6102 (on Kintex-7). In addition to this, the time required for one shared-key
generation is 31.08 (on Virtex-7), 31.68 (on Spartan-7), 31.28 (on Artix-7) and 32.51 (on Kintex-7). For
performance comparison, a figure-of-merit in terms of throughput

area is utilized which shows that the
proposed architecture is 963.3 and 2.76 times faster as compared to the related architectures. In terms
of latency, the proposed architecture is 302.7 and 132.88 times faster when compared to the most
relevant state-of-the-art approaches. The achieved results and performance comparison prove the
significance of presented architecture in all those shared key generation applications which require
high speed with a low area.

Keywords: high speed; low area; cryptoprocessor; accelerator architecture; ECDH; FPGA

1. Introduction

Nowadays, security is becoming a critical threat in various modern applications such
as healthcare [1], automotive [2–4], smart cards [5,6] and the Internet of Things (IoT) [7–10].
These applications demand the exchange of sensitive data on a vulnerable public channel.
Consequently, different symmetric and asymmetric cryptographic algorithms are utilized
to achieve various security services. Examples of these security services are public key
exchange, signature generation/verification, authentication and encryption/decryption.
It has been observed that a higher security level can be achieved with the employment of
asymmetric protocols as compared to symmetric algorithms [11]. The most frequently used

Appl. Sci. 2022, 12, 4091. https://doi.org/10.3390/app12084091 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12084091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5852-1296
https://orcid.org/0000-0003-2302-5828
https://orcid.org/0000-0001-9163-6896
https://orcid.org/0000-0002-3603-4259
https://orcid.org/0000-0003-2782-3106
https://orcid.org/0000-0003-4888-2594
https://doi.org/10.3390/app12084091
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12084091?type=check_update&version=2

Appl. Sci. 2022, 12, 4091 2 of 18

asymmetric algorithms are RSA (Rivest–Shamir–Adleman) and elliptic-curve cryptography
(ECC). However, the ECC provides similar data protection with a relatively shorter key
length as compared to RSA [12,13].

The security hardness of ECC depends on solving the discrete logarithms problem [14].
Typically, the layout of ECC incorporates a four-layer design [12,14], as presented in
Figure 1a. Each design layer in Figure 1a can be implemented using various alternatives.
For example, the topmost layer (layer 4) specifies the number of rules to produce encryption
(or) decryption, signature generation (or) verification and public key exchange (depending
on the used protocol). Here, we have selected elliptic-curve Diffie-Hellman (ECDH) [15]
protocol for key agreement, as shown in Figure 1b. Inherently, the ECDH protocol is
responsible for generating the shared secret values based on certain input parameters.
Therefore, the adopted ECC hierarchical model in this article is illustrated in Figure 1b.
Similarly, the critical operation in ECC is elliptic-curve point multiplication (ECPM) which
is the third layer operation in a typical ECC hierarchy [12,16–19]. As given in Figure 1b,
the execution of ECPM is achieved with the use of a Montgomery algorithm because it
(by default) provides resistance against SPA (simple power analysis) and timing attacks.

(a) (b)

Figure 1. Typical and adopted ECC hierarchies. (a) A typical ECC hierarchy; (b) adopted ECC
hierarchy in this article.

The computation of ECPM relies on the execution of point addition (PAdd) and double
(PDbl) operations. The building blocks (layer one operations), to serve PAdd and PDbl,
are addition, multiplication, square and inversion. Among these, multiplication is the
most computationally intensive operation. A variety of multiplication approaches are
available [20–24]. However, we have targeted the Karatsuba multiplier as it consumes
one clock cycle for a singular multiplication [25]. The employed Karatsuba multiplier is
also used for squaring and inversion computations, as shown in Figure 1b. More insight
particulars are described in Section 3.3.

In addition to various choices in Figure 1b, the ECC designers may select the prime
(GF(P)) or binary (GF(2m)) fields. Similarly, the polynomial or Gaussian normal ba-
sis can be used to represent the initial and final points on the respective elliptic curve.
Moreover, different coordinate systems (i.e., affine, and projective) are available. This
article employs GF(2m) field due to its carry-free additions and suitability for hardware
deployments [12,14,24]. In addition, the binary fields are faster as compared to prime fields.
On the other hand, the GF(P) field is useful for software implementations and is more
convenient for long-term security as compared to binary elliptic curves [26,27]. According
to [28], a GF(P) field contains a prime number p of elements. The elements of this field are
the integers modulo p, and the field arithmetic is implemented in terms of the arithmetic of
integers modulo p. Similarly, a GF(2m) field contains 2m elements for some m (determines
the degree of the field). The elements of this field are the bit strings of length m, and the field
arithmetic is implemented in terms of operations on the bits. This motivate us to use binary
fields as the main interest of this work was to deal with hardware implementations. Thus,

Appl. Sci. 2022, 12, 4091 3 of 18

there is always a tradeoff when choosing between security levels and the performance of
the cryptographic algorithm/protocol. Furthermore, the polynomial basis we have used
to achieve faster multiplications [12]. On the other hand, the Gaussian normal basis is
significant when frequent squaring operations are required to be computed [16].

A projective coordinate system is selected as it needs lower inversion operations when
compared to the affine coordinate system [14]. The deployment of cryptographic algorithms
on software platforms (i.e., microcontrollers) provides higher flexibility with a decrease in
performance as compared to hardware platforms (such as application-specific integrated cir-
cuits (ASICs) and field-programmable gate arrays (FPGAs)). Moreover, software platforms
also provide interoperability and portability features. Therefore, an ECDH crypto library is
introduced in [29] where an ultra-low-power MSP430 microcontroller is used to implement
the time and memory consumed cryptographic operations with limited resources. Some ad-
ditional benefits to using ECC as software implementations are highlighted in [30]. Higher
performance and maximum security can be achieved when cryptographic algorithms are
deployed as hardware accelerators. Consequently, this work deals with the hardware
implementation of the ECDH key-exchange protocol on a reconfigurable FPGA platform.

The American National Institute of Standards and Technology (NIST) recommended
different key lengths for a binary and prime field to use. The NIST-standardized prime
fields are 192, 224, 256, 384 and 521. Similarly, the binary elliptic fields are 163, 233, 283,
409 and 571. Therefore, the purpose of this work is to provide an ECDH accelerator over
GF(2m) with m = 233 for healthcare [1], automotive [3,4], smart cards [5,6], IoT [7–10]
and many other emerging applications that require the exchange of sensitive information
on insecure public channels. To achieve 80 and 128-bit symmetric key security, the RSA
requires 1024 and 3072-bits. For the equivalent security level, ECC requires only 163 and
283 bits. For additional details, we refer readers to [29]. Consequently, to achieve an 80-bit
symmetric key security, we have selected a 233-bit key length of ECC to report area and
performance results for the ECDH computation.

1.1. Related Work

With the selection of different settings for ECC coordinate systems (affine and projec-
tive) and basis representations (polynomial and normal), a variety of hardware designs are
described [12,17,19,31,32]. These implementations are (only) focused on the acceleration of
ECPM operation in the context of various design constraints such as operational frequency,
hardware area, power consumption and throughput (or) latency.

A two-stage pipelined design for ECPM computation over GF(2163) is presented
in [12]. The pipelining is adopted to reduce the critical path and maximize the clock
frequency. A high-speed and low-latency implementation of ECPM over GF(2m) on Xilinx
Virtex-4, Virtex-5 and Virtex-7 FPGA devices is presented in [17]. The authors have used
a single and three modular multipliers in their designs. The design with one multiplier
provides higher speed and results in the best reported area-time performance on the selected
FPGA devices. On similar FPGA devices, the design with three multipliers decreases latency.
In [19], an efficient ECPM architecture over GF(2163) is provided on Virtex-7 FPGA. Their
design utilizes 3657 slices and requires only 25.3 µs for one ECPM calculation.

A high-performance hardware implementation of an ECC-based cryptoprocessor for
point multiplication over GF(2163) is presented in [31]. In affine coordinate systems, their
design consists of an efficient finite-field arithmetic unit, a control unit and a memory unit.
The implementation results are reported on a modern Kintex-7 FPGA device. For one point
multiplication computation, their architecture takes 1.06 ms and achieves 306 MHz clock
frequency. Moreover, the area utilization of their design is 2253 slices without using any
DSP slices. Recently in [32], a compact and flexible FPGA implementation of Ed25519 and
X25519 curves is implemented. The implementation results are reported on the Artix-7
device. Their unified architecture for Ed25519 and X25519 utilizes 11.1K LUTs, 2.6K FFs
and 16 DSP slices. Moreover, their design achieves the performance of 1.6 ms for signature

Appl. Sci. 2022, 12, 4091 4 of 18

generation and 3.6 ms for signature verification. Furthermore, an 82 MHz operational
frequency is achieved.

The hardware implementations of key-exchange (i.e., ECDH) protocol are described
in [33–35]. Recently, in [33], an efficient architecture for quantum-safe hybrid key exchange
using ECDH and SIKE cryptographic primitives is presented. The SIKE is a post-quantum
cryptographic protocol. By utilizing only the 1663 FPGA slices, their SIKE architecture
can perform an entire hybrid key exchange in 320 ms on the Artix-7 FPGA. A high-level
synthesis (HLS) method is used in [34] to offload the ECDH operations on FPGA for the
area and power reductions. In [35], for wireless sensor nodes, a low-cost ECC hardware ac-
celerator architecture is presented on FPGA. The validation of their accelerator architecture
is performed by using a hardware/software co-design of the ECDH scheme (integrated
into the MicroZed FPGA board). The ECDH protocol is executed in 4.1 ms for one shared
key generation.

1.2. Need for a High-Speed and Low-Area Key-Exchange Design

The fourth industrial revolution (or industry 4.0) results in the rapid development
of technological devices due to the increasing demand for interconnectivity and smart
automation of several applications such as healthcare [1], automotive mobile/vehicles [2–4],
smart cards [5,6], IoT [7–10] and many more. These applications require the exchange of
sensitive information on insecure public channels. In modern health care systems, patients
can only collect their medical details from the cloud to obtain records securely, as we know
that the cloud is not entirely safe [36,37]. Thus an authentication framework is required
to maintain the security and privacy in the communication system. According to [2], the
connected vehicles involve applications, services and emerging technologies that enable
internal connectivity among devices present in the vehicle and/or enable communication
of the vehicle to external devices and networks, collectively named vehicle-to-everything
(V2X) communication. Therefore, V2X needs authentication to start secure communication
over the network/cloud. In the case of smart cards, authentication of the card is needed for
online payments [5,6]. Identification of a human using his/her smart ID card is another
application where authentication is essential [5]. The authentication is (also) required to
start secure communication between the two nodes in IoT related applications/networks.
Along with higher security in terms of authentication, the aforementioned applications
demand high speed with low hardware resource utilization.

Consequently, different optimization techniques have been utilized for achieving high-
speed and to reduce hardware resources in the architectures reported in [12,17,19,34,35].
For example, pipelining is utilized in [12] to reduce the critical path and improve the clock
frequency. The bit/digit serial multipliers are used in [16,18] to decrease hardware resources
with a considerable decrease in the performance of the design. Towards the latency opti-
mization, multiple modular multipliers are used in [17]. The coprocessor architectures, for
performing key-agreement using ECDH, are considered in [34,35]. A coprocessor implies
the integration of FPGA with a host device (e.g., micro-controller/processor) to achieve
flexibility while ignoring the area and performance (speed or throughput) parameters [11].

The limitation of the designs reported in [12,17,19] is that they only accelerate/implement
ECPM computations. Similarly, the high computation time is the limitation of the designs
published in [34,35,38]. Therefore, there is a need to present a high-speed ECDH architec-
ture for key agreement with low hardware resource utilization.

1.3. Contributions

The contributions to this work are summarized as follows:

(i) An ECDH architecture is presented, with a focus on high-speed with low-area utiliza-
tion, over GF(2233) on FPGA.

(ii) The high-speed is achieved with the use of: (a) a two-stage pipelining and (b) a bit
parallel Karatsuba multiplier. To deal with the pipelining, an efficient rescheduling of
PAdd and PDbl operations for PM computation is proposed. The use of pipelining

Appl. Sci. 2022, 12, 4091 5 of 18

increases the clock frequency and reduces the critical path. Moreover, the proposed
rescheduling and the employed Karatsuba multiplier reduce 5×m clock cycles, where
m is the key length. Further details are illustrated in Section 3.4.

(iii) Apart from the high-speed, the low-area is achieved with the use of one adder and
a Karatsuba multiplier. It implies that the squaring and inversion computations are
operated with the same hardware resources (Karatsuba multiplier) which eventually
reduces the overall implementation resources.

(iv) Finally, the two dedicated finite state machine (FSM) based controllers are used for
controlling PM and ECDH operations respectively.

1.4. Novelty

Although there are several ECDH designs provided in the literature [12,16–19], they
mainly target a coprocessor implementation style to achieve flexibility which affects the
performance in terms of latency and throughput. The automotive [3,4], IoT [7–10] and
several other applications demand the exchange of sensitive information in a reasonable
time. Therefore, to achieve an adequate throughput and to optimize or reduce the latency of
the ECDH algorithm, we have utilized a dedicated crypto processor architecture instead of
the use of a coprocessor. Furthermore, along with the throughput and latency parameters,
the health-related applications [1] and embedded devices such as smart cards [5,6] demand
low hardware resources utilizations. Thus, no demonstration of an ECDH design exists
before this work where throughput and area constraints are considered at the same time
for implementation.

1.5. Outcomes and Significance

We have implemented the proposed ECDH architecture over GF(2233) in Verilog
(HDL) using the Vivado IDE (Integrated Design Environment) tool. The implementation
results after place-and-route are provided on various 28 nm (Virtex-7, Artix-7, Spartan-7
and Kintex-7) technologies. The minimum hardware resources (5102 slices, 12339 look-up
tables and 2459 flip-flops) are achieved for the Virtex-7 device when compared to Spartan-7,
Artix-7 and Kintex-7 devices. In addition to the hardware resources, the times (or latency)
to generate one public key on Virtex-7, Spartan-7, Artix-7 and Kintex-7 are 15.54 µs, 15.83 µs,
15.63 µs and 16.25 µs. For the same FPGA devices, the times to generate one shared key
are 31.08 µs, 31.68 µs, 31.28 µs and 32.51 µs. The highest throughput

area value (6.30) is acquired
for Virtex-7 FPGA. For Spartan-7, Artix-7 and Kintex-7 devices, the figure-of-merit values
are 5.60, 5.36 and 5.04. The proposed architecture is 302.7 and 132.88 times faster in terms
of latency when compared to coprocessor architectures of [35,38]. Similarly, it is 963.3 and
2.76 times faster in the context of throughput

area as compared to [35,38]. The achieved results
and performance comparison ascertain the importance of our proposed architecture in all
those shared key generation applications which require high speed with a low area.

The remainder of this article is formulated as: Section 2 presents the related mathe-
matical background. The proposed high-speed and low-area accelerator architecture for
the ECDH protocol is described in Section 3. The implementation results and comparison
to state-of-the-art are given in Section 4. Finally, Section 5 concludes the article.

2. Related Mathematical Background

Each associated layer in Figure 1a,b requires several algorithms or protocols for
cryptographic computations. Layer 1 (ECDH protocol) is responsible for a shared key
generation between two different parties. As given in Figure 2, each user, i.e., UA, and UB,
uses common ECC parameters to initiate the setup for a shared key generation. Moreover,
each user also generates his/her public key (i.e., QA and QB) by using a base-point P
and his/her private key (i.e., dA and dB). The dA and dB are m-bit random numbers (also
termed as scalar multipliers and secret keys in literature). After generating the public keys,
both users exchange their public keys with each other. Thereafter, the UA and UB generate
their shared key using dA ×QB and dB ×QA, respectively. The A and B in the subscript

Appl. Sci. 2022, 12, 4091 6 of 18

of d, Q and SK (shared key) determine the execution of a corresponding operation for the
respective user A and B. In Figure 2, the d× P and d× Q determine the computation of
ECPM operation for UA and UB, respectively.

Figure 2. ECDH protocol for shared key generation or key agreement.

The computation of ECPM operation, shown in Figure 1b, is the execution of d− 1
times the addition of an elliptic curve point (P) when generating the public key or (Q)
when generating the shared key. To perform ECPM operations, there are several algorithms
such as Double and Add, Montgomery, Lopez Dahab and many more. A comparative
study over various ECPM algorithms is presented in [11]. Subsequently, the Montgomery
(Algorithm 1) algorithm has been used in this work as (inherently) it provides resistance
against simple power analysis (SPA) and timing attacks.

Algorithm 1: Montgomery ECPM Algorithm [12].
Input: d = (dn−1, . . . , d1, d0) with dn−1 = 1, P = (xp, yp) ∈ GF(2m)
Output: Q = (xq, yq) = d · P
Affine to projective conversions: X1 = xp, Z1 = 1, Z2 = x2

p and X2 = x4
p + b

PM in projective coordinates:
for (i from m-2 down to 0) do

if (di = 1) then
PAdd(X1, Z1) = (X1, Z1, X2, Z2) and
PDbl(X2, Z2) = (X2, Z2)

else
PAdd(X2, Z2) = (X2, Z2, X1, Z1) and
PDbl(X1, Z1) = (X1, Z1)
end if

end for
Reconversion from projective to affine: xq = X1

Z1
and

yq = xp + (X1
Z1
)[(X1 + xp × Z1)(X2 + xp × Z2) + (x2

p + yp)(Z1 × Z2)](xp × Z1 ×
Z2)
−1 + yp

Algorithm 1 contains an initial point P and a scalar multiplier d as an input. A
sequence dn−1, . . . , d1, d0 shows the bits (0 s and 1 s) of the scalar multiplier. The output of
Algorithm 1 is the x and y coordinates of the generated public and shared keys. The PAdd()
and PDbl() functions in Algorithm 1 show the instructions for point addition and double

Appl. Sci. 2022, 12, 4091 7 of 18

computations respectively. For i f and else statements of Algorithm 1, the corresponding
sequence of instructions for PAdd() and PDbl() functions are given below.

PAdd(X1, Z1) =

Inst1 ←− Z1 = X2 × Z1
Inst2 ←− X1 = X1 × Z2
Inst3 ←− T1 = X1 + Z1
Inst4 ←− X1 = X1 × Z1
Inst5 ←− Z1 = T2

1
Inst6 ←− T1 = xp × Z1
Inst7 ←− X1 = X1 + T1

PDbl(X2, Z2) =

Inst1 ←− Z2 = Z2
2

Inst2 ←− T1 = Z2
2

Inst3 ←− T1 = b× T1
Inst4 ←− X2 = X2

2
Inst5 ←− Z2 = X2 × Z2
Inst6 ←− X2 = X2

2
Inst7 ←− X2 = X2 + T1

3. Proposed ECDH Architecture

The proposed ECDH architecture is shown in Figure 3. It consists of two routing
networks (RoutingNetwork1 and RoutingNetwork2), an arithmetic and logic unit (ALU),
a memory unit, two pipeline registers (PR1 and PR2) and two finite state machine based
controllers (Controller-1 and Controller-2). The details of these units are given as:

Figure 3. Proposed ECDH accelerator architecture for key-agreement.

3.1. Routing Networks (RoutingNetwork1 and RoutingNetwork2)

The RoutingNetwork1 consists of four multiplexers, i.e., M1, M2, M3 and M4. The
length of M1, M2 and M4 are 2 × 1 while the length of M3 multiplexer is 3 × 1. The
objective of M1 and M2 is to select coordinates of either the initial point on ECC (xp and
yp) or coordinates of the public key (Qxp and Qyp) for the generation of a shared key. The
multiplexer M3 drives the output of M1 and M2 along with the curve constant parameter
b. It is important to note that this work has utilized NIST-standardized ECC parameters
(xp, yp and b) [39]. The M4 multiplexer is responsible to select an operand either from
multiplexers M1, M2 and M3 or from an operand from the memory block. The output of

Appl. Sci. 2022, 12, 4091 8 of 18

M4 goes to ALU as an input for further computations. In Figure 3, the multiplexer M5
determines the RoutingNetwork2. The purpose of M5 is to select an appropriate output,
either after the ADDER or MULT unit, for writing back in a memory block.

3.2. Memory Block

The memory block in the proposed ECDH accelerator architecture is an 8×m size
register file. Here, the numerical value 8 denotes the total registers while the value for
m determines the size of each register. The memory block is responsible for preserving
the intermediate and the final results during and after the execution of Algorithm 1 and
Figure 2. The internal architecture of a memory block, as shown in Figure 3, consists of two
8× 1 multiplexers that are responsible for reading the data. Moreover, it contains one 1× 8
demultiplexer to modify the contents of each particular register address. The Controller-2 is
responsible for generating control signals to perform read and write operations.

3.3. Arithmetic and Logic Unit (ALU)

It consists of an ADDER, MULT and a reduction unit. The polynomial addition in
GF(2m) is less complex as compared to the prime field. The implementation of an ADDER
includes an array of bitwise Exclusive (OR) gates. It bears two polynomials, i.e., MD1 and
MD2, as input and results an m-bit polynomial (Aout) as output.

The performance of the entire crypto accelerator architecture depends on the perfor-
mance of the used multiplier. Based on several polynomial multiplication techniques, de-
scribed in [25], there are four possibilities to implement a multiplier circuit. These possibili-
ties are (i) bit-serial, (ii) digit-serial, (iii) bit-parallel and (iv) digit-parallel. For two m bit input
operands, the bit-serial multipliers require m clock cycles for computation. A schoolbook
multiplication method is a typical example of bit-serial multiplication. In digit-serial multipli-
ers, p

q clock cycles are required for one polynomial multiplication, where p determines the
operand length and q is the digit size. Moreover, the computational cost in bit/digit parallel
multipliers is one clock cycle. Based on the clock cycles requirement of several multiplication
approaches, as discussed in [25], the bit-serial multipliers are suitable for area-constrained ap-
plications. Similarly, the bit/digit parallel multipliers are useful for high-speed cryptographic
applications. Finally, the digit-serial multiplication approaches are more convenient where the
speed and hardware resources are simultaneously important.

Based on the aforementioned discussion, we have implemented a bit-parallel Karat-
suba multiplier over GF(2233). The mathematical structure (in the simplest way) to perform
Karatsuba multiplication is explained in [22]. It uses the splitting of m bit input polyno-
mials into two m/2 bit polynomials. Each m/2 bit polynomial is further divided into two
smaller polynomials (m/4 bit). This division is duplicated until the smaller polynomials
for multiplication are acquired. After dividing polynomials, the resultant polynomial is
generated by performing multiplication in chronological order. For further descriptions, we
refer interested readers to [22]. In short, the Karatsuba multiplier in MULT unit takes two
polynomials (MD1 and MD2) as input and results in 2×m− 1 bit polynomial (Mout) as
output. It is important to note that the size of the resultant polynomial generated after the
MULT unit is 2×m− 1 bit (not shown in Figure 3). Therefore, in this work, the reduction
from 2×m− 1 bit to m bit is performed using a NIST-recommended polynomial reduction
algorithm (see Algorithm 2.41 of [14]).

The PAdd and PDbl functions in Algorithm 1 requires some squaring instructions
(e.g., Inst5 in PAdd while Inst1, Inst2, Inst4 and Inst6 in PDbl). In our work, these squaring
instructions are computed by providing similar inputs to the Karatsuba multiplier as
performed in [12]. Subsequently, this shows a decrease in hardware resources without
affecting the clock cycles. As shown in Algorithm 1, the reconversion from projective to
affine needs two polynomial inversion computations. There are several inversion methods
in the literature to perform the multiplicative inverse of the polynomials. However, the
Itoh–Tsujii inversion algorithm is more frequently utilized in state-of-the-art approaches as
it requires only the multiplications and square operations for the computation [12,18,19].

Appl. Sci. 2022, 12, 4091 9 of 18

Therefore, in our implementation, we have utilized the hardware resources of our MULT
unit to perform the polynomial inversion using the square Itoh–Tsujii algorithm.

The Itoh–Tsujii inversion algorithm over GF(2233) requires ten polynomial multiplica-
tions followed by m− 1 squares [40]. Each multiplication over GF(2233) using the Karatsuba
multiplier is accomplished in one clock cycle. Therefore, ten multiplications require ten
clock cycles. The m− 1 clock cycles are required for the squaring as one square takes only
the one clock cycle. The total clock cycles to perform one inversion are (10 + m− 1). Using
our ECDH architecture (given in Figure 3), 2× (10 + m− 1) clock cycles are needed to
perform one polynomial inversion over GF(2233) because we used only the one MULT
unit for both multiplication and squaring computations. On the other hand, the Itoh–Tsujii
requires repeated squaring computations. Apart from one MULT unit, we have employed
the pipeline registers in the proposed ECDH design. These two factors (use of one MULT
and pipelining) determine the limitation of our architecture for the inversion computation.

3.4. Pipeline Registers and Scheduling

The inclusion of pipeline registers increases clock frequency and reduces the critical
path of the proposed ECDH architecture. There are several choices for the inclusion of
pipeline registers in the proposed ECDH architecture (given in Figure 3). For example,
one pipeline register after M1, M2, M3, DRA, M4, MemoryBlock and M5 resulting a five-
stage pipeline architecture. With this register placement, instruction read is performed in
three clock cycles. Two cycles are needed to perform instruction execution and write back
operations. As one can see, the instruction read takes three clock cycles which is not an
optimal choice. With this observation, we decrease the number of pipeline stages from five
to four. The synthesis results show a similar clock frequency as compared to five-stage
pipelining. We repeated this process until a two-stage pipelining is reached (It is important
to note that the inclusion of more pipeline registers (i.e., from two-stage to three-stage and
so on) is no longer beneficial in our architecture. More than two-stage pipelining results
in a significant increase in the hardware resources but with a minor increase in the clock
frequency). Therefore, in our proposed ECDH architecture (shown in Figure 3), we have
included two pipeline registers (only) on the inputs of the ALU (one after M4 and another
after MemoryBlock). It requires reading ([R]) in one clock cycle and both executing and
writing back ([EWB]) in another cycle.

The instructions for PAdd and PDbl functions of Algorithm 1 in a two-stage pipelining
are shown in Table 1. Column one provides the clock cycles (CCs). The original instructions
for PAdd and PDbl functions of Algorithm 1 are shown in column two. Columns three
to five provide the status of instructions for PAdd and PDbl functions in a two-stage
pipelining without the proposed scheduling. Finally, the last three columns (six to eight)
provide the proposed scheduling for the instructions of PAdd and PDbl functions in a
two-stage pipelining.

Table 1 shows that the instructions of PAdd and PDbl functions of Algorithm 1 requires
22 CCs. Moreover, in two-stage pipelining, there are read-after-write (RAW) hazards when
executing these instructions. It implies that the execution of the current instruction is
stopped until the write-back of the previous instruction is finished. For example, in the
first clock cycle, operands of PAddInst1 are fetched from the memory unit. In the next cycle,
operands for PAddInst2 are fetched while the execution and write-back of PAddInst1 are
completed. In clock cycle three, PAddInst3 can not be fetched because it depends on the
result of previous instruction (PAddInst2). This is termed the RAW hazard. In total, seven
RAW hazards (shown in column five of Table 1) are occurred when the instructions of PAdd
and PDbl functions are executed sequentially.

Appl. Sci. 2022, 12, 4091 10 of 18

Table 1. Status of instructions of PAdd and PDbl functions of Algorithm 1 in a two-stage pipelining.

CCs Instructions of PAdd and PDbl
Status of Instructions of Algorithm 1 in 2-Stage Pipelining
Without Scheduling Proposed Scheduling
[R] [EWB] Hazard [R] [EWB] Hazard

1 PAddInst1 ←− Z1 = X2 × Z1 PAddInst1 – – PAddInst1 – –
2 PAddInst2 ←− X1 = X1 × Z2 PAddInst2 PAddInst1 – PAddInst2 PAddInst1 –
3 PAddInst3 ←− T1 = X1 + Z1 – PAddInst2 X1 PDblInst1 PAddInst2 –
4 PAddInst4 ←− X1 = X1 × Z1 PAddInst3 – – PAddInst3 PDblInst1 –
5 PAddInst5 ←− Z1 = T2

1 PAddInst4 PAddInst3 – PAddInst4 PAddInst3 –
6 PAddInst6 ←− T1 = xp × Z1 PAddInst5 PAddInst4 – PAddInst5 PAddInst4 –
7 PAddInst7 ←− X1 = X1 + T1 – PAddInst5 Z1 PDblInst2 PAddInst5 –
8 PDblInst1 ←− Z2 = Z2

2 PAddInst6 – – PAddInst6 PDblInst2 –
9 PDblInst2 ←− T1 = Z2

2 – PAddInst6 T1 PDblInst3 PAddInst6 –
10 PDblInst3 ←− T1 = b× T1 PAddInst7 – – PAddInst7 PDblInst3 –
11 PDblInst4 ←− X2 = X2

2 PDblInst1 PAddInst7 – PDblInst4 PAddInst7 –
12 PDblInst5 ←− Z2 = X2 × Z2 – PDblInst1 Z2 – PDblInst4 X2

13 PDblInst6 ←− X2 = X2
2 PDblInst2 – – PDblInst5 – –

14 PDblInst7 ←− X2 = X2 + T1 – PDblInst2 T1 PDblInst6 PDblInst5 –
15 – PDblInst3 – – – PDblInst6 X2

16 – PDblInst4 PDblInst3 – PDblInst7 – –
17 – – PDblInst4 X2 – PDblInst7 –
18 – PDblInst5 – – – – –
19 – PDblInst6 PDblInst5 – – – –
20 – – PDblInst6 X2 – – –
21 – PDblInst7 – – – – –
22 – – PDblInst7 – – – –

To reduce the RAW hazards or to reduce the total number of clock cycles, an efficient
scheduling technique is presented for the instructions of PAdd and PDbl functions. The
proposed scheduling is shown in the last three columns of Table 1. We can observe in
column six that the operands for PDblInst1 are fetched from the memory unit in clock
cycle three. It allows reducing the clock cycles (total 17) for the execution of one PAdd
and PDbl operation. To summarize, the instructions for PAdd and PDbl functions of
Algorithm 1 require 22×m clock cycles in a two-stage pipelining when no scheduling is
considered for executions. Here, m is the key length (233 in this work). However, with the
proposed scheduling, the required number of clock cycles for the execution of one PAdd
and PDbl functions are 17×m. Therefore, the proposed scheduling scheme reduces 5×m
clock cycles.

3.5. Dedicated FSM Controllers

As shown in Figure 3, two FSM controllers (Controller-1 and Controller-2) are used. The
intent to use two controllers is to attain the minimum routing delays. In other words, a
single FSM having a larger number of states results in longer routing delays [41]. Therefore,
the Controller-1 operates like a wrapper for Controller-2. More precisely, Controller-1 provides
the ECC parameters in terms of coordinates of either initial point P or public key Q as
an input to Controller-2. After providing the input parameters, the Controller-1 stays in a
WAIT state until the Controller-2 responds. More insightful details of these controllers are
given as:

Appl. Sci. 2022, 12, 4091 11 of 18

3.5.1. Controller-1

It is responsible for generating control signals for M1 and M2 routing multiplexers.
The generated control signals are shown with the red color dotted lines in Figure 3. The
inputs/outputs to/from Controller-1 are also shown in Figure 3. One of the input to
Controller-1 is d which is an m-bit secret key or a scalar multiplier, given in Algorithm 1.
Similarly, two other inputs, i.e., Qxp, and Qyp, hold the x and y coordinates for a public key
of another party during the shared key generation. An start signal triggers the processor to
initiate the computation process. The Rxp and Ryp provide x and y coordinates respectively.
In addition to it, the D1 and D2 are one-bit done signals. The D1 reveals that the public key
is generated while the D2 shows that the shared key is generated. The corresponding D1
and D2 signals are generated after the required computation by Controller-2. As shown in
Figure 4, Controller-1 incorporates a total of four states, i.e., IDLE, PBKG, SKG and WAIT.
As the name implies, PBKG determines the public key generation while SKG means the
shared key generation. Consequently, descriptions of these states are as follows:

(i) State one is an IDLE state. Based on the selector signal (not shown in Figure 3), the
processor shifts from IDLE state to either in PBKG or SKG. Otherwise, the processor
remains in the IDLE state.

(ii) In the PBKG state, the processor checks the start signal. Once it becomes true, the
Controller-1 generates the control signals to select xp and yp coordinates of initial
point P.

(iii) Similarly, the processor checks the start signal in state three (SKG). Once it becomes
true, it generates the control signals to choose xp and yp coordinates of a public key Q.

(iv) After generating control signals either in-state PBKG or SKG, the next state becomes
state four (WAIT). The WAIT state determines that the processor is now waiting
for the done signals (either for D1 or D2) from Controller-2. Whenever the processor
switches its state from PBKG to WAIT, it implies that the processor is generating
coordinates for a public key. Whenever the processor changes its state from SKG to
WAIT, it denotes that the processor is computing coordinates for a shared key. It is
important to note that the transformation, either from PBKG to WAIT or from SKG
to WAIT, the proposed architecture consumes one clock cycle. The clock cycles for
the WAIT state depends on the required cycles for Controller-2 to set the D1 or D2
signals. Therefore, Equation (1) provides the total number of clock cycles for our
ECDH architecture.

ECDHcycles = 2 + 2(PMcycles) (1)

In Equation (1), one clock cycle is required for transformation from IDLE state to
either in PBKG or SKG. Another clock cycle is needed for shifting either from PBKG or
SKG to the WAIT state. The clock cycles calculation for PMcycles will be discussed briefly
in the next section.

Figure 4. FSM controller of our proposed ECDH accelerator architecture.

Appl. Sci. 2022, 12, 4091 12 of 18

3.5.2. Controller-2

It is responsible for generating control signals for the computation of Q = d × P
and SK = d×Q using Algorithm 1. The mathematical formulations are shown earlier in
Figure 2. As presented in Figure 4, the three steps ((i) affine to projective conversions, (ii) PM
in projective coordinates and (iii) reconversions from projective to affine) of Algorithm 1
constitute a total of 88 states (states 0 to 87). The details for the corresponding states are
as follows:

(i) The initial state (state 0) is idle. When Controller-2 receives the start signal (as 1) from
Controller-1, it starts generating the control signals for projective to affine conversions.
It requires 10 states from state 1 to 10 such that each state takes one clock cycle for
computation. In other words, the proposed ECDH architecture takes 10 clock cycles
for affine to projective conversions.

(ii) Fourteen instructions of PAdd (seven) and PDbl (seven) functions of Algorithm 1 are
operated in seventeen states (state 11 to 27). The reason for more states is the two-stage
pipelining. The details of pipelining are given in Table 1 of Section 3.4). During each
state, the value for an inspected key bit, i.e., di, is checked. When the inspected value
for di becomes 1, the i f part from Algorithm 1 is implemented. Otherwise, the else
part is operated. These 17 states are operated in 17 clock cycles and are repeated until
the condition for the loop statement of Algorithm 1 becomes true. When it becomes
true, the processor switches control from PM to the reconversions step.

(iii) The states from 28 to 87 are responsible for projective to affine conversions. In states 28
to 67, a polynomial inversion is computed. For one inversion computation, our ECDH
design takes 2(10 + m− 1) clock cycles. As shown in Algorithm 1, the projective to
affine conversions require two inversion computations. Therefore, the cost for two in-
version operations is 4(10+m− 1). Moreover, some additional states are needed (from
68 to 87) to accomplish the remaining operations of projective to affine conversions.

To summarize, the total number of clock cycles for the computation of Q = d× P
and SK = d× Q are calculated using Equation (2). It reveals that the affine to projective
conversion requires 10 clock cycles. The PM computation in projective coordinates requires
17(m− 1) clock cycles. The projective to affine conversion process requires 4(10 + m− 1)
cycles for two inversion computations and additional 20 cycles for the completion of the
remaining operations in the process. Consequently, the proposed ECDH architecture over
GF(2m) with m = 233 requires 4942 clock cycles for one PM computation (i.e., Q = d× P,
and SK = d×Q).

PMcycles = 10 + 17(m− 1) + 4(10 + m− 1) + 20 (2)

4. Results and Comparisons
4.1. Results

The proposed ECDH architecture is implemented in Verilog language using the Vivado
IDE (Integrated Design Environment) tool. For performance evaluations, the implemen-
tation results are presented on different FPGA devices, i.e., Virtex-7 (xc7vx690tffg1930-2),
Spartan-7 (xc7s100fgga676-2), Artix-7 (xc7a200tsbv484-2) and Kintex-7 (xc7k480tffv1156-2).
The respective details for the targeted FPGA devices are given in [42]. The achieved results
are given in Table 2.

Column one of Table 2 provides the targeted device. The utilized area (in terms of
slices, look-up tables (LUTs) and flip-flops (FFs)) is shown in columns two, three and four
respectively. The area information is obtained directly from the Vivado tool. Similar to the
reported area values, the operational frequency (Freq in MHz) is also acquired from the
tool and is presented in column five of Table 2. Columns six and seven show the CCs and
latency (in µs) information for one PM computation. Similarly, columns eight and nine
present the clock cycles and latency (in µs) information for one shared key generation. The

Appl. Sci. 2022, 12, 4091 13 of 18

clock cycles for one shared key generation are calculated from Equation (1). Likewise, the
clock cycles for one PM computation are calculated from Equation (2).

Table 2. Implementation results after place-and-route over GF(2233) on different FPGA devices.

Device
Utilized Area

Freq (in MHz)
Public Key Shared Key

FoM
Slices LUTs FFs CCs Lat (in µs) CCs Lat (in µs)

Virtex-7 5102 12,339 2459 318 4942 15.54 9886 31.08 6.30
Spartan-7 5634 12,891 2463 312 4942 15.83 9886 31.68 5.60
Artix-7 5957 13,105 2461 316 4942 15.63 9886 31.28 5.36
Kintex-7 6102 13,258 2466 304 4942 16.25 9886 32.51 5.04

Lat: determines the time (or latency) to compute either one public or shared key.

The latency is the time required to execute one crypto operation (either public or shared
key generation in this work). The latency values are calculated using Equation (3). To
provide a realistic tradeoff over different FPGA devices, we have defined a figure-of-merit
(FoM) in terms of the ratio of throughput over FPGA slices. The FoM values are reported
for the shared key generation, as shown in the last column of Table 2. The throughput is
the ratio of one over latency and is calculated using Equation (4). Finally, the FoM values
are calculated using Equation (5).

Latency (in µs) =
Clock Cycles

Frequency (in MHz)
(3)

Throughput =
1

Latency (in µs)
=

106

Latency (in s)
(4)

FoM =
Throughput
FPGA slices

(5)

Table 2 shows the trend for hardware resource utilization on various 28 nm implemen-
tation technologies. Therefore, the minimum hardware resources (5102 slices, 12,339 LUTs
and 2459 FFs) are obtained for the Virtex-7 device when compared to Spartan-7, Artix-7 and
Kintex-7 devices. The utilized FPGA slices for Spartan-7, Artix-7 and Kintex-7 devices are
5634, 5957 and 6102. Similar to hardware resource utilization, the highest clock frequency
of 318 MHz is achieved on Virtex-7 FPGA. On Spartan-7 (312 MHz), Artix-7(316 MHz) and
Kintex-7(304 MHz) devices, we also acquired the closest clock frequency to our Virtex-7
implementations. When trading from Virtex-7 to Kintex-7 implementations, the minor
increase in the FPGA slices and clock frequency indicates the efficiency of our architecture.
The times to generate one public key on Virtex-7, Spartan-7, Artix-7 and Kintex-7 are
15.54 µs, 15.83 µs, 15.63 µs and 16.25 µs. On similar FPGA devices, the times to generate
one shared key are 31.08 µs, 31.68 µs, 31.28 µs and 32.51 µs.

The defined FoM determines the performance of our crypto architecture on different
28 nm implementation technologies. The higher the FoM value, the higher will be the
performance of the crypto architecture. Consequently, the highest 6.30 FoM value is
calculated for Virtex-7 FPGA. For Spartan-7, Artix-7 and Kintex-7 devices, the calculated
values for FoM are 5.60, 5.36 and 5.04.

4.2. Comparisons with State-of-the-Art

The ECPM designs of [12,17,19] support only the PM operation, without the consid-
eration of the topmost layer of ECC (protocol layer). In other words, there are very few
hardware designs that enfold the implementation of ECDH protocol on a reconfigurable
FPGA. The comparison to state-of-the-art architectures is shown in Table 3. Column one
indicates the reference to existing hardware implementations of the ECDH protocol. Col-
umn two offers the implemented ECC model in addition to the used algorithms for the
execution of either public or shared key generation. The targeted FPGA device used for the

Appl. Sci. 2022, 12, 4091 14 of 18

implementation is shown in column three. We have evaluated the FPGA slices for hardware
resource comparisons. The corresponding hardware resources are presented in column
four. The timing details (in terms of clock frequency (MHz) and latency (µs)) for generating
a single shared key are presented in the last two columns (five and six) respectively.

Table 3. Comparison to state-of-the-art architectures over 7-series FPGA devices.

Ref #. GF(2m)/Algorithm Device FPGA Slices Freq. (in MHz) Latency (in µs)

Designs for specific to Elliptic-curve Point Multiplication computation

[17] GF(2163)/Montgomery Virtex-7 11657 159 2.83
[19] GF(2163)/Montgomery Virtex-7 3657 135 25.30
[31] GF(2163)/Double and Add Kintex-7 2253 (7963 LUTs) 306 1060
[12] GF(2233)/Montgomery Virtex-7 5120 357 15.78

This work GF(2233)/Montgomery Virtex-7 5102 318 15.54
This work GF(2233)/Montgomery Kintex-7 6102 304 16.25

Designs for shared key generation

[35] GF(2233)/Montgomery Virtex-7 1809 62 4130.00
[33] ECDH + SIKEX434/– Artix-7 1663 195 6200
[32] Ed25519 + X25519/– Artix-7 3204 82 –

This work GF(2233)/Montgomery Virtex-7 5102 318 31.08
This work GF(2233)/Montgomery Artix-7 5957 316 15.63

A low-latency design is reported in [17]. In [33], the reported value of latency is for the key generation.

Comparison with [17,19,31] over GF(2163) on Virtex-7 and Kintex-7 FPGA. On Virtex-7
FPGA, our ECDH architecture takes 2.28 (ratio of 11,657 over 5102) times lower FPGA
slices as compared to the low-latency ECPM design of [17]. Moreover, our design with a
233-bit key length achieves a 2 (ratio of 318 over 159) times higher clock frequency. When
comparing the latency, the architecture of [17] is 5.49 (ratio of 15.54 over 2.83) times more
efficient as compared to our work. The reason for this efficiency is the different supported
key lengths (233 in our work while a 163 in [17]—see column two in Table 3). Another
ECPM architecture on Virtex-7 is reported in [19]. Due to distinct key lengths, their design
consumes lower FPGA slices (3657) when compared to our 233-bit design (5102). On the
contrary, our ECDH architecture achieves 2.35 (ratio of 318 over 135) times higher clock
frequency. Additionally, the ECPM design of [19] requires 2 (ratio of 25.3 over 15.54) times
higher computational time (latency) as compared to our ECDH design.

On Kintex-7 FPGA, the architecture of [31] utilizes 2.70 (ratio of 6102 over 2253) times
lower FPGA slices as compared to our Kintex-7 implementation. The cause for the use
of lower slices in [31] is the use of lower key-length (i.e., 163). An additional reason is
the use of a simple Double and Add PM algorithm which is vulnerable to simple power
analysis attacks (a type of side-channel attack) for the general Weierstrass form of elliptic
curves. On the other hand, we employed a Montgomery PM algorithm which is inherently
subjected to simple power analysis attacks even if the Weierstrass form of elliptic curves is
used. Although we utilize a higher key length (i.e., 233), our design achieves a comparable
clock frequency of 304 MHz while 306 MHz is obtained in [31] over a 163-bit key length.
Moreover, our proposed PM architecture requires lower computational time because we
used projective coordinates for the execution of PM operation whereas a simple affine
coordinate system is used in [31].

Comparison with [12] over GF(2233) on Virtex-7 FPGA. On Virtex-7 FPGA, a two-stage
pipeline design of [12] utilizes 1.09 (ratio of 5120 over 5102) times higher slices as compared
to our two-stage pipelined architecture. Similar to hardware resources, the architecture
of [12] requires higher computational time as compared to this work (given in the last
column of Table 3). On the other hand, the ECPM architecture of [12] is 1.12 (ratio of
357 over 318) times faster in terms of clock frequency as compared to our design. The

Appl. Sci. 2022, 12, 4091 15 of 18

reason is the support for all the ECC layers in our design while the protocol layer is not
considered for implementation in [12].

Comparison with ECDH design of [35] over GF(2233) on Virtex-7 FPGA. Although, our
design utilizes 2.82 (ratio of 4763 over 1809) times higher slices on Virtex-7 FPGA when
compared to the most recent ECDH architecture of [35], however, it is 5.08 (ratio of 318 over
62.5) times faster in terms of clock frequency. The latency requirement of the presented
architecture is 132.88 (ratio of 4130 over 31.08) times lower as compared to the most recent
design. Moreover, we have compared our FoM results with only the design of [35] as
this architecture is specifically described for the ECDH implementation. Therefore, the
calculated FoM values are illustrated in Figure 5. It shows that the proposed ECDH
accelerator architecture results in higher throughput. Moreover, the proposed dedicated
crypto processor architecture is 2.76 (ratio of 6.31 over 2.28) times faster in the context
of throughput

area .

Figure 5. Comparison with [35] in terms of throughput/slices on Virtex-7 FPGA.

Comparison with architecture of [33] over ECDH + SIKEX434 algorithms on Artix-7 FPGA.
Our ECDH architecture utilizes 3.58 (ratio of 5957 over 1663) times lower FPGA slices.
The reasons for the use of higher hardware resources in our work are (i) pipelining and
(ii) a bit-parallel Karatsuba multiplier for multiplying polynomial coefficients. On the
other hand, our ECDH design achieves 1.62 (ratio of 316 over 195) times higher clock
frequency as we employed two-stage pipelining to reduce the critical path of the proposed
architecture. Moreover, our design is 396.6 (ratio of 6200 over 15.63) times faster in terms of
computational time (i.e., latency). There is always a tradeoff between hardware area and
performance (in terms of clock frequency or latency).

Comparison with design of [32] over Ed25519 + X25519 curves on Artix-7 FPGA. The
proposed ECDH design is 1.85 (ratio of 5957 over 3204) times more area efficient in terms
of FPGA slices. Moreover, due to 2-stage pipelining, our ECDH architecture is 3.85 (ratio of
316 over 82) times faster in terms of operational frequency. The comparison to latency is
not possible to provide as the relevant information is not described in [32].

4.3. Significance of This Work

The implementation results reported for our proposed throughput
area architecture on differ-

ent 7-series FPGA devices reveal the suitability of this work in applications that demand
key authentication before starting communications. The typical examples include the IoTs,
health-related applications, smart cards, automotive mobile/vehicles, etc. More precisely,
the IoT nodes require key authentication prior to starting communications [7,8,10]. More-
over, in modern health care systems [1], authentication is needed to retrieve data securely on
an unsecured cloud. The V2X needs authentication to start secure communication over the
network/cloud [2]. Authentication is needed to make online payments in the case of smart
cards. The identification of a human using his/her smart ID card is another application
where authentication is essential. Based on [43,44], the aforementioned applications require

Appl. Sci. 2022, 12, 4091 16 of 18

low-power for data transmission and authentication purposes. We believe the reported
values for high throughput and low area, in this work, result in low power. Therefore, our
proposed design could be beneficial for secure communication in IoT-related applications,
where both throughput and area parameters are desired for cryptographic computations.

5. Conclusions

This paper has presented a shared key generation architecture using the ECDH proto-
col of ECC over GF(2233) with the consideration of high-speed and low-area at the same
time. A 2-stage pipelining and a Karatsuba multiplier are incorporated to achieve high
speed. The employed pipelining has reduced the critical path and improved clock fre-
quency. Similarly, the utilization of the Karatsuba multiplier has decreased clock cycles.
Towards the low-area goal, singular adder and multiplier units are included for arithmetic
operations. These operations are addition, multiplication, squaring (providing similar
inputs to the multiplier) and inversion (using the Itoh–Tsujii algorithm). This strategy
has ultimately helped us to reduce the hardware resources. Two FSM-based dedicated
controllers are employed for efficient control functionalities. The implementation results
after place-and-route are provided on Virtex-7, Spartan-7, Artix-7 and Kintex-7 FPGA
devices. Over GF(2233), the utilized FPGA slices are 5102 (Virtex-7), 5634 (Spartan-7),
5957 (Artix-7) and 6102 (Kintex-7). The computational time for one shared key generation
is 31.08 (Virtex-7), 31.68 (Spartan-7), 31.28 (Artix-7) and 32.51 (Kintex-7). The proposed
ECDH architecture outperforms others on Virtex-7 FPGA in terms of throughput

area (FPGA slices) (the
achieved value is 6.30). Moreover, it has been shown that the proposed architecture is
302.7 and 132.88 times faster in terms of latency as compared to state-of-the-art ECDH
designs of [35,38], respectively. The achieved results and performance comparison statis-
tics reveal the suitability of the proposed architecture in high-speed with low-area key
agreement applications.

Author Contributions: Conceptualization, M.R. and A.A.; data extraction, S.Z.K. and Z.M.; results
compilation, M.R. and S.Z.K.; validation, M.R. and Z.M.; writing—original draft preparation, S.Z.K.
and H.K.; critical review, M.R. and I.B.; draft optimization, S.Z.K. and H.K.; supervision, M.R.; funding
acquisition, A.A. All authors have read and agreed to the published version of the manuscript.

Funding: We are thankful for the support of the Deanship of Scientific Research at King Khalid
University, Abha, Saudi Arabia for funding this work under grant number R.G.P.2/132/42.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ding, D.; Conti, M.; Solanas, A. A smart health application and its related privacy issues. In Proceedings of the 2016 Smart City

Security and Privacy Workshop (SCSP-W), Vienna, Austria, 11 April 2016; pp. 1–5. [CrossRef]
2. Kornaros, G.; Tomoutzoglou, O.; Mbakoyiannis, D.; Karadimitriou, N.; Coppola, M.; Montanari, E.; Deligiannis, I.; Gherardi, G.

Towards holistic secure networking in connected vehicles through securing CAN-bus communication and firmware-over-the-air
updating. J. Syst. Archit. 2020, 109, 101761. [CrossRef]

3. Mun, H.; Han, K.; Lee, D.H. Ensuring Safety and Security in CAN-Based Automotive Embedded Systems: A Combination of
Design Optimization and Secure Communication. IEEE Trans. Veh. Technol. 2020, 69, 7078–7091. [CrossRef]

4. Xie, G.; Li, R.; Hu, S. Security-Aware Obfuscated Priority Assignment for CAN FD Messages in Real-Time Parallel Automotive
Applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4413–4425. [CrossRef]

5. Chandramouli, R.; Lee, P. Infrastructure Standards for Smart ID Card Deployment. IEEE Secur. Priv. 2007, 5, 92–96. [CrossRef]
6. Premila Bai, T.D.; Raj, K.M.; Rabara, S.A. Elliptic Curve Cryptography Based Security Framework for Internet of Things (IoT)

Enabled Smart Card. In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT),
Tiruchirappalli, India, 2–4 February 2017; pp. 43–46. [CrossRef]

7. Vinoth, R.; Deborah, L.J.; Vijayakumar, P.; Kumar, N. Secure Multifactor Authenticated Key Agreement Scheme for Industrial IoT.
IEEE Internet Things J. 2021, 8, 3801–3811. [CrossRef]

http://doi.org/10.1109/SCSPW.2016.7509558
http://dx.doi.org/10.1016/j.sysarc.2020.101761
http://dx.doi.org/10.1109/TVT.2020.2989808
http://dx.doi.org/10.1109/TCAD.2020.2979457
http://dx.doi.org/10.1109/MSP.2007.34
http://dx.doi.org/10.1109/WCCCT.2016.20
http://dx.doi.org/10.1109/JIOT.2020.3024703

Appl. Sci. 2022, 12, 4091 17 of 18

8. Srinivas, J.; Das, A.K.; Wazid, M.; Kumar, N. Anonymous Lightweight Chaotic Map-Based Authenticated Key Agreement Protocol for
Industrial Internet of Things. IEEE Trans. Dependable Secur. Comput. 2020, 17, 1133–1146. [CrossRef]

9. Sahu, A.K.; Sharma, S.; Puthal, D. Lightweight Multi-Party Authentication and Key Agreement Protocol in IoT-Based E-Healthcare
Service. ACM Trans. Multimedia Comput. Commun. Appl. 2021, 17, 64. [CrossRef]

10. Rahman, M.S.; Hossam-E-Haider, M. Quantum IoT: A Quantum Approach in IoT Security Maintenance. In Proceedings
of the 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh,
10–12 January 2019; pp. 269–272. [CrossRef]

11. Rashid, M.; Imran, M.; Jafri, A.R.; Al-Somani, T.F. Flexible Architectures for Cryptographic Algorithms—A Systematic Literature
Review. J. Circuits Syst. Comput. 2019, 28, 1930003. [CrossRef]

12. Imran, M.; Rashid, M.; Jafri, A.R.; Kashif, M. Throughput/area optimised pipelined architecture for elliptic curve crypto processor.
IET Comput. Digit. Tech. 2019, 13, 361–368. [CrossRef]

13. Bansal, M.; Gupta, S.; Mathur, S. Comparison of ECC and RSA Algorithm with DNA Encoding for IoT Security. In Proceedings of
the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021;
pp. 1340–1343. [CrossRef]

14. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer: New York, NY, USA, 2004; pp. 1–311.
Available online: https://link.springer.com/book/10.1007/b97644 (accessed on 13 August 2021).

15. Liusvaara, I. CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and Encryption (JOSE).
RFC 8037. 2017. Available online: https://www.rfc-editor.org/info/rfc8037 (accessed on 7 January 2022).

16. Rashidi, B. Low-Cost and Fast Hardware Implementations of Point Multiplication on Binary Edwards Curves. In Proceedings of
the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 17–22. [CrossRef]

17. Khan, Z.U.A.; Benaissa, M. High-Speed and Low-Latency ECC Processor Implementation Over GF(2m) on FPGA. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2017, 25, 165–176. [CrossRef]

18. Khan, Z.U.A.; Benaissa, M. Low area ECC implementation on FPGA. In Proceedings of the 2013 IEEE 20th International
Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, United Arab Emirates, 8–11 December 2013; pp. 581–584.
[CrossRef]

19. Imran, M.; Rashid, M.; Shafi, I. Lopez Dahab based elliptic crypto processor (ECP) over GF(2163) for low-area applications on
FPGA. In Proceedings of the 2018 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan,
22–23 February 2018; pp. 1–6. [CrossRef]

20. Batina, L.; Mentens, N.; Ors, S.; Preneel, B. Serial multiplier architectures over GF(2/sup n/) for elliptic curve cryptosystems.
In Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521), Dubrovnik, Croatia,
12–15 May 2004; Volume 2, pp. 779–782. [CrossRef]

21. Kodali, R.K.; Gomatam, P.; Boppana, L. FPGA implementation of multipliers for ECC. In Proceedings of the 2014 2nd International
Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat, India, 26–27 December 2014;
pp. 1–5. [CrossRef]

22. Imran, M.; Abideen, Z.U.; Pagliarini, S. An Open-source Library of Large Integer Polynomial Multipliers. In Proceedings of
the 2021 24th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Vienna, Austria,
7–9 April 2021; pp. 145–150. [CrossRef]

23. Heidarpur, M.; Mirhassani, M. An Efficient and High-Speed Overlap-Free Karatsuba-Based Finite-Field Multiplier for FGPA
Implementation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 667–676. [CrossRef]

24. Lee, C.Y.; Zeghid, M.; Sghaier, A.; Ahmed, H.Y.; Xie, J. Efficient Hardware Implementation of Large Field-Size Elliptic Curve
Cryptographic Processor. IEEE Access 2022, 10, 7926–7936. [CrossRef]

25. Imran, M.; Rashid, M. Architectural review of polynomial bases finite field multipliers over GF(2m). In Proceedings of the 2017
International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017;
pp. 331–336. [CrossRef]

26. Gaudry, P. Index Calculus for Abelian Varieties and the Elliptic Curve Discrete Logarithm Problem. Cryptology ePrint Archive,
Report 2004/073. 2004. Available online: https://ia.cr/2004/073 (accessed on 4 January 2022).

27. Petit, C.; Quisquater, J.J. On Polynomial Systems Arising from a Weil Descent. Cryptology ePrint Archive, Report 2012/146. 2012.
Available online: https://ia.cr/2012/146 (accessed on 19 January 2022).

28. Chen, L.; Moody, D.; Regenscheid, A. Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain
Parameters. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf (accessed on
4 April 2022).

29. Raso, O.; Mlynek, P.; Fujdiak, R.; Pospichal, L.; Kubicek, P. Implementation of Elliptic Curve Diffie Hellman in ultra-low power
microcontroller. In Proceedings of the 2015 38th International Conference on Telecommunications and Signal Processing (TSP),
Prague, Czech Republic, 9–11 July 2015; pp. 662–666. [CrossRef]

30. Fujdiak, R.; Misurec, J.; Mlynek, P.; Leonard, J. Cryptograph key distribution with elliptic curve Diffie-Hellman algorithm in
low-power devices for power grids. Rev. Roum. Sci. Tech. 2016, 61, 84–88.

31. Hossain, M.S.; Saeedi, E.; Kong, Y. High-performance FPGA Implementation of Elliptic Curve Cryptography Processor over
Binary Field GF(2163). In Proceedings of the 2nd International Conference on Information Systems Security and Privacy
(ICISSP 2016), Rome, Italy, 19–21 February 2016; pp. 415–422. [CrossRef]

http://dx.doi.org/10.1109/TDSC.2018.2857811
http://dx.doi.org/10.1145/3398039
http://dx.doi.org/10.1109/ICREST.2019.8644342
http://dx.doi.org/10.1142/S0218126619300034
http://dx.doi.org/10.1049/iet-cdt.2018.5056
http://dx.doi.org/10.1109/ICICT50816.2021.9358591
https://link.springer.com/book/10.1007/b97644
https://www.rfc-editor.org/info/rfc8037
http://dx.doi.org/10.1109/ICEE.2018.8472703
http://dx.doi.org/10.1109/TVLSI.2016.2574620
http://dx.doi.org/10.1109/ICECS.2013.6815481
http://dx.doi.org/10.1109/ICEET1.2018.8338645
http://dx.doi.org/10.1109/MELCON.2004.1347047
http://dx.doi.org/10.1109/ET2ECN.2014.7044939
http://dx.doi.org/10.1109/DDECS52668.2021.9417065
http://dx.doi.org/10.1109/TVLSI.2021.3058509
http://dx.doi.org/10.1109/ACCESS.2022.3141104
http://dx.doi.org/10.1109/C-CODE.2017.7918952
https://ia.cr/2004/073
https://ia.cr/2012/146
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
http://dx.doi.org/10.1109/TSP.2015.7296346
http://dx.doi.org/10.5220/0005741604150422

Appl. Sci. 2022, 12, 4091 18 of 18

32. Turan, F.; Verbauwhede, I. Compact and Flexible FPGA Implementation of Ed25519 and X25519. ACM Trans. Embed. Comput.
Syst. 2019, 18, 24. [CrossRef]

33. Azarderakhsh, R.; Khatib, R.E.; Koziel, B.; Langenberg, B. Hardware Deployment of Hybrid PQC. Cryptology ePrint Archive,
Report 2021/541. 2021. Available online: https://ia.cr/2021/541 (accessed on 24 December 2021).

34. Ionita, D.M.; Simion, E. FPGA Offloading for Diffie-Hellman Key Exchange Using Elliptic Curves. Cryptology ePrint Archive,
Report 2021/065. 2021. Available online: https://ia.cr/2021/065 (accessed on 26 December 2021).

35. Ahmad, I.; Morales-Sandoval, M.; Flores, L.A.R.; Cumplido, R.; Garcia-Hernandez, J.J.; Feregrino, C.; Algredo, I. A Compact
FPGA-Based Accelerator for Curve-Based Cryptography in Wireless Sensor Networks. J. Sens. 2021, 2021. [CrossRef]

36. Yang, P.; Xiong, N.; Ren, J. Data Security and Privacy Protection for Cloud Storage: A Survey. IEEE Access 2020, 8, 131723–131740.
[CrossRef]

37. Rawal, B.S.; Vivek, S.S. Secure Cloud Storage and File Sharing. In Proceedings of the 2017 IEEE International Conference on
Smart Cloud (SmartCloud), New York, NY, USA, 3–5 November 2017; pp. 78–83. [CrossRef]

38. Fournaris, A.P.; Zafeirakis, I.; Koulamas, C.; Sklavos, N.; Koufopavlou, O. Designing efficient elliptic Curve Diffie-Hellman
accelerators for embedded systems. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS),
Lisbon, Portugal, 24–27 May 2015; pp. 2025–2028. [CrossRef]

39. NIST. Recommended Elliptic Curves for Federal Government Use. 1999. Available online: https://csrc.nist.gov/csrc/media/
publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf (accessed on 19 September 2021).

40. Zode, P.; Deshmukh, R.B.; Samad, A. Fast Architecture of Modular Inversion Using Itoh-Tsujii Algorithm. In International Sympo-
sium on VLSI Design and Test; Kaushik, B.K., Dasgupta, S., Singh, V., Eds.; Springer: Singapore, 2017; pp. 48–55. Available online:
https://www.springerprofessional.de/fast-architecture-of-modular-inversion-using-itoh-tsujii-algorit/15326436 (accessed on
11 December 2021).

41. Wilson, P. Chapter 22—Finite State Machines in VHDL and Verilog. In Design Recipes for FPGAs, 2nd ed.; Wilson, P., Ed.; Newnes:
Oxford, UK, 2016; pp. 305–309. [CrossRef]

42. XILINX. 7 Series FPGAs Data Sheet: Overview. Available online: https://www.mouser.ee/pdfDocs/Virtex-7-ds180_7Series_
Overview.pdf (accessed on 17 October 2021).

43. Khan, S.Z.; Le Moullec, Y.; Alam, M.M. An NB-IoT-Based Edge-of-Things Framework for Energy-Efficient Image Transfer. Sensors
2021, 21, 5929. [CrossRef] [PubMed]

44. Khan, S.M.Z.; Alam, M.M.; Le Moullec, Y.; Kuusik, A.; Pärand, S.; Verikoukis, C. An Empirical Modeling for the Baseline Energy
Consumption of an NB-IoT Radio Transceiver. IEEE Internet Things J. 2021, 8, 14756–14772. [CrossRef]

http://dx.doi.org/10.1145/3312742
https://ia.cr/2021/541
https://ia.cr/2021/065
http://dx.doi.org/10.1155/2021/8860413
http://dx.doi.org/10.1109/ACCESS.2020.3009876
http://dx.doi.org/10.1109/SmartCloud.2017.19
http://dx.doi.org/10.1109/ISCAS.2015.7169074
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://www.springerprofessional.de/fast-architecture-of-modular-inversion-using-itoh-tsujii-algorit/15326436
http://dx.doi.org/10.1016/B978-0-08-097129-2.00022-2
https://www.mouser.ee/pdfDocs/Virtex-7-ds180_7Series_Overview.pdf
https://www.mouser.ee/pdfDocs/Virtex-7-ds180_7Series_Overview.pdf
http://dx.doi.org/10.3390/s21175929
http://www.ncbi.nlm.nih.gov/pubmed/34502818
http://dx.doi.org/10.1109/JIOT.2021.3072769

	Introduction
	Related Work
	Need for a High-Speed and Low-Area Key-Exchange Design
	Contributions
	Novelty
	Outcomes and Significance

	Related Mathematical Background
	Proposed ECDH Architecture
	Routing Networks (RoutingNetwork1 and RoutingNetwork2)
	Memory Block
	Arithmetic and Logic Unit (ALU)
	Pipeline Registers and Scheduling
	Dedicated FSM Controllers
	Controller-1
	Controller-2

	Results and Comparisons
	Results
	Comparisons with State-of-the-Art
	Significance of This Work

	Conclusions
	References

