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Abstract: Sleep apnea (SA) is a common sleep disorder which could impair the human physiological
system. Therefore, early diagnosis of SA is of great interest. The traditional method of diagnosing SA
is an overnight polysomnography (PSG) evaluation. When PSG has limited availability, automatic
SA screening with a fewer number of signals should be considered. The primary purpose of this
study is to develop and evaluate a SA detection model based on electrocardiogram (ECG) and blood
oxygen saturation (SpO2). We adopted a multimodal approach to fuse ECG and SpO2 signals at the
feature level. Then, feature selection was conducted using the recursive feature elimination with
cross-validation (RFECV) algorithm and random forest (RF) classifier used to discriminate between
apnea and normal events. Experiments were conducted on the Apnea-ECG database. The introduced
algorithm obtained an accuracy of 97.5%, a sensitivity of 95.9%, a specificity of 98.4% and an AUC of
0.992 in per-segment classification, and outperformed previous works. The results showed that ECG
and SpO2 are complementary in detecting SA, and that the combination of ECG and SpO2 enhances
the ability to diagnose SA. Therefore, the proposed method has the potential to be an alternative to
conventional detection methods.

Keywords: sleep apnea; electrocardiogram; pulse oximetry; random forest; multimodal

1. Introduction

Sleep apnea (SA) is a common sleep disorder, also commonly known as obstructive
sleep apnea (OSA) [1]. OSA occurs due to the abnormal function of the upper respiratory
tract. When the hard palate muscles at the back of the throat that support the soft palate
relax, the soft palate blocks the passage of air into the respiratory system. The clinical
manifestation of SA is a cessation of nasal airflow or a decrease in airflow intensity by more
than 30% compared to the base level, but the corresponding breathing movements are
maintained [2]. At the same time, oxygen saturation decreases by more than 4% for more
than 10 s. The prevalence of OSA in adults ranges from 9% to 38% and increases with age [3].
Low quality sleep accompanied by apnea usually leads directly to poor concentration,
memory loss, slow response, and depression [4]. In addition, OSA is a potential threat to
many physiological systems of the human body, especially the cardiovascular system. It
can induce hypertension, heart failure, coronary artery disease, diabetes, and other diseases,
which seriously threaten the health of patients [5]. If patients are identified and then treated
at an early stage of OSA, the health risks can be reduced. Therefore, timely diagnosis of
patients with OSA is essential.

Clinically, polysomnography (PSG) is the reference standard for the diagnosis of SA.
PSG is effective in monitoring sleep conditions by collecting various physiological signals
such as electrocardiogram (ECG), electroencephalogram (EEG), electromyogram (EMG),
blood oxygen saturation (SpO2), airflow signals, respiratory effort, etc. [6]. However,
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wearing too many sensors during physiological signal collection can cause discomfort to
the patient. In addition, the diagnosis of OSA requires sleep specialists to spend a lot of
time manually analyzing PSG data [7]. Therefore, automatic detection of SA using fewer
signals is necessary.

Researchers have typically developed SA detection algorithms using ECG signals.
ECG is a non-invasive technique for recording the electrical activity of heart and the
physiological activity of heart is regulated under the autonomic nervous system (ANS).
Studies have shown that hypoxia caused by SA can lead to the dysregulation of the ANS.
Clinically, heart rate variability (HRV) is an important indicator of the outcome of ANS
regulation [8]. Therefore, it is feasible to screen for apnea by monitoring ECG during
sleep [9]. Yet, ECG signals are easily influenced by cardiovascular disease status. This
makes the diagnosis of SA more challenging. Apart from ECG signals, SpO2 signals are also
widely used to detect SA as the lack of airflow due to SA events can lead to a decrease in
SpO2. Repetitive oxygen desaturation is highly specific for apnea. However, the sensitivity
of oximetry is usually low, as not all apnea events lead to discernible desaturations [7].
Thus, SpO2 alone or ECG alone can be used as a potential diagnostic means of SA, but not
as a reliable means.

With technological advances in sensors and low-power embedded systems, the collec-
tion of physiological signals has become easier and more economical [10]. Therefore, we
consider using multiple signals to develop a more reliable detection algorithm of SA, rather
than being limited to a single signal.

This study explores the efficiency and reliability of a multimodal approach to the
automated detection of SA events using a combined channel of ECG and SpO2. To this
end, we extracted features from ECG signal and SpO2 signal separately, and then fused
the features of the two different modalities. Feature selection was performed using the
recursive feature elimination with cross-validation (RFECV) algorithm. Then, the selected
features were fed to the RF classifier to identify sleep apnea events.

Our study provides three main contributions to research. First, we verify the comple-
mentarity of ECG and SpO2 signals to automatically detect SA. When the two signals are
combined, the diagnostic ability is increased. Second, the RFECV algorithm is employed to
select the most important features. The proposed SA detection technique uses a smaller
number of features and is computationally inexpensive compared to most of the existing
methods. Third, we enrich the method in the field of the automated detection of SA by
applying a multimodal approach to fuse ECG and SpO2 signals at the feature level. So far,
most of the extant literature primarily used SpO2 alone or ECG alone, but did not consider
the combination of ECG and SpO2.

The rest of this paper is organized as follows. The related works of SA detection
are explored in Section 2. The explanation of the dataset, preprocessing steps, and the
introduced SA detection technique is presented in Section 3. The Results and Discussions
are presented in Sections 4 and 5, respectively. Finally, Section 6 concludes the paper.

2. Related Works

Over past studies, various physiological signals (e.g., ECG, EEG, SpO2, snoring or
airflow) have been used to develop SA detection algorithms [11], the most widely used of
which are ECG signal and SpO2 signal.

For ECG signal-based methods, the shallow characteristic signals of the ECG are
usually analyzed in the time domain, frequency domain or nonlinear domain. The time
intervals between successive heartbeats are sequentially combined to form the RR inter-
val signal [12]. HRV analysis refers to the analysis of changes in the RR interval signal.
Nakayama et al. [9] proposed a method for detecting sleep apnea based on HRV analysis.
Their method was successfully applied to clinical PSG data and the performance was
comparable to portable monitoring devices in sleep laboratories. ECG-derived respiratory
(EDR) signals reflecting respiratory activity can be used as complementary information to
HRV [13]. Khandoker et al. [14] analyzed the EDR signal and RR interval with wavelet
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transform and used SVM classifier to identify OSA patients. In their work, more than 90%
of subjects in the test set were correctly classified. Further, Bsoul et al. [15] extracted a com-
plete feature set containing 111 features from RR and EDR time series using time-frequency
analysis methods. Sharma et al. [16] developed a SA detection model using Hermite basis
functions. Sharma mainly considered the morphological changes occurring in the QRS
wave complex of the ECG.

The occurrence of apnea is usually accompanied by a decrease in oxygen saturation,
hence the SpO2 signal has been used in several studies. Some of these studies employed
statistical methods to quantify the variation in oxygen saturation over time. For example,
Ulysses et al. [17] used time spent below a certain level saturation (TSA), the saturation
variability index and other indicators to evaluate AHI, and compared the diagnostic
performance of SA under different metrics. The oxygen desaturation index (ODI) is defined
as the number of oxyhemoglobin desaturation below a certain threshold [18]. Ling et al. [19]
found that the use of ODI improved the accuracy of moderate and severe OSA detection.
However, the ODI index is more suitable for prolonged SpO2 signals. In addition, some
studies have explored nonlinear parameters. Alvarez et al. [20] used central tendency
measure (CTM) and Lempel–Ziv (LZ) complexity to identify OSA and showed that the
sensitivity obtained using CTM and LZ complexity, respectively, was 90.1% and 86.5%.
Hornero et al. [21] performed a time series analysis of the SpO2 signal by approximate
entropy and obtained a sensitivity of 82.09% and a specificity of 86.96% on training set.

To conclude our brief review of SA detection algorithms, we have found that screening
for SA using either ECG or SpO2 signals is effective, but the majority of the previous
studies focused only on a single data modality. However, several machine learning tasks in
other fields (e.g., medical image analysis, sentiment recognition, etc.) have demonstrated
that fusing information from multiple data modalities can enhance the robustness of a
model [22]. Therefore, our proposed multimodal approach for the detection of SA is
more advanced.

3. Materials and Methods
3.1. Proposed Framework

This section is composed of six subsections. First, the Apnea-ECG dataset and the
preprocessing step are described. In this step, the number of signals used, sampling
frequency, denoising method, data segmentation, and the derivation of the RR interval and
R-wave amplitude (RAMP) signals from the ECG segments are explained. Afterward, linear
and nonlinear analysis methods are applied to extract features and fuse three different
feature sets using an early fusion strategy. Then, the optimal features are selected from the
fused feature vector. Finally, these features are used as input to the four different types of
classifiers for discriminating normal and apnea events. The flow diagram of the proposed
technique is illustrated in Figure 1.
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3.2. Dataset

In this study, the Apnea-ECG database provided by Dr. Tomas Penzel of Phillips
University is used in our proposed method. The data set consists of 70 records, which are
divided into a learning set of 35 records and a test set of 35 records. These records ranged
from 7 to 10 h, and contained the ECG signals. Eight of the records (a01~a04, b01, c01~c03)
contained four additional signals (Resp C and Resp A, the chest and abdominal respiratory
effort signals; Resp N, nasal airflow; SpO2). All signals were digitized at 100 Hz with 16-bit
resolution. Each record was labelled minute by minute by the sleep specialist as normal (N)
or apnea (A) [23]. An example of 1-min apnea and normal segments are demonstrated in
Figure 2.
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In order to satisfy the data conditions of this study, eight records (a01~b04, b01,
c01~c03) containing ECG and SpO2 signals were selected from the above data set as
experimental data.

3.3. Preprocessing

For the noise in the ECG signal such as baseline drift and power frequency interference,
we have used FIR bandpass filter with passband of 3~50 Hz to denoise the original ECG
signal [2]. Then, the entire ECG signal was segmented into 1-min segments by referring
to the annotations in the database. Based on the per-minute ECG segment, we used the
Hamilton algorithm to locate the R peaks, and corrected the position of the R peaks to the
maximum value, so as to ensure the accuracy of the R peaks detection. The RR interval
signal was obtained by the interval between successive R peaks, and the RR interval outliers
were removed with reference to the method of [24]. The RAMP signal was obtained by
the amplitude of R wave. In particular, one of the simplest approaches to obtain an EDR
(ECG-derived respiration) signal is by interpolating the RAMP signal [14], so the RAMP
signal is also called the EDR signal.

SpO2 and ECG recordings were collected simultaneously. Similarly, the entire SpO2
signal was split into 1-min segments, and segments that violated its physiological signifi-
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cance (SpO2 values less than 50%) were removed [25]. Then, the RR interval signal, RAMP
signal and SpO2 signal were used for subsequent feature extraction.

3.4. Feature Extraction and Fusion

In this study, linear (time domain and frequency domain) analysis and nonlinear
analysis methods were used to extract features. We obtained three sets of features from
ECG and SpO2 signals, which were RR intervals features, R-wave amplitudes features, and
SpO2 features. The details of these features and fusion strategy are described below.

3.4.1. RR Intervals Features

Linear analysis of HRV is widely used in clinical studies due to its theoretical maturity.
We calculated RRmean, RMSSD, SDNN, NN50, pNN50, HR from the time domain, while
the VLF 1, LF 1, HF 1, LF/HF 1, LFnorm 1, HFnorm 1 were extracted from the frequency
domain. The detailed descriptions of these 12 features are shown in Table 1. In the process
of frequency domain analysis, by following [26], we applied cubic spline interpolation
to resample the RR interval signal to 4 Hz. Then, the power spectral density (PSD) was
estimated using the FFT-Welch (s, n = 256) method.

Table 1. RR intervals features and R-wave Amplitudes feature.

Derived from
Feature Description

RR RAMP

× RRmean Mean of RR intervals

× RMSSD Root mean square of differences between adjacent
RR intervals

× SDNN Standard deviation of RR intervals

× NN50 Number of adjacent RR intervals exceeding
50 milliseconds

× pNN50 Ratio of NN50 to the number of RR intervals
× HR Mean of heart rates

× × VLF 1, VLF 2 Very low frequency (0~0.04 Hz) component of the
corresponding signal

× × LF 1, LF 2 Low frequency (0.04~0.15 Hz) component of the
corresponding signal

× × HF 1, HF 2 High frequency (0.15~0.4 Hz) component of the
corresponding signal

× × LF/HF 1, LF/HF 2 Ratio of LF to HF
× × LFnorm 1, LFnorm 2 Normalized low frequency components
× × HFnorm 1, HFnorm 2 Normalized high frequency components

1, 2 represent the frequency domain features of the RR interval and RAMP, respectively.

3.4.2. R-Wave Amplitudes Features

It has been shown that the PSD of the RAMP signal has similar characteristics to the
RR intervals and can serve as complementary information to HRV [15]. Therefore, we also
extracted the above six frequency domain features (VLF 2, LF 2, HF 2, LF/HF 2, LFnorm 2,
HFnorm 2) based on the RAMP signal using the frequency domain analysis method of HRV.
The detailed descriptions of these six features are shown in Table 1.

3.4.3. SpO2 Features

Six features were calculated from the SpO2 signal. These features are listed in Table 2.
Based on statistical methods, Smin, Smean, and Svar were calculated from SpO2 segments.
Three commonly used nonlinear features (ApEn, CTM, and LZC) were also added to the
SpO2 feature set.
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Table 2. SpO2 features and their descriptions.

Feature Description

Smin Minimum value of 1-min SpO2 segments
Smean Mean value of 1-min SpO2 segments
Svar Variance of 1-min SpO2 segments

ApEn Approximate entropy with Tolerence of 0.25 and Enbedding Dimension of 2
LZC Lempel–Ziv complexity
CTM Central tendency measure with radius 0.25

Specifically, ApEn and LZC are suitable for small sample data and can reflect the
complexity and chaos degree of the signal [27]. The optimal parameters for calculating
ApEn were a tolerance of 0.25 and an embedding dimension of 2, while LZC is a non-
parametric measurement. In addition, CTM calculates the ratio of the number of points
falling into the center in the origin region with radius R to the total number of points
through the second-order difference graph [20].

After feature extraction, in order to eliminate the distribution differences between
various types of features and speed up the convergence of the model, we normalized the
features with the following equation:

x∗ = x − x̃
σ , (1)

where x is the unnormalized feature, x̃ represents the mean of the feature, σ is the standard
deviation of the feature, and x∗ is the normalized feature.

3.4.4. Feature Fusion

In the field of machine learning, multimodal fusion is a technique that integrates
information from multiple modalities, including early, later, and hybrid fusion. Among
them, early fusion, also known as feature-based multimodal fusion, refers to the connection
of features from different modalities before model training [28].

In this study, the ECG and SpO2 signals collected by different sensors can be considered
as two modalities. In order to combine the information from different modalities, we fused
the above three feature sets using an early fusion strategy with the following steps: let In
be the feature vector of RR intervals, let Rn be the feature vector of RAMP, and let Sn be the
feature vector of SpO2; then, the concatenation of these three representations In, Rn, and Sn
produced a feature vector of which the dimension is 24.

3.5. Feature Selection

In machine learning tasks, it is important to eliminate irrelevant or redundant features
to improve the accuracy and reduce the complexity of the model. Therefore, we chose
the RFECV algorithm to search for the optimal feature subset [29], where the estimator
parameter was set as RF classifier. The procedure of the RFECV method is illustrated
in Figure 3. Firstly, a RF classifier on the feature set to be filtered is trained. Then, the
importance of each feature is calculated and the classification accuracy of that feature set is
obtained using a cross-validation method. Lastly, the unimportant or irrelevant features are
removed from the current feature set and the RF classifier is retrained using the updated
feature set. This is an iterative process until the feature set is empty.

At the end, the p-value of the selected feature set was calculated using the Kruskal–
Wallis one-way ANOVA (KW-ANOVA) test. KW-ANOVA is a non-parametric test for
estimating the difference between two or more types of correlated data without assuming
any particular data distribution [30].

3.6. Classfier

The appropriate classifier can lead to better diagnostic performance. Therefore, four
different types of classifiers were pre-selected for experimentation in order to select the
most suitable classifier for this study. Random forest (RF) belongs to ensemble learning,



Appl. Sci. 2022, 12, 4218 7 of 14

k-nearest neighbor (KNN) is representative of lazy learning, logistic regression (LR) is a
regression model that enables classification, and the support vector machine (SVM) is a
functional model. A brief description of these four classifiers is presented below.
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3.6.1. Random Forest

RF is an ensemble learning model consisting of a set of decision tree classifiers
{ fk(x, θk)|k = 1, 2, · · · , n} [31], and the specific implementation process is to use a ran-
domized with put-back approach (Bootstrap method) to extract the training set θk from
the original sample set θ; then to use the sampled training set θk to train the decision tree
fk(x, θk). When a new sample x is input to the random forest, all decision trees f (x) classify
the new sample separately, and finally determine by voting the classification results:

Y = F(x) = argmax
n
∑

k=1
I( fk(x) = y), (2)

where Y is the final result of the classification, F(x) is the classification model, fk(x) is a
single decision tree classifier, y is the result of a single decision tree classification, and I(◦) is
the characteristic function.

RF has the advantages of high prediction accuracy, fast training speed, strong resistance
to noise and outliers, and generates training sets by random sampling to reduce overfitting
and improve generalization ability.

3.6.2. K-Nearest Neighbor

KNN is a popular supervised learning algorithm. KNN is implemented by finding
the k closest training samples in the training set based on a certain distance measure, and
then predicting based on the information of these k samples (where k is a positive integer).
Usually, a voting method is used in classification tasks, where the most frequent category
marker among these k samples is selected as the prediction result.
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3.6.3. Support Vector Machine

SVM is a classification algorithm. In binary classification tasks, SVM creates a separa-
tion hyperplane between two classes (yi ∈ {−1, 1}) of samples where xi is support vectors,
{xi, yi} is training data, and i = 1, 2, · · · , n with xi ∈ Rn. If x is the new feature vector,
the result given by SVM is:

f (x) = sign
(

n
∑

i=1
αiyiK(xi, x) + b

)
, (3)

where b is the threshold, αi are the Lagrangian coefficients which are calculated solving the
dual Lagrangian form minimize:

ζ(α) = −
l

∑
i=1

αi +
1
2

l
∑

i,j=1
αiαjyiyjK

(
xi, xj

)
subject to


0 ≤ αi ≤ C

l
∑

i=1
αiyi

, (4)

where C is the regularization parameter, that determines the trade-off between the maxi-
mum margin and the minimum classification error, and K(◦) is the kernel function.

3.6.4. Logistic Regression

LR allows estimation of the posterior probability of the occurrence of a certain event.
In real cases, the dependent variable consists of positive class and negative class, while the
predictors are input features. Therefore, LR allows us to estimate the posterior probability
of the output, regardless of making any a priori assumption about the statistical nature of
the data. The expression of LR is as follows [32]:

f (x) = 1
1+ea0+a1x1+a2x2+···+ak xk

, (5)

where f (x) is the posterior probability of the output, a0 is the compensation parameter,
ai (i = 1, · · · , k) is the correlation coefficient, and k is the number of input features. LR
estimates a0 and ai by the maximum likelihood optimization method.

3.7. Performance Evaluation

In this study, accuracy, sensitivity, and specificity as defined in Equations (6)–(8) were
used to evaluate the proposed model [33]. Here, accuracy describes the total number of
SA segments and normal segments that were correctly identified among all of the samples,
sensitivity reflects the number of correctly identified SA among all SA segments, and
specificity reflects the number of correctly identified normal among all normal segments.
In addition, the area under the receiver operating characteristic curve (AUC) is also the
evaluation index of this model:

Accuracy = TP + TN
TP + TN + FP + FN (6)

Sensitivity = TP
TP + FN (7)

Specificity = TN
TN + FP (8)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives,
and false negatives.

4. Results

After the preprocessing step, the published set consisted of 3903 1-min samples, of
which 2308 were normal samples and 1595 were sleep apnea samples. Three sets of features
extracted from each sample were fused and fed into a classifier for sleep apnea detection
after feature selection. During the experiment, the dataset was divided into a training set
(80%) and a test set (20%) by a stratified sampling method. On the training set, five-fold
cross validation was used to select optimal features, optimize classifier parameters, and
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model training. Accuracy, sensitivity, specificity, and AUC were used on the test set to
evaluate the model performance.

The experimental environment is based on the Windows 10 operating system, the
software used to develop the algorithm is python 3.6, and the hardware configuration is
Xeon E5-2640v4 CPU, Nvidia GeForce RTX2080Ti GPU, and 32GB RAM.

4.1. Feature Selection and KW-ANOVA Test

As mentioned before, the optimal subset of features was selected using the RFECV
algorithm and the features were statistically analyzed by the KW-ANOVA test. The optimal
subset of features reduces the complexity of the model while maintaining the classification
accuracy. The relationship between the number of selected features and the classification
accuracy is illustrated in Figure 4. In Figure 4, the cross-validation score fluctuates as the
number of features decreases, which is caused by the change in the data distribution during
the five-fold cross validation process. From Figure 4, the highest accuracy is obtained by
selecting 13 features. The selected features are as follows: RMSSD, pNN50, HR, VLF 1, HF 1,
LFnorm 1, and HFnorm 1 in the ECG feature set; Smin, Smean, Svar, ApEn, LZC, and CTM in
the SpO2 feature set. The number corresponding to each feature is presented in Table 3.
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The results of the KW-ANOVA test shows that for all the 13 selected features, p << 0.01,
which means that the selected features are statistically significantly different in discrimi-
nating between normal and SA classes. Furthermore, Figure 5 exhibits the box plots of the
selected features, to verify that these features have significant differences.

4.2. Using Conbined ECG and SpO2 Feature Set

The classification results of per-minute segment are shown in Table 4. According to
Table 4, the proposed method provided an accuracy of 97.5%, sensitivity of 95.9%, specificity
of 98.4%, and AUC of 99.2% using RF classifier. In addition, we used some other classical
classifiers (including SVM, KNN, and LR) to compare with the RF classifier. Although
these classifiers also achieved satisfactory results, the RF classifier still had the highest
accuracy of 97.5%. Furthermore, sensitivity, specificity, and AUC using the RF classifier
were also higher than the other classifiers. The ROC curves of the four classifiers are plotted



Appl. Sci. 2022, 12, 4218 10 of 14

in Figure 6. Thus, in this study, the RF classifier is more suitable for SA detection than the
other machine learning algorithms mentioned above.

Table 3. Feature number corresponding to the feature name.

Feature Number Feature Name

2 RMSSD
5 pNN50
6 HR
7 VLF 1

9 HF 1

11 LFnorm 1

12 HFnorm 1

19 Smin
20 Smean
21 Svar
22 ApEn
23 LZC
24 CTM

1 Represent the frequency domain features of the RR interval.
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Table 4. Per-segment classification results of different classifiers on the Apnea-ECG database.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC

SVM 96.1% 93.4% 97.8% 0.956
LR 97.4% 95.5% 98.2% 0.971

KNN 93.8% 89.3% 96.7% 0.940
RF 97.5% 95.9% 98.4% 0.992
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4.3. Using either ECG or SpO2 Feature Set

To compare the SA detection performance of different signals, the ECG features and
SpO2 features from the optimal feature set were used for SA detection, respectively. From
Table 4, it was clear that the RF classifier outperforms the other classifiers. Therefore, the
experiments in this section were conducted using the RF classifier alone. Table 5 shows
the accuracy, sensitivity, specificity, and AUC using either the ECG feature set or the SpO2
feature set.

Table 5. Per-segment classification results based on RF classifier using either ECG or SpO2 feature set.

Signal Accuracy (%) Sensitivity (%) Specificity (%) AUC

ECG 88.6% 84.5% 91.2% 0.957
SpO2 96.6% 93.8% 98.4% 0.988

5. Discussion
5.1. Comparison among Different Signals

Reviewing the results of SA detection using either ECG signals or SpO2 signals alone
in Section 4.3, we found that the SpO2 feature set had better accuracy, sensitivity, and
specificity compared to the ECG feature set. In addition, some previous review works
on SA detection also pointed out that SpO2 signals usually performed better than ECG
signals [34]. This phenomenon can be attributed to the ability of the signal to characterize
on sleep apnea syndrome. Because, when apnea occurs, a decrease in inhaled air flow can
directly cause fluctuations in SpO2, and such fluctuations are significant. For the ECG
signal, in addition to respiratory events, some cardiovascular diseases such as arrhythmias
and heart block may also cause changes in HRV [34]. Therefore, it is challenging to detect
apnea using the ECG signal.

Although excellent results were obtained using SpO2 signals alone, there are still
some drawbacks. For example, chronic obstructive pulmonary disease or alveolar hy-
poventilation can also cause a decrease in oxygen saturation [35]. This means that some
non-apnea-induced oxygen desaturations masquerade as apnea-induced oxygen desatura-
tion, which can eventually lead to a decrease in the sensitivity of the model. However, upon
comparing Tables 4 and 5, it can be seen that the accuracy and sensitivity were improved
by approximately 1% and 2%, respectively, when using the combined signals compared
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to using the SpO2 signal alone. This suggests that the two channel signals provide richer
SA representation information to the classifier when classifying SA events. Further, from
the results of feature selection, the RFECV algorithm selected six features from the ECG
feature set and seven features from the SpO2 feature set, respectively. Thus, these features
are non-redundant, indicating the complementarity between the two signals.

Another advantage of using a combination of ECG and SpO2 is better applicability.
To the best of our knowledge, SA automatic detection algorithms developed based on
single-lead ECG signals are not suitable for cardiac patients, which limits the applicability
of the algorithms to some extent. However, the proposed algorithm achieved feature-level
fusion. The advantage of using multimodal fusion techniques is that multimodal systems
can still operate when one of the modalities is missing [28]. In other words, the proposed
algorithm still has the ability to diagnose SA when one of the signals does not work.

5.2. Comparison with Other Related Works

We compared the performance of our method with other studies. Table 6 summarizes
the results of our work and related work on per-segment SA detection. As shown in Table 6,
some studies such as [12,31,36] used ECG signals, where [36] used an autoregressive model
and a spectral autocorrelation function to extract features from ECG segments with an
accuracy of up to 93.9%. In addition, among the studies using SpO2 [25,37], the best
performance was reported by [25]. According to Table 6, our proposed approach provided
higher per-segment classification accuracy than other studies. Moreover, [38] also used
a combination of ECG and SpO2 signals and extracted 39 features. However, this study
achieved 97.5% accuracy using only 12 features, which reduces the complexity of the model
while improving the accuracy.

Table 6. Comparison of the proposed method with other previous studies.

Reference Signal Accuracy (%) Sensitivity (%) Specificity (%) AUC

Zarei et al. [36] ECG 93.90% 92.26% 94.92% 0.99
Sheta et al. [12] ECG 90.75% 91.91% / 0.97
Rajesh et al. [31] ECG 89.70% 85.07% 92.42% 0.96

Mostafa et al. [25] SpO2 97.38% 84.57% 97.28% /
Ma et al. [37] SpO2 90.20% 87.6% 94.1% /
Xie et al. [38] ECG + SpO2 84.40% 85.89% 86.81% /
This Study ECG + SpO2 97.5% 95.9% 98.4% 0.99

6. Conclusions

In this study, an automated SA detection method was developed to accurately identify
sleep apnea events using ECG and SpO2 signals. The best results in terms of accuracy, sen-
sitivity, specificity, and AUC were obtained using the RF classifier after fusing the features
of ECG and SpO2. The model takes full advantage of the complementary information of the
two signals and outperforms the model developed based on a single signal in terms of diag-
nostic performance. In addition, experimental results on the Apnea-ECG database showed
that the performance of our method has been further improved compared to previous stud-
ies. Although the evaluation results of the model met our expectations, there are still some
limitations. The database provided by Dr. Tomas Penzel does not annotate hypoventilation
events. Therefore, in future work, we will combine multiple datasets to distinguish apnea
from hypoventilation events and further validate the proposed algorithm.
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