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Abstract: We demonstrate a Contactless Vital Sign Monitoring (CVSM) system and road-test the
system for in-cabin driver monitoring using a near-infrared indirect Time-of-Flight (ToF) camera. The
CVSM measures both heart rate (HR) and respiration rate (RR) by leveraging the simultaneously
measured grayscale and depth information from a ToF camera. For a camera-based driver monitoring
system (DMS), key challenges from varying background illumination and motion-induced artifacts
need to be addressed. In this study, active illumination and depth-based motion compensation are
used to mitigate these two challenges. For HR measurements, active illumination allows the system
to work under various lighting conditions, while our depth-based motion compensation has the
advantage of directly measuring the motion of the driver without making prior assumptions about
the motion artifacts. In addition, we can extract RR directly from the chest wall motion, circumventing
the challenge of acquiring RR from the near-infrared photoplethysmography (PPG) signal of low
signal quality. We investigate the system’s performance in various scenarios, including monitoring
both drivers and passengers while driving on highways and local roads. Our results show that our
CVSM system is ambient light agnostic, and the success rates of HR measurements on the highway
are 82% and 71.9% for the passenger and driver, respectively. At the same time, we show that the
system can measure RR on users driving on a highway with a mean deviation of −1.4 breaths per
minute (BPM). With reliable HR and RR measurement in the vehicle, the CVSM system could one
day be a key enabler to sudden sickness or drowsiness detection in DMS.

Keywords: Time-of-Flight; contactless physiological measurement; heart rate monitoring;
motion artifacts compensation; driver monitoring system

1. Introduction

In this study, we present a Contactless Vital Sign Monitoring system (CVSM) for in-
cabin heart rate (HR) and respiration rate (RR) measurements using a near-infrared indirect
Time-of-Flight (ToF) camera. We address the challenges of varying ambient illumination
as well as the interference from excessive motion by utilizing the active illumination
and the additional depth information from the ToF camera. The synchronized 850 nm
active illumination in the ToF camera allows us to operate independently of the ambient
light conditions, while the additional depth information can be used to compensate for
motion-induced intensity artifacts. As the users move in the vehicle (passively or actively),
their relative position against the ToF camera also changes; thus, the additional depth
information measured by the ToF camera is correlated with the motion of the driver.
We utilize this correlation to compensate for the motion-induced intensity artifact by
differentiating whether the grayscale intensity change is due to motion or the blood volume
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change from the heartbeat. Furthermore, the depth information is also used to estimate the
amount of motion during the measurement period, therefore predicting the quality of the
HR measurements. Additionally, the depth change from chest wall motion can be used to
directly measure RR, thereby allowing our system to measure both HR and RR with one
monolithic sensor. We systematically investigate the performance of our CVSM system by
performing HR/RR measurements in various realistic environments with different degrees
of motion from the roads and the drivers. We study the benefit of the depth-based motion
compensation by comparing the success rate of HR measurements using both grayscale and
depth information (“compensated” HR measurements) against HR measurements using
only the grayscale information of the same video (“uncompensated” HR measurements).
Our study finds that with the depth-based motion compensation, the HR measurement
success rate increase from 13.6% (“uncompensated” HR measurements) to 71.9% while
the user is driving on the highway. When the user is driving on a local road, the success
rate increases to 56% from 12%. As for the RR measurement, our CVSM system measures
the RR of the driver on highway scenario with a mean deviation of −1.4 BPM from the
reference RR measurements. With the ability to measure two important physiological
parameters with one sensor, we believe our ToF based CVSM system can enable a low-cost,
compact, and multi-modal driver monitoring system that can be used for applications such
as drowsiness or sudden sickness detection in vehicle.

2. Background and Motivation

As Advanced Driver Assistant Systems (ADAS) are increasingly adopted by both car
manufacturers and regulators, there is a growing need to monitor the physiological states
of drivers/occupants to assist in the engagement of the ADAS system [1–5]. For example,
the EuroNCAP regulation requires the driver/occupants monitoring system (DMS/OMS) to
detect sudden sickness as well the presence of a younger child in the vehicle [6]. Both HR and
RR are shown to be useful indicators to predict the awareness level of the driver, which could,
in turn, be used to determine if ADAS functions such as automatic lane keeping or front
collision avoidance should be activated to ensure the safety of the driver [3–5,7]. Additionally,
with emerging autonomous services such as robotic taxis gaining traction, an unobtrusive
CVSM system can be a valuable addition to ensure the well-being of the passengers [3].

Several sensors, such as cameras, radars, electrocardiograms (ECG), and ballistocardio-
graph sensors, have been studied to extract HR and RR from the driver [4,5,8–16]. Table 1
summarizes the characteristics of various sensors commonly used for HR and RR monitor-
ing of the driver/occupants in the vehicle. Among various sensors, the electrocardiogram
measures HR from the electrical potential of the heart, while the ballistocardiograph sensor
measures HR through the micro-motion of the body caused by the heartbeat. In compari-
son, both radars and cameras promise unobtrusive and contactless monitoring of HR and
RR. Between these two non-contact sensors, cameras hold an advantage by offering other
unique functions such as facial recognition and gaze detection that cannot be achieved with
radars. With a conventional 2D camera, HR is usually acquired through imaging photo-
plethysmography (PPG), where the volumetric change of blood flow from the heartbeat
causes different amounts of light to be absorbed by the user’s face [17–22]. Several past
studies (such as chrominance (CHROM) or independent component analyses (ICA) based
method) have shown the robustness of using a camera to contactlessly measure HR in
controlled environments [23–27] by utilizing the RGB color channels in an RGB camera.

Compared to measuring HR and RR in a controlled indoor environment, additional
challenges from the varying illumination as well as the motion artifacts need to be addressed
when measuring HR and RR while driving. In a moving vehicle, the illumination level
can vary significantly based on factors such as weather or time of day. Any imaging-based
sensor will need to be unaffected by the ambient light. Secondly, during driving, both
the passive motions from the road or active motions from the users can interfere with
the measurement result as well. Thus, for a camera-based sensor, a method for rejecting
motion-induced artifacts is important to ensure reliable HR/RR measurement performance.
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Recently, several studies have discussed the use of a camera to measure HR in a
vehicle [11–14]. For example, Huang et al. demonstrated HR monitoring in a driving
vehicle with a RGB camera [12]. Nowara et al. demonstrated an in-vehicle HR monitoring
system (Autosparse PPG) using an NIR camera with LED illuminations, where a sparse
frequency estimation method is introduced to improve the HR measurement reliability
against external artifacts [11]. However, for the Autosparse PPG method to be effective,
uniform illumination of the user is required, which may not be satisfied when a compact
sensor with a localized/point illumination source (such as Vertical Cavity Surface Emitting
Lasers (VCSEL)) is used. In our previous study [28], we demonstrate a system using an
indirect NIR ToF camera to monitor HR and RR in an indoor environment. We expand
upon the previous study and demonstrate a CVSM system for HR and RR measurements
in a moving vehicle. In this study, we improve upon the methods proposed in [28] and
focus on the more complex application scenario of in-vehicle HR and RR monitoring.
Specifically, we not only use the depth information to distinguish intensity changes caused
by body motion versus heartbeat but also to assess the quality during different sections
of the HR measurements, which further increase the robustness of the HR measurements
against motion-induced artifacts [28]. Since our depth-based method does not make
the sparse frequency assumption of the PPG signal, this system would work even if a
compact/localized VCSEL illuminator is used.

Furthermore, even though RR has been shown to be correlated with the drowsiness
or stress level of the driver [8], the existing camera-based system usually does not have
an adequate signal quality to extract RR from the HR signal [29,30]. To circumvent the
limitation of low signal quality, in this study, we use the ToF camera to measure RR directly
by measuring the chest wall displacement [28,31], avoiding the potential complexity of
fusing the data from the radar sensor and the camera, respectively, and reducing the cost
for the entire system.

To the best of our knowledge, this is the first study where a ToF camera is used to
simultaneously perform HR and RR measurements in a vehicle. Indirect ToF cameras are
becoming increasingly popular on various platforms and are already deployed in vehicles
for functions such as Smart Restraint Control Systems (Smart-RCS). Given the benefits
brought by the active illumination and depth information, our CVSM system would enable
compact, reliable, and multi-modal physiological signal monitoring in a vehicle, improving
the safety and the driving experience for both the drivers and passengers.

Table 1. Summary of HR/RR measurement techniques used in vehicle.

Type of Sensor HR? RR? * Contactless?
HR Robust

against
Motion?

Ambient Light
Resistance?

Independent of
Skin Color?

Electrocardiogram [9,32] ++ Indirect N ++ ++ ++

Radar [15,16] − Direct Y − ++ ++

Ballistocardiograph [33] − Direct N − ++ ++

Thermography [8,20] N/A Direct Y N/A ++ ++

PPG with
RGB Camera [12,14] ++ Indirect Y + − −

PPG with
IR Camera [11,13] + N/A Y − + +

PPG with
indirect ToF Camera

[This Study]
+ Direct Y + ++ +

* Direct measurement measures chest movement meanwhile an indirect RR measurement uses the modulation
of the HR signal to extract RR; +/− indicates the system has advantage/disadvantage in a certain category.
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3. Experiment Setup
3.1. Hardware Configuration

The indirect ToF camera used in this study is an amplitude modulated ToF camera
with a resolution of 640 × 480 with a 149° diagonal field of view (FoV). This large FoV can
accommodate different seating positions and postures of the driver and can potentially be
used to monitor multiple passengers in the vehicle. The active illumination is provided by
a pair of 850 nm (we find both 940 and 850 nm illumination to have similar performance
in terms of HR measurements) VCSELs with diffusers at eye-safe power. As a prototype,
the ToF camera has a form factor of 15 × 5 × 5 cm and consumes 5 W average power,
which could be further reduced with future packaging improvements. The ToF camera
is inherently robust against ambient illumination change: Firstly, the lens of the ToF
camera is coated with a bandpass filter at 850 nm to suppress the out-of-band background
illumination. At the same time, the underlying lock-in detection principle of the indirect
ToF sensor can suppress the residual in-band background illumination [34].

In our experiment, the ToF camera is mounted in a 2015 Jeep Cherokee near the
rearview mirror using an adjustable suction cup mount either facing the driver side of
the cabin or the passenger side of the cabin. The ToF camera is positioned at roughly eye
level and 50 cm away from the participants. Due to the wide FoV, the ToF can capture the
users’ face and chest region at the same time (Figure 1). During our experiments, the ToF
camera operated at 30 frames per second (FPS) and each measurement records 20 s of video.
The frame rate and the measurement time were chosen due to the bandwidth as well as
the processing power of the laptop. Longer measurements could be chosen to improve the
resolution of the HR/RR measurements at the cost of the recording and processing time.
Even though in this study, the HR was measured discretely after each 20 s measurement,
the HR measurements can be extracted in a real-time fashion by recording and processing
the 3D video in parallel with a rolling time window. The reference HR was measured
with an ECG-based Polar H10 chest strap (±1 BPM resolution) (Polar Electro Oy, Kempele,
Finland), while the reference RR was measured through a NUL236 Respiration Monitor
Belt (±3 BPM resolution based on the recording duration) (Neulog, Israel). The brightness
level in the cabin was also recorded with a light meter (MT912, URCERI).

Figure 1. Experimental configuration for HR/RR measurements in a vehicle with a ToF camera.
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3.2. HR and RR Extraction

Our system extracts HR using both the average grayscale intensity and depth of ROI
(Region of Interest)-1 on the right cheek region while measuring RR with just the average
depth information of ROI-2 on the chest. Compared to our previous study [28], the ROI-1
is selected based on the need to adapt to more complex scenarios and the mounting angle
of the camera. We only select the smooth region on the right cheek so that the signal is less
likely to be affected by the facial hair or the uneven shape of the face. To adapt and track
ROI-1 and ROI-2 (Figure 2) from various head poses and seating positions that users could
potentially take in a car, a more sophisticated face mesh detection algorithm is used [35] to
extract 468 facial landmarks (compared to the 66 landmarks used in [28]) from the user’s
face. The landmarks that encircle the right cheek/nose area are selected as the corner
points of ROI-1. After the facial landmarks are extracted, we apply a pose estimator to
find the shoulder of the user and define the ROI-2 on the chest using the relative positive
between the jawline and the shoulder. When the user sits 50 cm from the ToF camera,
ROI-1 contains roughly 500 pixels while ROI-2 contains roughly 8000 pixels.

Figure 2. Position of both ROI-1 and ROI-2 as seen by the ToF camera. The grayscale intensity and
depth information from ROI-1 are used for HR measurement, and the depth information from ROI-2
is used for RR measurements.

Figure 3a shows a typical intensity as well as the depth captured from ROI-1 while
the user is driving on the highway. When a localized illuminator (such as VCSEL used
in this study) is used, motions from both the driver and the road create artifacts that are
several times larger than the underlying HR signal (Figure 3a). If left uncompensated,
such artifacts will lead to inaccurate HR measurements (unwanted peaks in the frequency
domain) (Figure 3b).

In this study, HR is extracted in three major steps (Figure 4): 1. Extract average
grayscale intensity and depth information from ROI-1; 2. compensate for motion-induced
intensity artifacts using depth information; 3. use depth information to assess the HR signal
quality in different sections during the 20 s video and extract HR from the processed signal.
Because the user in a moving vehicle will encounter more random motion, compared to
the previous study [28], step 3 is added to further differentiate signal sections with more
motion interference from signal sections with less motion interference.
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Figure 3. (a) Raw intensity (red) and depth (blue) captured by the ToF camera. Depth change induced
by motion (blue rectangle) is inversely proportional to the intensity, which is a key source of erroneous
HR reading. (b) When motion artifacts are present, they create artifact frequency components that
overwhelm the actual HR signal.

In step 1, before extracting grayscale information and depth information from each
frame, we first remove the background in each frame by only selecting pixels that
are 40 to 70 cm from the camera. The removal of the background in each frame elimi-
nates the interference from the passengers in the backseats. After the background removal,
we apply the face mesh detection algorithm to find ROI-1 and average the grayscale inten-
sity and the depth across every pixel in ROI-1 [35]. While the face mesh is being obtained,
we also determine the head orientation (yaw, pitch, and roll) of the user in each frame using
a head pose estimation algorithm [36]. If more than 20% of the frames show excessive head
orientation (yaw and pitch deviate more than 10 degrees from head orientation at start), we
discard this measurement, as the PPG signal can be heavily polluted by head rotation and
our depth-based motion compensation method is less effective against intensity changes
caused by large head rotation motion [18,28].

If less than 20% of total frames exhibit excessive head rotation in the video stream,
the system moves on to step 2 for the removal of motion artifacts. When an active illumina-
tion source such as VCSEL lasers are used, the amount of light that is back scattered to the
camera is nonlinearly correlated to the distance between the camera and the participants’
face. The voluntary motion from the driver or the involuntary motion caused by uneven
roads changes the distance between the driver’s face and the light source, resulting in inten-
sity artifacts that could corrupt the HR measurements. Because the ToF camera measures
both intensity and depth information, the depth information can be used to compensate for
the motion-induced artifacts. The depth information obtained from ROI-1, Draw should
contain no heart rate component (heartbeats do not cause depth change detectable by ToF
camera), while the raw grayscale information from ROI-1, Iraw contains both the heartbeat
induced intensity change as well as the motion-induced intensity change. After the motion
artifacts are compensated, the compensated signal Icomp should have minimum correlation
with Draw. Icomp is calculated using Equation (1), where a and b are the coefficients. We
iterated through a range of a and b to find the minimum correlation between Draw and

Iraw
a∗(Draw)−b . In this study, the range of the nonlinear coefficient is set between 0.2 to 5 while
the linear coefficient is set as 1 for all measurements taken in this study. More details on the
motion compensation method can be found in [28].

Icomp =
Iraw

a ∗ (Draw)−b ; where a, b = argmin
a,b

Correlation(
Iraw

a ∗ (Draw)−b , Draw) (1)
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Figure 4. Processes to extract HR while driving using depth and grayscale information from a
ToF camera.

After the motion artifacts have been compensated for, we then assess the quality
of different sections within the 20 s video using both the depth information and Short
Time Fourier Transform (STFT). The goal of the quality assessment is to find the sections
of videos that either suffer lower interference from motion or contain stronger HR sig-
nal. Ideally, for clean HR measurements without artifacts and noise, the measured signal
in the frequency domain will contain one peak in the frequency domain (which we se-
lect as HR). However, in real-life measurements, various motion artifacts/noise create
additional frequency peaks in the frequency domain. Even though we try to compen-
sate for motion-induced artifacts in step 2, some large motion or head rotation cannot
be effectively compensated [28]. These large motions can come from the driver turning
their head or from driving across potholes on the road. If those types of motion are
large enough, the amplitude of artifact frequency peak can be higher than the HR fre-
quency component, creating erroneous results. Therefore, we use the depth information
to determine if such artifacts could exist in a particular section of the recorded signal.
The quality assessment is implemented with following steps: 1. The 20 s measurements
are split into eleven 10 s windows with a 9 s overlap between two consecutive windows.
2. We perform Fourier transform to the 10 s window and find the amplitudes of highest
peak (A1st) and the second highest peak (A2nd) in the frequency domain. 3. We calcu-
late a motion score of this 10 s window using Equation (2), where ”var” stands for the
variance and ”depth” represent the average depth measured by the ToF camera in ROI-1.
4. The final spectrum is calculated as the weighted average of the spectrum of every
window with the inverse of the motion score being the weights (Equation (3)). Xi(f) is the
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spectral content of each time window and n is the total number of windows (in this study
n = 11).

motion score =
(var(depth(t)− mean(depth(t))

A1st/A2nd
(2)

X f inal( f ) =
n

∑
0

Xi( f )× (motion scorei)
−1 (3)

Lower the motion score, lower the possibility of motion interference within that section
and vice versa. Therefore, by applying such weighted average, we reward sections with
low motion scores, during which either the user is moving less, or a clear highest peak can
be found in the frequency domain. After the averaged spectrum is calculated, we select the
highest frequency component between 40 and 150 BPM as the measured HR.

Compared to HR measurements, RR measurements only rely on the depth information
from ROI-2. In this study, we extract RR in three steps (Figure 5): First, with the pose
estimator, we define ROI-2 using the relative position between the chin and the shoulder
of the participants. The location of ROI-2 is then tracked in every frame in the 20 s video.
Then, we calculate the average depth across all pixels within ROI-2. Finally, we apply a
bandpass filter (5 to 30 BPM) and Fourier transform to the extracted depth signal from
ROI-2, and the highest peak in the frequency domain is then chosen as the RR value.

Figure 5. Processes to extract RR while driving using depth and grayscale information from a
ToF camera.

3.3. In-Vehicle Testing of the System

To test the system performance and to understand the influences of motion artifacts
from various sources, we conducted a series of in-vehicle tests, both on the highway as
well as local roads. Our cascaded tests comprise 4 scenarios. Between each scenario, we
add one extra source of interference and bring the test scenario closer to a realistic use
case. In the first scenario, participants are asked to sit in the lab with their faces toward
the camera. In scenario two, we change the viewing angle of the ToF camera and add the
vibration from the engine to the test. Participants are asked to sit in a parked car with the
engine running. In the third scenario, participants sit on the passenger seat while being
driven on a highway/local road (participants asked to stay still). Compared to the previous
scenario, we add the “passive motion artifacts” such as driving on an uneven road as well
as making turns. Finally, in the last scenario, we add the voluntary motion from the driver
such as checking the traffic conditions and adjusting their seating position while driving.
Participants are asked to drive the car themselves on a highway/local road, mimicking
the real-life operation scenario for which the system intended to be used. In total, 6 of the
study team members participated in scenarios 1–3, while only 5 participated in scenario
4. During the measurement of each team member, roughly 25 measurements of HR/RR
were taken (actual number of samples depends on time the participants spend to drive the
designated route), leading to more than 125 measurements for each scenario. In terms of
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RR measurements, we measure the RR of the participants as they drive on the highway
while wearing the respiration belt. Table 2 shows the details of the cascaded driving test.
To protect the privacy of the study team members, all data recorded in this study are only
stored in local hard disk drives, and only study team members in charge of data analysis
have access to the hard disk drive.

Table 2. Testing condition for each of the scenario tested.

Parameters
Measured Test Condition Number of

Participants
Number of

Measurements
Total Miles

Driven

HR Highway-Passenger 6 141 >70
HR Highway-Driver 5 151 >60
HR Local-Passenger 6 141 >15
HR Local-Driver 5 143 >12
HR Highway-Driver 5 135 >60

4. Experiment Results
4.1. HR and RR Measurements in Bright and Dark Lighting Conditions

One advantage of using the ToF camera is that the 850 nm active illumination provided
by the VCSEL allows the system to operate independent of the ambient light conditions.
Such benefits can be attributed to both the bandpass filter as well as the underlying lock-in
detection schematics of the indirect ToF camera [34,37]. Figure 6 shows the images seen
by the ToF camera in both bright and dark environments. In the bright environment,
the brightness level in the cabin exceeds 1800 Lux, while in the dark environment, the
brightness level is less than 5 Lux.

Figure 6. The user’s face seen by an RGB camera (a) in both bright (top) and dark (bottom) conditions
versus the user’s face seen by the ToF camera in both bright (top) and dark (bottom) conditions.

In both bright and dark environments, the images seen by the ToF camera are very
similar, and HR can be extracted in both cases (Figure 7).
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Figure 7. Time (Top) and frequency (Bottom) domain of the motion-compensated HR signal in both
bright (a) and dark (b) environments.

4.2. On-the-Road Testing of HR and RR

Figure 8 shows a waterfall chart of the success rate tested under each of the scenarios
(Table 2). An HR measurement from our CVSM system is defined as ‘successful’ if the
measurement is within 10% of the HR measured by our reference device, a Polar H10
chest strap. The success rates of HR measurements on highway conditions outperform the
success rates on the local road conditions in all cases. Such results are expected since the
local road represents a more complex driving scenario. Compared to a highway, local roads
have more potholes and busier traffic, which leads to more frequent active and passive
motions of the driver. With the adding of more potential sources of motion artifacts in
each consecutive scenario, we can see a degradation of HR measurement performance
by different amounts. In the case of the highway scenario, the success rate drops from
90% when measured in the lab to 71.9% when the driver is driving the vehicle on the
highway, with the most significant performance drop occurring when we add the voluntary
head motions from the driver (i.e., the case when driver drives the car him/herself). As a
comparison, the success rate drops to a lower 56% when the driver is driving on the local
road. However, the most significant decrease in performances for the local road scenarios
seems to arise from the road surface and traffic conditions rather than the driver’s active
motion (the success rate drops most when we started to measure passengers in a moving
vehicle). In reality, the highway scenario will be the more important use case for the CVSM
system, due to higher speed as well as the longer time of driving, leading to drowsiness
and potentially more catastrophic accidents [38]. We will discuss in detail the system
performance under each in-vehicle scenario in the following paragraphs.

Figure 9 compares the distribution of error rates of the HR measurements with or with-
out depth-based motion compensation when the user is sitting in a parked car with the en-
gine running. In the following analysis, “motion-compensated” refers to HR measurements
utilizing both grayscale intensity and depth information for motion compensation. The
“uncompensated” measurements refer to the HR measurement using the same grayscale
intensity as the “compensated” HR measurements but not using the depth information for
motion compensation (as is the case of a normal 2D camera). With the depth-based motion
compensation, the success rate is 86% while the success rate drops to 36.5% when the mo-
tion compensation is not used. Even though the participant is sitting still in their seat, there
still exists involuntary motion, which can obfuscate the HR signal if left uncompensated.
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Figure 8. Waterfall diagram of the success rate of the HR measurements under different testing
scenarios on highways and local roads.

Figure 9. HR measurement error rates when participants sit in a parked vehicle with motion compen-
sation (left) and without motion compensation (right).

Figure 10 shows the Bland–Altman plot of the HR measurements in the parked vehicle
with the engine running. With depth-based motion compensation enabled, the mean devia-
tion of the HR measurements from is −2.9 BPM and 95% of the measurement deviations
fall between ±19.6 BPM of the mean deviation. When depth-based compensation is not
used, we observe a much higher negative bias of −16.3 BPM with 95% of deviation falling
between ±35 BPM of the mean. Such larger bias is usually caused by the lower frequency
motion artifacts being mistakenly recognized as HR.

Figure 10. Bland–Altman plot of HR measurements when participants sit in a parked vehicle with
motion compensation (left) and without motion compensation (right).
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Testing on Highway:
Once on the road, the car motion from the road bumpiness starts to affect the per-

formance of HR measurements. Figure 11 shows the histogram of the error rates when
the participants are sitting in the passenger seat while the car is driving on the highway.
The participants are asked to not move their heads during the measurements to suppress
active head motion. Since there is less road roughness and fewer distractions from traffic
signs/lights or pedestrians on the highway, we did not observe significant degradation
of the HR measurement success rate. Figure 12 shows the Bland–Altman plot for the HR
measurements under the same conditions. The mean deviation for the motion-compensated
case is 0.13 BPM (absolute mean deviation at 5.8 BPM) and the 95% of deviation within
±22 BPM from the average deviation. When motion compensation is not used, the success
rate drops to 34% while the mean deviation increases to −19 BPM (absolute mean deviation
at 20.5 BPM).

Figures 13 and 14 show the error rate distribution as well as the Bland–Altman plot for
the HR measurements when the participants drive the vehicle on the highway. Because the
participants need to turn their heads occasionally to check traffic or change lanes, these head
motions translate into large motion artifacts that add further complexity to HR measure-
ments. Even though such motions only last for a few seconds, they could still induce motion
artifacts that are large enough to disrupt the HR measurements. With the depth-based
motion compensation enabled, the HR measurements success rate is 71.9 (absolute mean
deviation: 7.7 BPM), while the success rate with no compensation is only 13.6 (absolute
mean deviation: 25 BPM). From Figure 14, we can see more of the wrong HR readings
clustered at the bottom of the graph, which are the results of the additional motion artifacts
from the driver’s motion. We will discuss potential ways of mitigating such outliers later
in the discussion section.

Figure 11. HR measurement error rate when participants sit in the passenger seat on the highway
with motion compensation (left) and without motion compensation (right).

Figure 12. Bland–Altman plot of HR measurements when participants sit in the passenger seat on
the highway with motion compensation (left) and without motion compensation (right).
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Figure 13. HR measurements error rate when participants drive on the highway with motion
compensation (left) and without motion compensation (right).

Figure 14. Bland–Altman plot of HR measurements when participants drive on the highway with
motion compensation (left) and without motion compensation (right).

Testing on Local Road:
When testing the CVSM system on the local road, we observe the same performance

improvement brought by the depth-based motion compensation. Figures 15 and 16 show
the error rate as well as the Bland–Altman plot for HR measurements for the local road
and participants in the passenger seat scenario. Because both the road surface condition
(roughness, potholes) and the traffic (number of stop signs, number of cars) are much worse
compared to the highway scenario, the success rate degradation for the HR measurements
is also more severe. With the participants sitting on the passenger seat, the success rate is
66% (absolute mean deviation 8.4 BPM) with motion compensation and only 22% (absolute
mean deviation 22 BPM) for HR measurements without motion compensation.

Figure 15. HR measurement error rate when participants sit in the passenger seat on local road
conditions with motion compensation (left) and without motion compensation (right).
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Figure 16. Bland–Altman plot of HR measurements when participants sit in the passenger seat on
local road conditions with motion compensation (left) and without motion compensation (right).

When the participants move on to drive on the local road, we see similar HR mea-
surement degradation (10%) as the highway scenario (Figures 17 and 18). With motion
compensation, the success rate of the HR measurements is 56% (absolute mean deviation
10.5 BPM) when depth-based motion compensation is used and only 12% (absolute mean
deviation 25 BPM) when the depth-based motion compensation is not used.

Figure 17. HR measurement error rate when participants drive on a local road with motion compen-
sation (left) and without motion compensation (right).

Figure 18. Bland–Altman plot of HR measurements when participants drive on a local road with
motion compensation (left) and without motion compensation (right).

RR Measurements on Highway:
In this study, RR is also measured on participants while driving on the highway.

Figure 19 shows typical respiration motion acquired on the chest region compared with
the reference chest belt on the highway. The ToF camera measures a typical chest wall
depth change of ±2 mm, with the pattern matching the pressure change measured by the
reference respiration belt.

Figure 20 shows the distribution of the deviation of RR measurements from the
reference respiration monitoring belt. The mean deviation from the reference reading is
found to be −1.4 BPM with a total of 71% of measurements falling within the error of
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±3 BPM. It should be noted that since RR is extracted through the Fourier transform of
a 20 s measurement, the reference RR measurements are limited to a resolution of 3 BPM.
In our measurements, we could sometimes see some extreme outliers with errors as large
as −10 BPM. These errors could be attributed to events such as driving over potholes or
the participants adjusting themselves for a more comfortable position while driving.

Figure 19. Typical RR motion measured by a ToF camera (blue), and the RR measured by the reference
respiration belt (red).

Figure 20. Percentage of ToF-based RR measurements versus deviation from the reference
respiration belt.
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5. Discussion

In the previous sections, we have shown the benefits of using both the active illumina-
tion and depth information from an indirect ToF camera for HR and RR measurement in a
vehicle. However, because of the complex environments in a vehicle cabin, it is worth dis-
cussing the potential limitations of the current methods and exploring potential approaches
that could be used to improve the robustness and accuracy of our CVSM system.

Potential Limitations and Improvements for HR measurements:
To obtain HR reliably, the system needs to keep track of the same ROI accurately across

all frames. Facial expression or facial occlusions could all interfere with the acquisition of
ROIs on the face. If the vertices of the ROI are jittering from frame to frame, the system could
mistake the ROI jittering frequency as the HR. For example, Figure 21 shows an example
where the blinking of the participant interferes with the HR measurement. The participant is
asked to blink his eye at the same frequency of an external metronome at 115 BPM (selected
to be out of the normal range of the participant’s resting HR). The periodic bright reflection
from the eye causes the ROI-1 locations to jitter at the same frequency, which introduces an
artifact frequency that overwhelms the true HR frequency component. Since this type of
error rises from the jittering of ROI locations, they could potentially be mitigated by using
a face tracking algorithm that is less sensitive to external interference. Furthermore, one
possible solution is to check the grayscale intensity change against the position change of
the ROIs to make sure the dominating frequency peak in the frequency domain is not from
the jittering of ROIs [11].

Figure 21. Periodic reflection from participant blinking could affect the location of the ROI-1 as a
result of jitter. The jittering can lead to additional intensity artifacts that will not be captured by the
(a) depth signal, leading to erroneous HR reading from the (b) frequency domain.

In addition to the interference of the ROI acquisition, subtle motions such as facial
expression change and talking could also limit the performance of the CVSM system
because these motions could introduce motion artifacts without causing detectable depth
changes from the ROI [28]. These subtle artifacts that are confined to localized areas on the
face could be alleviated with methods such as the sparse frequency estimation and will be
discussed in the later sections.

Moreover, a unique challenge to monitoring HR in a vehicle is the sudden motions
from either the driver/passenger or the road conditions. In order to capture these motions
accurately, it might be beneficial to use a camera with a higher frame rate. To investigate
the potential benefits of using a higher frame rate camera, we measured HR on three
participants while driving on the highway at 60 FPS (compared with 30 FPS in the ex-
periment section). The acquired 60 FPS videos are then down-sampled (only using every
other frame in the original video) to 30 and 15 FPS to compare the performance of HR
measurements at different frame rates. Each frame in the 60/30/15 FPS video shares the
same integration the time and, therefore, the same background noise. Figure 22 shows the
error rate distribution for the HR measurements on the highway. With a higher frame rate
(60 FPS), the motion across two consecutive frames is smaller, which makes tracking the



Appl. Sci. 2022, 12, 4416 17 of 23

ROI easier when sudden or large motions are present. In our preliminary test, the original
60 FPS videos result in a success rate of 76% while the down-sampled 30 FPS videos leads
to a reduced success rate of 68%. When the frame rate is further reduced to 15 FPS, a further
degradation of the success rate to 58.7% is observed.

The given benefits of a higher frame rate could be attributed to the smaller motion
across two consecutive frames. For example, if we assume the user is sitting at 50 cm away
from the camera, for the ToF camera with 149-degree diagonal FOV and half-inch imaging
sensor size (diagonal), we could roughly calculate how many pixels the ROI landmarks will
shift across two different frames using Equation (4), where Duser is the distance between the
camera and the driver, θ is the half angle of the horizontal field of view, L is the horizontal
size of the imaging sensor, µ is the pitch of the pixel, v is the velocity of the motion and FPS
is the frame rate of the camera.

Npixel = ceiling(
L

Duser ∗ 2µ ∗ tan(θ)
∗ v

FPS
) (4)

The above equation makes the rough estimation that the image fills the entire sensor,
and the active area of the pixel is small. In this case, we consider the head of the user is
moving at 50 cm/s (typical for a fast head turning), and Table 3 shows the number of pixels
the ROI landmark would transit at different frame rates.

Figure 22. HR measurement error rate when participants drive on the highway recorded at 60 FPS
(left), 30 FPS (middle) and 15 FPS (right).

Table 3. Success rate and number of pixels transitioned across two consecutive frames at different
frame rates.

Frame Rate (FPS) 15 30 60 105

Npixel 7 4 2 1

Success Rate 58.7% 68% 76% N/A

The lower the frame rate, the larger the motion (more pixels transitioned) seen by the
face tracking algorithm between two frames and, therefore, a higher possibility for the face
tracker to output erroneous estimations of facial landmark positions [11]. The erroneous
landmarks can cause the detected ROI-1 to change over time, leading to time-varying
intensity changes in the measured signal. When the frame rate reaches 105 fps, the motion
across two consecutive frames will not move more than 1 pixel across different frames.
Of course, a higher frame rate does not solve all the challenges of HR measurements in NIR,
but it should alleviate the burden of the motion compensation as well as the face tracking
algorithm. In the future, with ToF cameras of higher resolution and the frame rate being
developed [39], the robustness of tracking fast motion could be increased and reduce the
effects of the driver’s active motion on the HR measurements.

Another potential improvement for the CVSM system proposed in this study is to
combine the depth-based motion compensation with other post-processing methods to
improve the reliability of the HR measurements. For example, in the 2020 study from
Nowara et al. [11], a sparse matrix estimation method is used to further reject noise from
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the remote PPG signal. The sparse matrix estimation method makes the assumption that
the HR signal is common across different ROIs on the face while the noises/artifacts will
differ within different ROIs. Therefore, by extracting the common signal across multiple
ROIs, one can differentiate the HR signal from the external interferences. However, such
method may not be directly applicable to the CVSM demonstrated in this study because
the localized VCSEL source causes intensity from all regions on the face to change in a
similar pattern against the motion from the user. If different ROIs on the face share the
same artifacts/noise, the sparse frequency matrix method from [11] could still pick the
artifacts/noises as the HR signal. For example, Figure 23 shows an example of an erroneous
HR measurement using the sparse matrix estimation method. We extract intensity signals
from three ROIs from cheek, nose and forehead, respectively, and apply the Autosparse
PPG method from [9] to the extracted signals to find the common frequency components
across these three ROIs. Figure 23a shows that the signals from the cheek, nose and forehead
show similar patterns of artifacts. Therefore, even though the sparse frequency estimation
method correctly identified the HR at 62 BPM, it also included the artifacts that are common
to the three ROIs in the extracted frequencies (Figure 23b).

One potential solution to this challenge is to also utilize the fact that HR is usually
slowly varying in time. One could potentially find the sparse frequency that is common
across both multi regions on the face as well as within several consecutive HR measure-
ments in time. By combining both time and multiple ROIs on the face, such method
could hopefully further reject noises from the compensated HR signal and improve the
signal reliability.

Figure 23. (a) Grayscale signal from three different ROIs on the face captured with the VCSEL
illuminated ToF camera, showing similar patterns of artifacts among all three ROIs. (b) Extracted
sparse frequency component using the method in [11], showing both HR and artifact frequency
components.

Finally, in this study, the open-source face landmark identification and tracking algo-
rithms [35] are trained mostly with RBG images in various environments and, therefore,
may not be optimized for videos that are taken in the NIR spectrum. In the future, com-
mercially available face tracking algorithms (i.e., Visage, Seeing Machine, Emotion3D,
etc.) specifically designed for facial landmark tracking in NIR videos in driving envi-
ronments might be used to improve the robustness against sudden motion or reflection
glares. With the help of a more optimized face tracking algorithm, one could alleviate these
problems mentioned in the previous discussion, which in turn improve the reliability and
accuracy of the HR measurements in the vehicle.

Potential Limitations and Improvements for RR measurements:
Regarding using a ToF camera for RR measurements, a natural question to ask is how

would different types of clothing (that could block or dampen the motion of the chest wall)
affect the performance of RR measurement using the ToF camera. Even though the ToF
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camera offers the capability of directly measuring RR similar to a millimeter-wave radar,
one drawback is that the 850 nm light cannot penetrate clothes compared to the millimeter
wave used in radar. To test the effect of clothing, we measure the depth change on ROI-2
while the participants wear clothes of different degrees of thickness (Figure 24). Fortunately,
in all cases, even including the case of a thick down jacket, we were able to detect the
chest wall motion from respiration in various commonly worn clothes (Figure 25). Only
when the participant is purposefully wearing multi-layer “puffy” clothes with air gaps in
between did we start to see the errors of RR measurements increasing, as the puffy clothing
can block the chest motion from the camera (Table 4). Finally, it should still be noted that
the typical amplitude of the chest motion is only ±2 mm, and the RR is derived solely
from the depth data. In the existence of large external motion, it is still possible for the
excessive motion to corrupt the RR measurements. Such limitation could be mitigated
by adding complementary RR measurements methods such as RR extraction from HR
variability or through extra sensors such as thermal cameras that are co-equipped in the
vehicle [20,21,29].

Figure 24. Types of clothes worn by participants in this study. Participants were asked to sit in a
parked car with the engine running and breathe naturally during the measurements.

Table 4. Absolute mean error of RR measurement when the participant is wearing different types
of clothing.

Clothing
Type T-Shirt Sweater Rain

Jacket
Wool
Coat

Down
Jacket

Multi-Layer *
Clothing

Absolute Mean
Error (BPM) 1.77 1.56 1.51 1.02 1.75 3.57

* “Multi-layer” clothing refers to wearing several different clothes with air gaps in between.
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Figure 25. Respiration motion on chest measured by the ToF camera while the participants were
wearing different types of clothing. Clear respiration patterns can be seen in all cases.

6. Summary

In this study, we first present a non-distracting CVSM system that can monitor the HR
and RR for both passengers and drivers in a vehicle using an indirect ToF camera. The ToF
camera allows us to mitigate two major challenges for measuring HR in a moving vehicle,
namely, varying illumination level and motion artifacts [11]. Compared to a conventional
2D camera, the ToF camera is inherently robust against the ambient light fluctuation that is
commonly encountered in a moving vehicle. Moreover, in this study, the depth information
is first used to compensate for the motion-induced artifact and then to assess the quality
of the HR signal within different sections of the HR measurement (i.e., within the 20 s
video). Additionally, with the depth information from the ToF camera, the CVSM system
can measure RR directly from chest wall motion.

We conduct a series of on-the-road testing to evaluate the performance of the CVSM
system in realistic operation environments. We first show that, because of the 850 nm
active illumination, the system can measure HR independent of ambient light conditions.
We then show that the depth-based motion assessment/compensation greatly improves
the HR measurement success rate. When the user is sitting in the parked vehicle with
the engine running, the CVSM system can measure HR with 86% success rate with mo-
tion compensation and only 36.5% success rate when only the 2D grayscale information
is used. Such improvement becomes more evident in more complex driving scenarios.
When measuring the passenger while driving on the highway and local roads, the success
rate is 82% (34% without compensation) and 66% (22% without compensation), respec-
tively. Ultimately, in the case of measuring users driving the vehicle, the compensated
HR measurements achieve a success rate of 71.9% and 56% on highways and local roads,
respectvely, as compared to just 13.6% and 12% when only the grayscale information is
used. Even with motion compensation, the HR measurement on the local road remains the
most challenging task since both the road unevenness and the driver’s active motion are
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more significant in this case. Moreover, we show RR measurement on highway driving
scenarios with an average deviation of −1.4 BPM.

In the end, we explore the limitations as well as potential improvements to the CVSM
system. The limitations of the HR measurements using the CVSM system could come from
effects such as facial expression, sudden motion or even reflection glares from the driver’s
eye. These limitations could potentially be alleviated using a higher frame rate ToF camera
or using other post-processing algorithms to further reject these intensity artifacts. As for
the RR measurement, even though the 850nm illumination does not penetrate as deep as a
millimeter-wave radar, our CVSM system is still able to measure the respiration pattern
of the chest wall when the user is wearing various types of clothing. With its robustness
against both ambient light and motion artifacts, the ToF-based CVSM system could be a
key enabler in low-cost and compact driver/occupant monitoring systems in the vehicle.
The physiological information measured by the system could one day empower a safer and
more functional ADAS system.
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