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Abstract: Real sedimentary media can usually be characterized as transverse isotropy. To reveal
wave propagation in the true models and improve the accuracy of migrations and evaluations, we
investigated the algorithm of wavefield simulations in an anisotropic viscoelastic medium. The
finite difference in the frequency domain (FDFD) has several advantages compared with that in
the time domain, e.g., implementing multiple sources, multi-scaled inversion, and introducing
attenuation. However, medium anisotropy will lead to the complexity of the wavefield in the
calculation. The damping profile of the conventional absorption boundary is only defined in one
single direction, which produces instability when the wavefields of strong anisotropy are reflected on
that truncated boundary. We applied the multi-axis perfectly matched layer (M-PML) to the wavefield
simulations in anisotropic viscoelastic media to overcome this issue, which defines the damping
profiles along different axes. In the numerical examples, we simulated seismic wave propagation
in three viscous anisotropic media and focused on the wave attenuation in the absorbing layers
using time domain snapshots. The M-PML was more effective for wave absorption compared to
the conventional perfectly matched layer (PML). In strongly anisotropic media, the PML became
unstable, and prominent reflections appeared at truncated boundaries. In contrast, the M-PML
remained stable and efficient in the same model. Finally, the modeling of the stratified cross-well
model showed the applicability of this proposed algorithm to heterogeneous viscous anisotropic
media. The numerical algorithm can analyze wave propagation in viscoelastic anisotropic media.
It also provides a reliable forward operator for waveform inversion, wave equation travel-time
inversion, and seismic migration in anisotropic viscoelastic media.

Keywords: frequency-domain modeling; anisotropy; viscoelastic; edge-effect removing

1. Introduction

Regarding the numerical modeling of wave propagation in anisotropic media, numer-
ous studies have been implemented using finite difference and spectral methods in the time
domain [1–3] to obtain the numerical solution in discrete geological media. These media
may contain rocks with various properties, defined as acoustic, elastic, viscoelastic isotropic,
and anisotropic. With the flourishing development of computational technology and nu-
merical algorithms, wavefield simulation methods have played a crucial role in imaging
subsurface characteristics. Various imaging methods, such as tomography [4,5], reverse
time migration [6–8], and full-waveform inversion [9–11], require an efficient wavefield
simulation method to generate synthetic waveform data to match the observed data.

Accurately performing wavefield modeling with high efficiency in complex media,
which contains anisotropy and attenuation, is critical. In contrast to time-domain wavefield
modeling, although it is challenging to solve the sparse linearized matrix, multi-source
modeling can be performed efficiently, and attenuation can be easily introduced [12]. In
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addition, the physical parameters of the reservoir can be estimated by seismic inversion
and imaging methods within a limited number of frequency components [13]. Operto
et al. [14] developed frequency-domain finite-difference viscoacoustic wavefield modeling
in tilted transversely isotropic (TTI) media. Jeong et al. [15] used the finite element method
to simulate the frequency-domain wavefield of vertically transversely isotropic (VTI) media.
Zhou et al. [16] implemented seismic wave modeling in elastic anisotropic media using
the generalized stiffness reduction method. Yang et al. [17] developed a new version of
the generalized stiffness reduction method for anisotropic media and incorporated it into
the 2.5D spectral element method. Qiao et al. [3] derived attenuative anisotropic wave
equations involving fractional time derivatives and solved them using the pseudospectral
method. Reducing artificial reflections is still essential despite numerous frequency-domain
modeling methods.

Figure 1 shows a sketch of the absorbing boundary condition (ABC). The middle
area is the computational area, and the dashed-dot area is the truncated boundary. When
the wavefield propagates to the boundary, the ABC needs to attenuate the reflections
inwards. Since Berenger [18] developed a perfectly matched layer (PML) to reduce artificial
reflections of the electromagnetic wavefield, many studies have shown success in its
applications to acoustic and elastic wave modeling [19,20], and improvements have also
been made to the perfectly matched layer method [21]. The PML method has become
popular for wave modeling problems because it is applicable to first-order wave equations
in the time domain [22] and frequency domain [23]. However, it is not straightforward
how to implement it for second-order wave equations [24]. In addition, the most severe
problem of PML may exist in absorbing artificial reflections in elastic anisotropic media.
This is because PML can only function effectively when all slowness vector components
of the waves are parallel to their corresponding group velocity vectors [25]. As is known,
an elastic anisotropic wavefield generates multiple modes of waves and becomes more
complex when the PML becomes unstable in dealing with the edge-effect problem. Thus,
we need to replace PML in wavefield simulations of elastic anisotropic media.
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A multi-axial perfectly matched layer (M-PML) boundary condition was developed in
the time domain [26], and its stability has been verified in time-domain isotropic elastic
modeling [27,28]. In this paper, the M-PML boundary condition is applied to frequency-
domain finite-difference modeling in several elastic anisotropic media. The key point of this
method is based on a more general version of coordinate stretching for PML, where waves
are absorbed in all directions because the damping factor is specified in more than one
direction. Then, by adjusting the proportion coefficients of the damping factors according to
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a specific model, M-PML can be stably performed. Comparing the wavefield generated in
two homogenous media shows that PML, frequently used in the first-order wave equation,
has the disadvantage of removing artificial reflections. At the same time, the M-PML
performs well due to the damping profiles specified in multiple directions. Numerical
experiments conducted in a strongly anisotropic medium show that M-PML remains stable
in the frequency and time domains for viscoelastic anisotropic wavefield propagation. In
addition, the M-PML requires only a modification of the damping factors. Therefore, the
additional computational cost remains unchanged for techniques that rely on wavefield
simulation, such as wave equation migration and waveform inversion.

2. Theoretical Foundations
2.1. Frequency Domain Elastic VTI Equation

The 2D frequency-domain anisotropic elastic Equation [10] is given as:

ρω2ux + C11
∂2ux
∂x2 + C44

∂2ux
∂z2 + (C13 + C44)

∂2uz
∂x∂z + f (ω) = 0,

ρω2uz + C44
∂2uz
∂x2 + C33

∂2uz
∂z2 + (C13 + C44)

∂2ux
∂x∂z + g(ω) = 0,

(1)

where ρ is the density, f (ω) and g(ω) are Fourier components of horizontal and verti-
cal body forces, respectively; ux and uz are the horizontal and vertical displacements,
respectively; and ω is the angular frequency. The elastic stiffness is written as:

C11 = (1 + 2ε)ρv2
pr,

C33 = ρv2
pr,

C13 =
√

2δC33(C33 − C44) + (C33 − C44)
2 − C44,

C44 = C55 = ρv2
sr,

(2)

where vpr and vsr are the P-wave and the SV-wave velocity, respectively; ε and δ are
Thomsen’s anisotropic parameters [29].

The frequency-domain finite-difference method can easily introduce attenuation [30].
The constant-Q model is adopted here, and the complex velocity is given as:

1
vp(ω)

= 1
vpr

(
1 − 1

πQp
ln
∣∣∣ ω

ωr

∣∣∣) · (1 − i
2Qp

)
,

1
vs(ω)

= 1
vsr

(
1 − 1

πQs
ln
∣∣∣ ω

ωr

∣∣∣) · (1 − i
2Qs

)
,

(3)

where vp, vs is the complex p-wave and SV-wave velocity, respectively; and Qp, Qs is the
quality factor of the P-wave and SV-wave; ωr is the dominant frequency of the source
wavelet; i represents the imaginary unit. Substituting Equation (3) into Equation (2) yields
the viscoelastic anisotropic wave equation.

2.2. Absorbing Boundary Condition

In order to introduce the M-PML absorbing condition to process unwanted reflections,
the frequency-domain anisotropic elastic wave equation can be written as:
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ρω2ux +
1
ex

[
C11

1
ex

∂2ux
∂x2 + C11

∂
∂x

(
1
ex

)
∂ux
∂x +C13

1
ez

∂2uz
∂x∂z + C13

∂
∂x

(
1
ez

)
∂uz
∂z

]
+ 1

ez

[
C44

1
ex

∂2uz
∂z∂x + C44

∂
∂z

(
1
ex

)
∂uz
∂x +C44

1
ez

∂2ux
∂z2 + C44

∂
∂z

(
1
ez

)
∂ux
∂z

]
+ f (ω) = 0,

ρω2uz +
1
ex

[
C44

1
ex

∂2uz
∂x2 + C44

∂
∂x

(
1
ex

)
∂uz
∂x +C44

1
ez

∂2ux
∂x∂z + C44

∂
∂x

(
1
ez

)
∂ux
∂z

]
+ 1

ez

[
C13

1
ex

∂2ux
∂z∂x + C13

∂
∂z

(
1
ex

)
∂ux
∂x +C33

1
ez

∂2uz
∂z2 + C33

∂
∂z

(
1
ez

)
∂uz
∂z

]
+ g(ω) = 0,

(4)

where ex = 1 − i dx(x)
ω and ez = 1 − i dz(z)

ω , x and z are respectively the distance from the
inner boundary of the horizontal and vertical direction; dx(x) is the damping profiles,
given as:

dx(x) = 2πα0 f0

( x
L

)
, (5)

where x is the distance from the inner boundary of the horizontal direction; α0 is the
optimized parameter, and here α0 is given as 1.79 [30]; f0 is the dominant frequency of the
source wavelet and L is the thickness of the PML absorbing boundary condition. The new
vertical coordinate has a similar form to the horizontal one:

dz(z) = 2πα0 f0

( z
L

)
, (6)

where z is the distance from the inner boundary of the vertical direction.
Artificial boundary reflection can seriously affect the effect of numerical modeling.

Therefore, a frequency-domain multi-axial perfectly matched layer (M-PML) is exploited to
absorb the unwanted reflections.

In classical PML, unwanted waves are only attenuated in one direction (uniaxial).
Within the left and right boundaries, only the damping function along the x-direction is
nonzero and can be formulated as:

dx = dx
x(x), dz = 0. (7)

Similarly, within the bottom and left boundaries, only the damping function along the
z-direction takes effect and can be given as:

dx = 0, dz = dz
z(z). (8)

To attenuate unwanted reflections efficiently, M-PML was developed [26]. The basic
idea of M-PML is that the damping functions are proportional to each other. The damping
function along the x-direction can be defined as:

dx = dx
x(x), dz = p(z/x)dx

x(x), (9)

where p(z/x) is the proportion coefficient in either the right or left PML boundary.
Similarly, the damping function along the z-direction can be written as:

dx = p(x/z)dz
z(z), dz = dz

z(z), (10)

where p(x/z) is the proportion coefficient in either the bottom or top PML boundary. During
implementation, the proportions p(x/z) are between 0 and 1 [27].

2.3. Numerical Implementation

Introducing the finite differences and derivatives can be summarized as follows:
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∂ux
∂x ≈ 1

2∆x

[
ui+1,j

x − ui−1,j
x

]
,

∂ux
∂z ≈ 1

2∆z

[
ui,j+1

x − ui,j−1
x

]
,

∂2ux
∂x2 ≈ 1

∆x2

[
ui+1,j

x − 2ui,j
x + ui−1,j

x

]
,

∂2ux
∂z2 ≈ 1

∆z2

[
ui,j+1

x − 2ui,j
x + ui,j−1

x

]
,

∂2ux
∂x∂z ≈ 1

4∆x∆z

[
ui+1,j+1

x − ui+1,j−1
x − ui−1,j+1

x + ui−1,j−1
x

]
,

(11)

where ∆x and ∆z are the horizontal and vertical grid sizes, respectively; and the value of
grid sizes must be small enough so that there are enough grid points per wavelength [10];
i and j are the indices of the horizontal and vertical grids. The finite differences of uz are
similar to the way of the horizontal one.

Using the finite-difference star stencil [10]:

M1 M4 M7
M2 M5 M8
M3 M6 M9

. (12)

Substituting the finite difference of derivatives and each grid point of Equation (12)
according to Figure 2 can be collected as follows:
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wave equation.

After using the finite difference method in the frequency domain, the final equation
can be written as Equation (14). Thus, for each frequency component, the matrix equation
can be given as:

M(ω)U(ω) = F(ω). (14)

The impedance matrix M(ω) can be obtained by Equation (13), U(ω) is the monochro-
matic wavefield, and F(ω) is the source term. The frequency-domain Ricker wavelet is
used in the following numerical examples, and LU decomposition is used to solve the
matrix Equation (14) to get the monochromatic wavefield.
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M1 =
(C13+C44)i,j

4∆x∆z(exez)i,j

[
0 1
1 0

]
,

M2 =


(C11)i,j(

∆x(ex)i,j

)2 +
(C11)i,j

2∆x(ex)
3
i,j
·

∂(ex)i,j
∂x

(C44)i,j

2∆x(eze2
x)i,j

·
∂(ex)i,j

∂z

(C13)i,j

2∆x(eze2
x)i,j

·
∂(ex)i,j

∂z
(C44)i,j(

(ex)i,j∆x
)2 +

(C44)i,j

2∆x(ex)
3
i,j
·

∂(ex)i,j
∂x

,

M3 =
−(C13+C44)i,j
4∆x∆z(exez)i,j

[
0 1
1 0

]
,

M4 =


(C44)i,j(

∆z(ez)i,j

)2 +
(C44)i,j

2∆z(ez)
3
i,j
·

∂(ez)i,j
∂z

(C13)i,j

2∆z(exe2
z)i,j

·
∂(ez)i,j

∂x

(C44)i,j

2∆z(exe2
z)i,j

·
∂(ez)i,j

∂x
(C33)i,j(
(ez)i,j∆z

)2 +
(C33)i,j

2∆z(ez)
3
i,j
·

∂(ez)i,j
∂z

,

M5 =


ω2ρi,j −

2(C11)i,j(
∆x(ex)i,j

)2 −
2(C44)i,j(
∆z(ez)i,j

)2 0

0 ω2ρi,j −
2(C44)i,j(

∆x(ex)i,j

)2 −
2(C33)i,j(
∆z(ez)i,j

)2

,

M6 =


(C44)i,j(

∆z(ez)i,j

)2 −
(C44)i,j

2∆z(ez)
3
i,j
·

∂(ez)i,j
∂z

−(C13)i,j

2∆z(exe2
z)i,j

·
∂(ez)i,j

∂x

−(C44)i,j

2∆z(exe2
z)i,j

·
∂(ez)i,j

∂x
(C33)i,j(
(ez)i,j∆z

)2 −
(C33)i,j

2∆z(ez)
3
i,j
·

∂(ez)i,j
∂z

,

M7 =
−(C13+C44)i,j
4∆x∆z(exez)i,j

[
0 1
1 0

]
,

M8 =


(C11)i,j(

∆x(ex)i,j

)2 −
(C11)i,j

2∆x(ex)
3
i,j
·

∂(ex)i,j
∂x

−(C44)i,j

2∆x(eze2
x)i,j

·
∂(ex)i,j

∂z

−(C13)i,j

2∆x(eze2
x)i,j

·
∂(ex)i,j

∂z
(C44)i,j(

(ex)i,j∆x
)2 −

(C44)i,j

2∆x(ex)
3
i,j
·

∂(ex)i,j
∂x

,

M9 =
(C13+C44)i,j

4∆x∆z(exez)i,j

[
0 1
1 0

]
.

(13)

3. Synthetic Examples
3.1. Comparative Analysis of the Stability of PML and M-PML

In this section, a medium of strong anisotropy was employed to test the stability
and performance of PML and M-PML. The material properties of the strongly anisotropic
medium are given in Table 1: medium 3. We performed wavefield simulations to test the in-
stability of the boundary conditions and confirmed that M-PML outperformed PML in this
strongly anisotropic medium. A square model was considered embedded in an absorbing
boundary of four sides. The computational model of medium 3, similar to the model used
in Meza-Fajardo [25], has a size of 720 m × 720 m, and it is discretized by 480 × 480 grids
with a grid size of 1.5 m. A boundary with a thickness of 120 grids is considered to observe
the phenomenon of wave propagating inside truncated boundary conditions. A vertical
source dominated by 15 Hz is located at the grid point (230 m, 230 m), which is close to
the artificial edge. The real parts of the monochromatic wavefields using classical PML
and M-PML, respectively, are given in Figure 3. In Figure 3, the monochromatic wavefield
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at 15 Hz was calculated using classical PML and M-PML, respectively. The asterisk in
Figures 3 and 4 is the vertical source. The black dashed line in the figure shows the onset of
the absorbing zone. From the results, it can be seen that the PML appears unstable at the
boundary intersection in the upper right corner. This phenomenon is due to the complexity
of the wavefield in the absorption boundary region, which leads to numerical instability of
the PML. Since the PML is a uniaxially defined damping profile, absorption incompleteness
is also observed in the other three corners. In the M-PML, however, since the damping
profile is multi-axial, the instability that appears in the upper right corner of the PML is
well resolved, and the attenuation of the waves is better in the corner regions.

Table 1. Model parameters used for numerical experiments.

Medium Density (kg/m3) Qp Qs Elastic Moduli (GPa)

Medium 1 3200 20 10 C11 = 16.70; C13 = 6.60;
C33 = 14.00; C44 = 6.63.

Medium 2 8900 20 10 C11 = 30.70; C13 = 10.3;
C33 = 35.80; C44 = 7.55.

Medium 3 1000 — — C11 = 4.000; C13 = 7.50;
C33 = 20.00; C44 = 2.00.
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Figure 3. Real part of the horizontal component from the monochromatic wavefield at 15 Hz with
(a) classical PML and (b) M-PML.

Snapshots of the time-domain wavefield corresponding to Figure 3 are given in
Figure 4. The black dashed line in Figure 4 is the onset of the absorbing boundary condition,
and the source is indicated by an asterisk. Figure 4a,c,e,g are the wavefields calculated
by PML, and Figure 4b,d,f,h are the wavefields calculated by M-PML. The results show
that the PML-calculated wavefields display a significant instability because at 0.0818 s,
the wavefield has not yet propagated to the boundary, but strong energy reflections have
already occurred, and these reflections result from the instability remain almost constant
as the wavefield propagates. Therefore, PML is unstable in strongly anisotropic media.
In contrast, the results of M-PML in the right panel have no unstable reflections, and
the waves are successfully absorbed in the truncated boundary regions, so the M-PML
with multi-axial damping profiles solves the problem of instability of PML in strongly
anisotropic media.
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3.2. Comparative Analysis in Homogeneous Elastic Anisotropic Media

In the previous section, we verified that M-PML is superior to PML in terms of stability.
However, the absorption performance advantages of M-PML and PML were not compared.
Therefore, in this section, wavefield simulations are performed using M-PML and PML in
different anisotropic media to compare the absorption of the two boundary conditions by
observing the time-domain wavefield snapshots and comparing the energy curves. The
energy of the wavefield snapshot is the sum of the squares of the amplitude values of each
point in the wavefield. Then, the energy decay curve is obtained for each moment of the
wavefield snapshot and plotted as a curve with the horizontal axis of time and the vertical
axis of amplitude.

In the first test, the physical properties are given in Table 1: medium 1. We set the
model size to be 1.0 km × 1.0 km with a grid space of 2.5 m, and employed an explosive
Ricker wavelet source with a dominant frequency of 20 Hz. Figure 5 exhibits snapshots
of horizontal displacement and its corresponding analytical group velocity calculated
from medium 1. These snapshots were simulated using PML and M-PML, respectively,
at different times. Figure 5a,b are the snapshots computed inside the PML and M-PML
at 0.1667 s. The consistency between the wavefront calculated from the analytical group
velocity and the wavefront of snapshots can be observed in Figure 5c. Similar to the figures
above, Figure 5d–f are recorded at 0.2444 s. The wavefront of snapshots is almost the same
as the wavefront calculated from the analytical group velocity, and the absorptive capacity
of M-PML is superior to that of PML at four corners. Figure 5g,h are recorded at 0.7 s,
and the absorptive advantage of M-PML over PML can be observed. Figure 5i shows the
wavefield energy decay curves in the computational domain. These results show that the
absorption performance of M-PML is better than that of PML when both ABCs remain
stable, which can be verified by the comparative observations in Figure 5g,h. Because at
0.7 s, the effective wavefield has all propagated within the boundary, while the boundary
reflections observed in PML are stronger at this time, and that of M-PML is much weaker.
To further quantitatively compare the performance of the two ABCs, we gave the energy
curves of them, where the horizontal axis is time, and the vertical axis is the logarithm of
energy, and we can see that the energy of the waves of both ABCs becomes weaker as time
passes, but the energy of M-PML decays faster than that of PML. In addition, in order to
verify the absorptive capacity and reliability of M-PML in viscous media, the wavefield
snapshots of M-PML in viscoelastic anisotropic media are given in Figure 6. From these
results, we know that M-PML is still effective in viscous anisotropic media.

Regarding the verification of the results, we calculated the wavefront using the analyt-
ical group velocity in anisotropic media [31], and the results are displayed in Figure 5c,f,
where the fast propagating wavefront is the P-wave, and the slow one is the S-wave. It
can be seen that the wavefield snapshots at the corresponding moment also contain P-
waves and S-waves. The wavefront in snapshots can correspond well with the analytical
wavefront in Figure 5c,f, which illustrates the reasonableness and applicability of the
numerical results.

We further tested our algorithm with medium 2 in this test. The physical properties
are given in Table 1. We also set the model size to be 1.0 km × 1.0 km with a grid space
of 2.5 m and employed an explosive Ricker wavelet source with a dominant frequency of
20 Hz. Figure 7 shows snapshots of horizontal displacement and its analytical wavefront
calculated from medium 2. These snapshots are calculated within the PML and M-PML
boundary conditions, respectively. Figure 7a,b are the snapshots simulated inside the
PML and M-PML at 0.1222 s, respectively; Figure 7d,e are simulated inside the PML and
M-PML at 0.1889 s, respectively; and the wavefront calculated by the analytical group
velocity in Figure 7c,f are consistent with the wavefront of snapshots at 0.1222 s and
0.1889 s, respectively. Figure 7g,h are recorded at 0.6 s, and significant reflections can be
observed at the four corners in the snapshot of the PML; however, the M-PML does not.
Figure 7i shows the energy decay curves of the wavefield calculated from medium 2. This
numerical experiment was conducted to confirm that M-PML has superior absorption
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performance to PML in arbitrarily different anisotropic media. It can still be seen from
the results that the wavefront in the wavefield snapshots Figure 7a,b coincides with the
analytical wavefront [31] Figure 7c,f at the corresponding moment, verifying the rationality
and applicability of the numerical results. Similar to the previous section, viscosity is still
introduced in this medium, and its wavefield snapshots are displayed in Figure 8 to confirm
that M-PML can still maintain good absorptive properties and stability in different viscous
anisotropic media.
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group velocity at (c) 0.1667 s and (f) 0.2444 s. (i) is the energy decay curve of PML and M-PML.
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Regarding absorption performance, observing the wavefield snapshots of PML and
M-PML shows that both ABCs are stable in this homogenous anisotropic medium, so it is
possible to compare their absorption performance visually. At 0.6 s, the effective wavefield
wholly left the working area, and we can see that the boundary reflections of PML are
strong at the four corners in Figure 7h, but those of M-PML are well attenuated. Further, in
Figure 7i, it is illustrated that the energy decay curve of M-PML is lower than that of PML,
which quantitatively displays the absorption advantage of M-PML over PML.

3.3. Wave Propagation in a Complex Anisotropic Medium

Finally, we used the frequency domain method based on M-PML to perform wavefield
simulation for a more complicated cross-well model. The cross-well model is shown in Figure 9.
The corresponding parameters selected are as follows: computing area, 0 ≤ x ≤ 108 m,
0 ≤ z ≤ 289 m; spatial step, h = ∆x = ∆z = 0.5 m; grid parameter, 578 × 216; the number
of M-PML layers, 30; dominant frequency of the source, 130 Hz, the location of the source:
(135 m, 0 m); receiver alignment positions: x = 108 m, 0.5 ≤ z ≤ 288.5 m; receiver interval,
2 m. The cross-well model has eight layers. There are numerical constants in red in Figure 8,
which label the layers in the figure. The red constants 1–8 in the figure correspond to layers
1–8 in Table 2, respectively. The asterisk in the figure represents the source. These anisotropic
medium parameters are taken from the true sedimentary and are available in the study of
Thomsen [28].
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Table 2. Physical parameters used for the cross-well model.

Layer Media Vp (m/s) Vs (m/s) Qp Qs ε δ ρ (kg/m3)

Layer 1 1875 826 10 10 0.225 0.100 2000
Layer 2 2202 969 10 10 0.015 0.060 2250
Layer 3 2868 1350 15 15 0.970 −0.090 1860
Layer 4 3368 1829 21 18 0.110 −0.035 2500
Layer 5 3688 2774 30 19 0.081 0.057 2730
Layer 6 3901 2682 38 25 0.137 −0.012 2640
Layer 7 4296 2471 42 35 0.081 0.129 2660
Layer 8 4529 2703 50 40 0.034 0.211 2520

Figure 10 shows the mono-frequency wavefield snapshots of elastic and viscoelastic
anisotropy obtained by the proposed method at 163.2 Hz, 329.8 Hz, and 429.5 Hz. Fur-
thermore, the time-domain snapshots at the time point of 0.0199 s, 0.0299 s, and 0.0399 s
computed by the proposed method are shown in Figure 11, respectively. It is easy to see
that there exist no artificial edge effects near the truncated boundary in either the elastic or
viscoelastic anisotropic wavefield. Then, we give the single-shot seismograms of the cross-
well model, which are shown in Figure 12, and we also see that there exist no numerical
dispersion or artificial edge effects in either elastic or viscoelastic anisotropic seismograms.
Thus, we may conclude that the M-PML for the finite-difference frequency domain is
suitable for wavefield simulation in a viscoelastic anisotropic and complicated medium.
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Figure 10. Mono-frequency horizontal elastic anisotropic wavefield snapshots of different frequencies
for the cross-well model at (a) 163.2 Hz, (b) 329.8 Hz, (c) 429.5 Hz, and viscoelastic anisotropic
wavefield at (d) 163.2 Hz, (e) 329.8 Hz, and (f) 429.5 Hz.
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4. Conclusions

In this study, in order to solve the instability of the absorbing boundary conditions
caused by the frequency-domain algorithm for viscoelastic anisotropic wavefields, wave
propagation was simulated by the finite-difference frequency-domain, and the reliability of
the results was verified by combining the analytical wavefront obtained from the anisotropic
analytical group velocity. The multi-axis perfectly matched layer (M-PML) was introduced
in the frequency domain. We compared the wavefield snapshots and energy attenuation
curves of M-PML and PML in different elastic anisotropic media. Then, we gave the
viscoelastic anisotropic wavefield to demonstrate the reliability of M-PML in viscous media.
The results indicate that M-PML can still stably and effectively absorb reflections from the
truncated boundaries in strongly anisotropic and viscous media. Simulations in a complex
cross-well viscoelastic anisotropic model indicate the applicability of this algorithm to a
heterogeneous medium.

Moreover, the implementation of M-PML only needs to combine the damping profiles
of PML, which improves absorption performance and stability while maintaining computa-
tional efficiency. In practice, this algorithm can be used as a forward operator for seismic
migration, waveform inversion, and wave equation travel-time tomography. The frequency-
domain algorithm can also improve the inversion efficiency of multi-source problems. For
complex subsurface media, the proposed method can be applied for inversion of medium
anisotropy and attenuation properties. Although our proposed algorithm works well, it
has some limitations. Bad choices of p(z/x) and p(x/z) may lead to artificial reflections.
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