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Abstract: Simply speaking, automatic driving requires the calculation of a large amount of traffic
data and, finally, the obtainment of the optimal driving route and speed. However, the key technical
difficulty is the obtainment of data; thus, radar has become an indispensable hardware for automatic
driving. Compared to the optical and infrared radar, millimeter-wave radar is not affected by the
shape and color of the target, and it is not affected by the atmospheric turbulence, compared to
ultrasonic, and so it has a stable detection performance and good environmental adaptability. It is
little affected by changes in the weather, and the external environment, rain, snow, dust, and sunshine
have no interference in it. The Doppler frequency shift is large, and the accuracy of the relative
velocity measurement is improved. However, one challenge for vehicles in fast environments is
millimeter-wave-based communication. Because of the short wavelength of the millimeter wave and
the high path and penetration losses, the beamforming technology of a large-scale antenna array plays
a key role in the construction and maintenance of millimeter-wave communication links. Millimeter
waves have wide channel bandwidths, unique channel characteristics, and hardware limitations,
and so there are many challenges in the direct use of beamforming technology in millimeter-wave
communication. Traditional beam training cannot meet the requirements of low overhead and low
delay. This paper, in order to obtain beam information, introduces the context-awareness module to
the deep-learning net, which is derived from past observation data. This paper establishes a model
that contains the receiver and the surrounding vehicles to perceive the environment. Then, a long
short-term memory (LSTM) neural network is used to foresee the acquired power, which is quantized
by several beam powers. According to the conclusion, the prediction accuracy is greatly increased,
and the model could yield throughput with almost zero overhead and little performance loss.

Keywords: mmWave beam prediction; situational awareness; deep learning

1. Introduction

One of the most challenging aspects of automotive applications is the configuration of
mmWave antenna arrays. Because of its high mobility, the vehicle will be intermittently
blocked by other objects during driving, which results in blind spots that are covered by
beams. To maintain a high-speed transmission link, the solution is to use frequent beam
alignment. Two requirements for the transmission link in in-vehicle applications are low
overhead and low latency, and the solutions that are currently employed in IEEE802.11ad
are insufficient to meet these requirements [1,2]. However, the only solution that supports
massive data sharing is the millimeter wave, and not only that, but the millimeter wave
also has a nonnegligible value for 5G in-vehicle cellular communication and infotainment
services [3,4]. Therefore, to realize the rapid configuration of mmWave links, it is necessary
to design a low-overhead method with high efficiency and high robustness at the same time.

The utilization of out-of-band side information in mmWave vehicular networks is
an alternative approach to simplifying beamforming [5]. There are many sensors, such
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as GPS, visible light radar, lidar, and other sensors around the vehicle, and information
is exchanged between various sensors [6] so that the vehicle has the ability of situational
awareness. It can be seen from this that side information exists in various parts of the
intelligent transportation system.

In [7], the data of sensors and other systems are not only trained by a millimeter-wave
beam, but they are also assisted by out-band information. In [8], it was shown that the sub6
GHz band can be used for beam selection and channel estimation because of the channel
consistency between the mmWave and sub6 GHz bands. A beam-alignment scheme is
proposed, which is achieved by obtaining effective intelligence from radar signals when
configuring and designing the vehicle beam.

A method based on inverse fingerprinting is introduced to select the best pair of
beams. Just give the location of the receiver, and the beam arrangement for that location is
provided by the infrastructure on the basis of the frequency of occurrences in the dataset
for that location [8]. The mmWave beam selection with time-dependent vehicle-movement
trajectories is addressed by a structure for yielding 5G MIMO datasets of exploding ray
tracing, and deep learning is employed for assisted selection.

The millimeter-wave antenna array has high gain and uses more antennas, which leads
to high pilot overhead and computational complexity. In order to solve these challenges,
scholars propose the use of the method based on deep learning to realize the channel
estimation [9–11], and deep learning has great potential to reduce overhead [12]. In
Ref. [13], the authors propose a novel machine-learning-based method for concurrent
transmission in mmWave vehicle-to-vehicle communications. Such an approach can enable
effective analog beam selection and the maintenance of low computational complexity. By
combining reconfigurable-intelligent-surface (RIS) technology with downlink multiuser
communication, the authors of [14] developed a hybrid beamforming scheme to facilitate
the sum-rate performance improvement for RIS-based systems. In order to reduce the
overhead, the authors of [15] propose a beam-selection scheme that is based on deep
learning that randomly selects some beam measurements, and then uses the machine-
learning model to estimate the quality of the entire beam. The performance of this method
is obviously constrained by the beam search area, and it cannot make full use of the spatial
correlation of the beam quality.

In this paper, we propose a novel machine-learning framework that leverages intel-
ligent situational awareness to assist in mmWave beam-power prediction. In a vehicular
environment, moving vehicles are the main moving reflectors in cities. Vehicle Intelligent
Situational Awareness, as an aid, corresponds to the acquired power of several beams. One
way of making the feedback very low or almost zero is to utilize the car’s position as a
feature to foresee the acquired power of the different beams. Messages about safety in
dedicated short-range communications (DSRC), or the corresponding functions in cellu-
lar systems, can provide us with vehicle-location information. First, different regression
models are applied to the strongest beam powers. By using different degrees of situational-
awareness results to compare to the results that were obtained by regression, the results
show that, as the degree of situational awareness deepens, the accuracy of the prediction
will also improve, and full situational awareness can obtain the most accurate prediction.
With the help of specific datasets, we investigated the influence of the different quantization
parameters of the channel-quality index (CQI) on the results. Studies have shown that
dataset statistics determine the optimal parameters, and CQI quantization has little effect
on the performance under the premise that the resolution can be guaranteed. Finally, the
degree to which the power performance of all pairs of beams is affected by multiple regres-
sion was also evaluated. The results show that power-prediction-based beam selection can
achieve higher throughput than classification-based beam selection.
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2. Database Establishment
2.1. Simulation Setup

In this paper, as is shown in Figure 1, a straight street with two lanes located in a
modern city is set as our experimental object. The location of the building is calibrated. A
road-side unit with a height of 5 m is deployed on the roadside, and only trucks and cars
exist in the whole experimental environment. Channel and beam information comes from
Romcom’s Wireless Insite software. Since tall trucks are not blocked, we only simulated the
passage of low-altitude trucks, and the best pair of beams is invariably line-of-sight (LOS).
The receiver in the yellow box is mounted on top of the low-height car, and the green box
represents the RSU. Along the road are some fixed buildings. Vehicles are parked randomly
in both lanes, the ratio of trucks to cars is constant, and the vehicle density remains basically
the same.
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The receiver in the yellow box is mounted on top of the low-height car, and the green
box represents the RSU. Along the road are some fixed buildings. Vehicles are parked
randomly in both lanes, the ratio of trucks to cars is constant, and the vehicle density
remains basically the same.

2.2. Channel Model

The mmWave channel is generated by combining the ray-tracing and geometric-channel
models [8]. The paths in mmWave-channel modeling are equivalent to the rays in ray tracing. From
this, the strongest L-path information can be obtained:

{
φA
` , φA

` , φD
` , φD

` , τ̀ ,a`},` = {1,2, · · · , L} ,
where (φA

` , φA
` ) stands for the azimuth and the elevation of arrival, and (φD

` , φD
` ) stands for

the azimuth and the elevation of departure. Moreover, a stands for the path gain for the
i-th ray, and τ stands for the time of arrival. Uniform planar arrays (4 × 2) (Nt = Nr = 8)
are deployed at the transmitter and receiver. We approximately named the channel matrix
of the geometric channel model as H[n], n = 0, 1, · · · Lc − 1.

H[n] =
√

NtNr ∑L
`=1 g(nT − τ`)ar

(
φA
` , φA

`

)
a∗t
(

φD
` , φD

`

)
a`, (1)

where g (·) is the pulse-shaping filter; ar(φA
` , φA

` ) is the steering vector on the arrival side
of the uniform planar array; a∗t (φ

D
` , φD

` ) is the steering vector leaving the measurement;
and T is the symbol period. The code groups used in the predictive encoder and combiner
are DFT codes. The number of pairs of beams in the dataset is NB = NtNr = 64. The
encoded information corresponding to the i-th pair of beams is (wi, fi), i ∈ {1, 2, · · ·NB}.
The acquired power (yi) of the corresponding i-th pair of beams is:

yi = ∑LC−1
n=0 |w

∗
i H[n]fi|

2, (2)

The beam-power regression-training label is y = [y1, y2, · · · yNB ], and the optimal
corresponding beam power is s = argmaxi ∈ {1, · · ·NB}yi.
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2.3. Power Quantization

In mmWave systems, the basic structure cannot receive an accurate value of the
acquired power through feedback by the channel after beam scanning.

In general, the results obtained by the infrastructure feedback were conducted only by
the quantized CQIs and the corresponding pairs-of-beams indices. Therefore, the simulated
continuous acquired power obtained from Equation (2) needs to be quantized before
proceeding to the next step, which is denoted by i in the first row of Table 1. A large number
of scholars have studied the mapping scheme from the acquired power to CQI [16,17]. In
long-term evolution (LTE), the UE receives the modulation and coding scheme (MCS), and
it transmits blocks reliably through the CQI. More specifically, within the bandwidth of the
received CSI signal, when the block error rate in the MCS is lower than 10%, the UE can
receive the MCS with the highest accuracy rate. The goal of this experiment is different
from the above, since, at this point, our main focus is not on the MCS, but on predicting the
beam power. After the beam power is obtained, this information will be regressed on the
infrastructure. Therefore, in this paper, the main indicator of the reference-signal-acquired
power (RSRP) is the CQI. The quantization scheme in this paper as follows: the quantization
scheme is uniform, the upper limit of power is Pu, and the lower limit is P`. The acquired
power (P) and the CQI can be described by the following formula:

Q(p) = [min{max{ p− P`
rCQI

, 0
}

,
Pu − P`

rCQI

}
], (3)

where rCQI represents the CQI granularity and defines the ceiling acquired power (Pu(CQI =
Q(Pu))) and the floor-level acquired power (P(CQI = 0)). The quantized power is in the
interval [P`, Pu ]. Correspondingly, the inverse process of quantization is given by:

r(q) = rCQIq + P`, (4)

Table 1. Database and postprocessing.

Database Postprocessing

Original ` = y1, · · · , yNB

CQI `C = Q(y1), · · · , Q(yNB )
Regressor `r = r(Q(y1)), · · · , r(Q(yNB ))

Ordered beam `m(N) = r(Q(y1)), · · · , r(Q(yM))

Since quantization reduces the information entropy, it will produce inevitable errors,
and especially when the acquired power exceeds our defined interval ([P`, Pu ]). Therefore,
in Section 4, we illustrate how the learning accuracy depends on Pu, P`, and the quantization
accuracy. Moreover, the results show that the performance will not be significantly reduced
because of the reduction in the quantization accuracy.

3. Learning Model

In this section, our main work is to describe how the experimental scene is encoded,
and the method that we use to predict the optical power. In our experiments, the power of
any beam, including the strongest and weakest beams, was accurately predicted. Not only
that, but our method also works when we use pairs-of-beams indexing.

As is shown in Figure 2, the black rectangular box at the origin of the coordinate axis
in the figure is the receiver. The longest green rectangle is the aforementioned truck. The
remaining brown rectangles are low-height cars.
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3.1. Encoding the Geometry

At present, many experts and scholars have conducted a lot of research on vehicle-
situational-awareness coding. The environment that was designed for this experiment is
two lanes, and there are two types of vehicles. We needed to redesign a vehicle-situational-
awareness and coding scheme that is suitable for this experimental environment. First,
as shown in Figure 2, we established a Cartesian coordinate system with the receiver’s
position as the origin. The unit of the distance is such that all objects can be accurately
encoded. For the receiver, the closer a vehicle in the first lane is to the receiver, the more
light the vehicle blocks, and the more susceptible is the result. Not only that, although
some large trucks are not very close to the receiver, they will also greatly affect the beam of
the receiver. Therefore, for the above phenomena, we propose the following encoding and
sorting methods to improve the accuracy of the results.

A feature (v) of the vehicle can be defined as a vector, which could be described by the
following formula:

v = [r, t1, t2, c1, c2], (5)

where t1 and t2 represent trucks in the first and second lanes, respectively; c1 and c2 are
low-height cars in the first and second lanes, respectively; and r is the vehicle’s position
coordinates. The serial number of the car in the first lane is generated in the following way.
On the x-axis of the Cartesian coordinate system, the order of trucks along the x-axis is
defined as [x1, x2, · · · xn], and so t1 is composed of all the trucks located in the first lane:

t1 =
[
xi1 , yi1 , xi2 , yi2 , · · · xiN , yiN

]
,∣∣xi1

∣∣ < ∣∣xi2

∣∣ < · · · < ∣∣xiN

∣∣, (6)

where N is the maximum value of one type of vehicle in each lane. This maximum value
was limited by us in order to keep the dimensionality of the feature unchanged in different
scenarios. Provided that the number of trucks in the actual environment is n > N, when
encoding, we will remove the redundant trucks with long distances to the feature point. In
the same way, if the number of trucks in the actual environment is n < N, we will add some
virtual trucks to the spare places. These spare places are generally far from the feature
point. In this way, the vehicles in all lanes will be accurately encoded.

3.2. Practical Issues with Feedback

Only a small amount of pairs-of-beams information is transmitted by the feedback
link in practice, of which the optimal acquired power of the M beam and the sequence
number of it occupy a large part. Because of limited information as to the power of the
pairs of beams, we rearranged the order of the pair in descending order (i.e., y1 > y2 >
, · · · ,> yM · · · > yNB

). As is seen in Section 4 of Table 1, the regressor is only applied to
the acquired power of the first M beam. This model greatly reduces the need for feedback
information for all beams, and other methods, such as ordering the beams, can be utilized
to achieve lower computational costs. In this article, we only analyze the pairs of beams
with the highest power: M = 1.

As is shown in the top row of Table 1, this paper considers the feedback that the
infrastructure needs in order to receive the power of the out-of-order beam. It takes a
long time to complete the establishment of the database. By building on a comprehensive
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understanding of the beam power before evaluating the merits of the system, this paper
provides a practical method to select the best pairs of beams from an image.

3.3. Main Idea

The acquired power that is produced by a uniformly arranged beam can be considered
as the image. Through this, low-resolution and high-resolution beam images can be
seen as the gain powers of wide and narrow beams, respectively. The use of wide beam
measurements to measure the beam quality of narrow beams is the main idea of the model.
Thus, the goal that we aim for is to apply the super-resolution onto the beam-domain
images. By combining the two models, the proposed beam-selection method is constructed.
One is a model that estimates the quality of the beam, and the second is an estimation model
that is based on predictions. The study of the first model is on the difference between low-
resolution and high-resolution beams in the beam domain, and the output of the second
model is the current high-resolution image of the laser in the beam domain, which requires
some empirical values. At regular intervals, the receiver receives an uplink pilot signal.

According to the uploaded signal, the BS can estimate the quality of the current
beam, and it can also predict the beam quality within the coherence time of the next
channel. Figure 3 shows the envisioned scheme framework for beam selection for high-
resolution beamfield images and low-resolution images, in turn, and the unroll predictions
from multiple low-resolution images, since the predicted result reduces the number of
measurements per unit time, which means a reduction in the overhead, in turn. The goal
is to acquire correlations in the spatial domain in images, and both models employ CNN
techniques to achieve super-resolution. In addition, the prediction model in this paper
adopts the deep-learning algorithm that is borrowed from the LSTM network, and by
considering the time relationship of the beam quality, the computational cost is further
optimized. In order to preserve useful information, the LSTM extracts the variation in the
beam in the time domain, which can foresee the current quality value of the beam from the
previous beam-measurement values. The rest of this section will cover the estimation and
the prediction of the beam quality in detail.
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3.4. Model to Estimate the Beam Quality by Deep Learning

The proposed system not only measures the received up-pass frequency signal of each
broad beam, but it also builds a beam-domain image without high resolution. The inputs
to the machine-learning-based model are images that present the acquisition power and
the wide beam. The learning framework that is envisaged in this paper outputs input data
with high resolution onto the beamfield image that represents the acquired power, as well
as the narrow beam.

A model is used to estimate the power of the received narrow beam whenever an
upstream frequency signal is received. The construction of the model that is referred to is
shown in Figure 4. As is shown in Figure 4, a 2D convolutional layer and a convolutional
layer with subpixel upsampling are used, before the input to a normal convolutional layer.
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A powerful super-resolution technique is used in these two layers, which can learn to
improve the fractional variability in the picture. Subpixel convolution can reduce the
computational complexity and can upgrade maps by using complex filters that are trained
with special inputs. This information can be used to increase the resolution of the image
through the upsampling layers. As described above, two 2D convolutional layers make up
the subnetworks below. Spatial correlations in images can be used by these layers. Thanks
to the specific input type that was designed, the acquired power of the wide beam depends
on the beam direction. The fully connected (FC) layer is the last layer of the neural network.
As you can see, Table 2 shows the number of neurons in the fully connected layer, each
layer of the neural network, and the size of the filter. Our proposed scheme uses a trained
model to estimate high-resolution beamfield images, and it chooses the narrow beam that
obtains the highest energy.
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Table 2. Architecture of the estimation model.

Layer Type Filters Filter Size FC Neurons

Conv 2D 4 (3,3) -

Sub-pixel Conv 2D [18] - - -

Upsampling 2D [19] - (2,2) -

Conv 2D
40 (3,3) -
40 (3,3) -

Flatten - - -

Dense
- - 128

64

3.5. Model to Predict the Beam Quality by Deep Learning

In this paper, in order to reduce the training cost, the pilot signal is propagated only
once in the coherence time of one channel. By contrast, past pilot signals predict the
acquired power of the current narrow beam. With this, the training time will be halved.
The architecture of the model that was used for prediction is shown in Figure 4. It can
be seen that the basic architecture of this model inheritance comes from the estimation
model, which means that the convolutional layers of this, as represented in Table 1, have
exactly the same parameters and construction. The most fundamental difference between
the estimation and the forecasting of models is the tracking of the differences in the time
domain by using LSTMs for forecasting models, as Figure 5 shows. The convolution-
based LSTM network was used in the prediction model. Both the spatial features that are
extracted by the convolution, and the temporal features that are extracted by the LSTM, can
be captured at the same time by the convolutional LSTM. A list of pixels is the input to the
convolutional LSTM. In this method, in order to capture the variation in the beam quality
in the time domain, the L-shaped low-resolution image is input into the prediction model.
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LSTM is a kind of dynamic neural network that solves the problem that the traditional
neural network cannot, which is to adaptively use the past data. LSTM is a special RNN
with the ability to learn long-term dependency, and its structure is shown in Figure 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 15 
 

40 (3,3) - 
Flatten - - - 

Dense - - 128 
  64 

3.5. Model to Predict the Beam Quality by Deep Learning 
In this paper, in order to reduce the training cost, the pilot signal is propagated only 

once in the coherence time of one channel. By contrast, past pilot signals predict the ac-
quired power of the current narrow beam. With this, the training time will be halved. The 
architecture of the model that was used for prediction is shown in Figure 4. It can be seen 
that the basic architecture of this model inheritance comes from the estimation model, 
which means that the convolutional layers of this, as represented in Table 1, have exactly 
the same parameters and construction. The most fundamental difference between the es-
timation and the forecasting of models is the tracking of the differences in the time domain 
by using LSTMs for forecasting models, as Figure 5 shows. The convolution-based LSTM 
network was used in the prediction model. Both the spatial features that are extracted by 
the convolution, and the temporal features that are extracted by the LSTM, can be cap-
tured at the same time by the convolutional LSTM. A list of pixels is the input to the con-
volutional LSTM. In this method, in order to capture the variation in the beam quality in 
the time domain, the L-shaped low-resolution image is input into the prediction model. 

Input Sub-pixel 
convolution

 convolution
layers

Fully connected 
layer Output

 
Figure 5. The LSTM estimation model of this paper. 

LSTM is a kind of dynamic neural network that solves the problem that the tradi-
tional neural network cannot, which is to adaptively use the past data. LSTM is a special 
RNN with the ability to learn long-term dependency, and its structure is shown in Figure 
6. 

σ σ σtanh

tanh

tX

th

ti totgtf

tC

th

1tC −

1th −

 
Figure 6. The LSTM net structure. 

The repeating module in an LSTM cell contains four interacting layers: a forgetting 
gate layer ( tf ), an input gate layer ( ti ), an output gate layer ( to ), and a new candidate 

Figure 6. The LSTM net structure.

The repeating module in an LSTM cell contains four interacting layers: a forgetting
gate layer ( ft), an input gate layer (it), an output gate layer (ot), and a new candidate layer
(Ct). In the LSTM net structure, the gate is realized by a sigmoid function, and the forward
propagation mathematical model of the LSTM neural network is as follows:

ft = σ
(

W f ·[ht−1, xt] + b f

)
,

it = σ(Wi·[ht−1, xt] + bi),
C̃t = tanh(Wc·[ht−1, xt] + bc),

Ct = ft ∗ Ct−1 + it ∗ C̃t,
ot = σ(Wo·[ht−1, xt] + bo),

ht = ot ∗ tanh(Ct)

(7)

where σ represents the sigmoid function:

σ(x) = 1/
(
1 + e−x) (8)

In the LSTM estimation model, the LSTM layer contains 256 neurons. To enrich this
article, the deconvolution layer is used instead of the FC layer in the last part of the network.
It is worth noting that the performance of the deconvolution super-resolution architecture
is almost the same as that of the FC-layer super-resolution architecture in the case of input
of different amounts of training data (namely, pixel sequences). However, in the case of
deconvolution, the time cost of the training parameters is expensive, and so the training
speed of each epoch element is slightly slower.



Appl. Sci. 2022, 12, 4779 9 of 15

4. Performance Evaluation

In this section, in order to achieve better prediction results, we use many kinds of
learning models and datasets for the regression training in order to find the best results.
The relevant metrics are defined by us, and, in order to evaluate the system performance,
we use different quantization parameters. Finally, we test the property of the predicted
power for each pair of beams.

4.1. Performance Metric Definition

The actual beam power can be expressed as Y = {y1,y2, · · · ym}, and the predicted

value as
^
Y = {ŷ1, . . . ŷm}. Then, the alignment-probability expression can be obtained

as PA = 1
m ∑m

i=1 (argmax(yi) = argmax(ŷi)), where max{·} represents the largest element
in the vector vector(·); argmax{·} represents the index of max{·}; and (·) is the indicator
function. Thus, the throughput rate can be expressed as RT as:

RT =
∑m

i=1 log2(1 + yi[argmax{ŷi}])
∑m

i=1 log2(1 + max{ŷi})
, (9)

The actual throughput RT is only related to the learned model, and not to the beam
training.

4.2. Regression Models

The configuration environment is presented in Section 3.1. In this section, we will
analyze the different regression models and compare them to the actual results. When
quantifying the strongest beam power, we use the root mean square error (RMSE) to
determine the quantization regression accuracy, and so the unit is dB. The RMSE can be
described by the following formula:

RMSE =

√
1
m ∑m

i=1(ŷi − yi)
2, (10)

where ŷi is the predicted beam power; yi is the predicted value; and m is the number
of beams.

Table 3 presents the prediction results of random forest regression, linear regression,
gradient boosting regression, and support vector regression. The results show that random
forest regression has the best results because it can handle very high-dimensional data
without feature selection and, at the same time, the model has a strong generalization
ability [20]. Random forest regression also has a fast training speed, and so this method
can be widely used in industrial production.

Table 3. RMSEs of four regression algorithms.

Algorithm RMSE (dBm)

Random Forest 1.726
Linear Regression 6.199
Gradient Boosting 2.814

SVR 3.645

4.3. Different Levels of Situational Awareness

In this section, we discuss the role and the advantages of situational awareness in
predicting beam power. The current loss models are only concerned with the relative
distance [4], or with the absolute position between the receiver and the transmitter [21].
The authors of [8] also show that there is only one way for the location of the receiver to
provide useful information about the beam, and that is through previously transmitted
datasets. The experiments in this paper show that, in an urban environment, not only can
the dataset provide location information, but there is also a more accurate way to predict
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the beam power, which is to use the environmental information around the vehicle location
for the prediction.

The position information of the vehicle is provided in Section 3.1. Figure 7 shows the
RMSEs of the strongest pairs of beams. The prediction method that was used is random
forest regression. The dots in the figure represent the positions of the i-th vehicle, as
described in Section 3.1. The results show that most of the information on the beam power
is provided by the trucks in the first lane. The RMSE is now around 1.7, which is down from
4.5 for the previously described case that used only the receiver as a feature. Meanwhile,
the truck position in the second lane lowered the RMSE to 1.6. However, low-altitude
cars have little effect on beam-power predictions. Not only that, but when we add other
types of vehicles, the RMSE drops slightly, but not to a significant degree. From this it is
concluded that the position of the tall truck in the first lane has a very strong correlation to
the beam-power prediction. Furthermore, when the lane-location features are not complex,
the predicted results will be more accurate.
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4.4. CQI Quantization

This section discusses the relationship between the CQI-quantization performance
and the prediction power of the strongest beam. First, as described in Section 2.3, we
quantize the continuous power and restore the quantized power to continuous power.
The parameters rCQI , Pu, and P are used by us in different combinations to evaluate the
predicted RMSE. It can be seen from the observation results of the dataset that, among all
pairs of beams, the maximum beam power is Pmax = 44.23 dBm, and the minimum beam
power is Pmin = −15.15 dBm. After multiple experimental validations, we chose to use a
combination of Pu and P` to evaluate the RMSE, as is shown in Figure 8.

The experimental results show that the change in the RMSE is usually accompanied
by a large change, and, within a small range of change, the RMSE is basically unchanged,
which indicates that the RMSE presents a certain step shape in the change granularity
of this experiment. In addition, when the value of Pu is larger, the predicted result is
more accurate, but the change in the value of P` has little effect on the predicted result.
The reason for this phenomenon is that we predict the value of pairs of beams with the
strongest power. When the value of the upper bound (Pu) is not large enough, it is easy to
cause the beam power to be outside the interval ([P`, Pu ]), which thereby causes a large
quantization error. Although the lower bound has little effect on the prediction results, we
should also carefully design the upper and lower bounds. Only in this way can all the data
in the dataset be distributed in the interval ([P`, Pu ]) as much as possible, which thereby
minimizes the quantization error.
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Figure 8. RMSEs with different quantization parameters: Pu, P`, and rCQI , and specifically with
consideration to some combinations of Pu = 45, 40, 35, 30 dBm and quantization granularity
(rCQI = 0.1, 0.2, 0.5, 1, 2, 5, 10 dBm).

Figure 9 further discusses the cumulative density function (CDF) between the different
quantization granularities and the regression errors. The three points on the blue, black,
and red lines stand for the probabilities of regression error under 1 dBm for the three rCQI
conditions. The experimental results show that when rCQI is 1 or 2 dBm, the predicted
error less than 1 dBm can exceed 50%. Moreover, when we use 1 dBm as the quantization
precision, the prediction result is not much different from the prediction result without
quantization. The reason for this phenomenon may be due to quantization error. When we
use actual data, there is no quantization error. In addition, when we use CQI = 1 dbm and
2 dbm, the quantization error is so small that it has little effect on the result.
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4.5. Evaluation of Beam-Quality-Prediction Models

In this section, we evaluate the property of beam selection in consistent time for all
of the above schemes, without transmitting the pilot signals. The input to the prediction
model is the low-resolution image of the last three pilot signals. Figure 10 shows the CDF
of the SNR. As is shown in Figure 10, when using convolutional LSTM (Conv-LSTM) and
the convolutional gating unit (Conv-GRU) with our proposed scheme, our SNR is better
than that of the no-prediction exhaustive-only approach. The reason is that our scheme
has the advantage of capturing the motion state of the UE, so as to predict the acquired
power more accurately. Furthermore, our scheme results in little difference in the CDF
performance, regardless of whether Conv-GRU or Conv-LSTM is used. The reason for
this phenomenon is that both the Conv-RELU and Conv-LSTM neural networks have the
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function of predicting the current beam measurement from the past beam measurement.
Not only that, the SNR of our prediction model is almost identical to that of optimal beam
selection; however, our scheme is trained less often, in less time, and with less overhead.
Since the other SNRs are almost identical, our scheme can be obtained with high accuracy
and reliability. For our proposed scheme, too many or too few input images will affect the
prediction performance. Figure 10 shows how the MSE varies with the number of input
images. Figure 11 shows the variation in the CDF of the SNR between the two powers.
In Figure 10, when the number of input images is more than one, the final SNR is almost
unchanged. The reason is that we cannot obtain the velocity information of the object
through only one sample. As is shown in Figure 11, when we input more image data, the
performance of the model after convergence is better. However, it should be noted that, as
the input image data increases, the speed of the model convergence becomes slower. This
is because, as the input image increases, the corresponding image feature dimension also
increases. Figure 12 shows the MSE performance of our proposed scheme. The scheme
uses Conv-GRU, where the different-colored line segments represent different numbers
of inputs. The results in Figures 13 and 14 show that, when we adopt Conv-GRU, the
prediction performance of the model is better with more input-image data.
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Figure 14. Comparison of the accuracy performances of Conv-GRU and Conv-LSTM prediction
schemes.

5. Conclusions

This paper combines situational-awareness technology and an LSTM neural network
to predict beam power to improve the accuracy of the prediction. The results show that the
part of our prediction error less than 1 dBm can exceed 50% when the complexity of the
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road situation is not high. We reduce the number of training times, shorten the processing
time, and reduce the overhead, while ensuring a high SNR. Not only that, but our model is
also highly robust, and it can handle highly concurrent data well. When the road situation
becomes complex, the input data increases accordingly, and the noise interference also
increases rapidly. Our model can ensure a higher accuracy rate with a small decrease in
the convergence speed. However, when the road conditions are complicated enough, our
model may not work. Our method has the characteristics of high efficiency, high robustness,
and low overhead, which can meet the fast configuration requirements of mmWave links
in autonomous driving, and it has great industrial value.
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