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Abstract: Scientific applications often require substantial amount of computing resources for running
challenging jobs potentially consisting of many tasks from hundreds of thousands to even millions. As
a result, many institutions collaborate to solve large-scale problems by creating virtual organizations
(VOs), and integrate hundreds of thousands of geographically distributed heterogeneous computing
resources. Over the past decade, VOs have been proven to be a powerful research testbed for
accessing massive amount of computing resources shared by several organizations at almost no cost.
However, VOs often suffer from providing exact dynamic resource information due to their scale and
autonomous resource management policies. Furthermore, shared resources are inconsistent, making
it difficult to accurately forecast resource capacity. An effective VO’s resource profiling and modeling
system can address these problems by forecasting resource characteristics and availability. This paper
presents effective resource profiling and performance prediction models including Adaptive Filter-
based Online Linear Regression (AFOLR) and Adaptive Filter-based Moving Average (AFMV) based
on the linear difference equation combining past predicted values and recent profiled information,
which aim to support large-scale applications in distributed scientific computing environments. We
performed quantitative analysis and conducted microbenchmark experiments on a real multinational
shared computing platform. Our evaluation results demonstrate that the proposed prediction schemes
outperform well-known common approaches in terms of accuracy, and actually can help users in a
shared resource environment to run their large-scale applications by effectively forecasting various
computing resource capacity and performance.

Keywords: distributed scientific computing; supercomputing; cluster computing; virtual organiza-
tion; resource profiling; performance prediction; high-throughput computing; many-task computing

1. Introduction

Distributed scientific computing platforms such as research Grid, volunteer computing
platform and Cloud [1,2] make it possible to share and integrate hundreds of thousands
of heterogeneous computing resources from multiple domains organized into Virtual
Organization (VO) [3]. VO enables users to access a large amount of computing resources as
a single virtualized platform, and offers unique opportunities to the research community for
modeling and simulating complex scientific and engineering problems such as discovering
new drug, diagnosing medical conditions, forecasting weathers, managing stock portfolios,
simulating earthquake data, etc. Furthermore, recent emerging applications from many
scientific domains such as astronomy, physics, pharmaceuticals, and chemistry, which
typically involve millions of loosely-coupled tasks with relatively short per task execution
times have expedited the expansion of traditional High-Throughput Computing (HTC)
into Many-Task Computing (MTC) [4,5]. These applications are computationally intensive
and can benefit from the integrated computing capability of VOs in the PetaFLOPS range
at a reasonable cost [6].
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However, the shared resources inside the virtual organization are inherently unreliable,
volatile, and not always accessible. Additionally, computing resources are geographically
distributed across numerous sites and are managed by separate independent resource
providers with varying objectives, priorities, and management policies within a VO [7]. As
a consequence, the application running time or completion time (makspan) of a job can
be typically hours or even for days, which makes a substantial impact on the reliability
of distributed systems, since reliability is often measured in terms of the probability that
a job will be successfully completed by the system [1]. Therefore, accurate assessment
of distributed resource capacity and performance will certainly increase the efficiency
of job scheduling and the overall user satisfaction. With the help of precise resource
information and consistent performance of the shared computing environment, it can
provide processing power that exceeds the capability of even the most powerful parallel
computer system (i.e., Supercomputers) by effectively integrating exceedingly diverse
physical resources into a single virtual resource [8].

Since large-scale distributed computing resources are often unstable and heteroge-
neous, today’s key research question is how to create a model-based scheduler [9] that
guarantees predictable resource capacity and performance on an unpredictable distributed
platform. To address this problem, we have developed SCOUT system [10,11] which can pe-
riodically profile and manage information about each computing elements (CE) of the VO.
This profiled data inspired us to develop a new resource prediction model that can enable
users to effectively execute their tasks across VO member sites with higher probabilities of
allocating available CPU cores and completing tasks in the shortest time possible.

In this paper, we present novel resource profiling and performance prediction models
by using linear combination of past predicted values and recent profiled data from our
SCOUT system in order to support large-scale applications in distributed scientific comput-
ing environments. Specifically, our predication models include Adaptive Filter-based Online
Linear Regression (AFOLR) and Adaptive Filter-based Moving Average (AFMV). In order to
evaluate the effectiveness of proposed models, we also conducted microbenchmark exper-
iments on the Biomed VO [12] which is a large-scale international and interdisciplinary
virtual organization providing tens of thousands of CPU cores to scientific communities.
Our evaluation results demonstrate that the proposed prediction schemes outperform
well-known common approaches in terms of accuracy, and actually can help users in a
shared resource environment to run their large-scale HTC/MTC applications by effectively
forecasting various computing resource capacity and performance. To summarize, the
contributions of our paper can be as follows:

• Design of novel resource profiling and prediction models including Adaptive Filter-
based Online Linear Regression (AFOLR) and Adaptive Filter-based Moving Av-
erage (AFMV) by effectively employing linear combination of past predicted values
and recent profiled data

• Implementation of our proposed schemes on top of SCOUT system which can periodi-
cally profile and manage information of distributed scientific computing environments

• Application of the proposed scheme and policies to a real large-scale international and
interdisciplinary computing environment for running many-tasks

• Comprehensive evaluation results of AFOLR and AFMV models including quantitative
analysis and microbenchmark experiments for Many-Task Computing (MTC) workloads

The rest of this paper is structured as follows. In Section 2, we briefly describe moti-
vation & background of this study, and present some of related research work. Section 3
presents our resource profiling and forecasting system along with various prediction
methodologies including proposed adaptive profiling models. Section 4 presents compre-
hensive evaluation results of our proposed schemes and Section 5 summarizes and throws
light on areas for further investigation. Finally, Section 6 highlights our conclusions and
future work directions.
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2. Background and Related Research Work

This section begins with discussions of motivation and background study for our
research (Section 2.1), followed by the presentation of related research work (Section 2.2)
aimed at modeling the performance of distributed computing resources in terms of avail-
ability, resource characteristics, application run time, CPU & memory capacity, etc.

2.1. Background Study

The large-scale scientific computing platform pools resources from many administra-
tive domains, individuals, and institutions to create a Virtual Organization (VO) [3]. VO
enables users to access the large amount of computing resources as a single virtualized
computing platform distributed across multiple resource provider locations. The interac-
tions between users, VOs, and shared resources are shown in Figure 1. A user may be a
member of one or more VOs, and the same resources can be shared across multiple VOs.
Additionally, Figure 1 demonstrates that a VO is composed of a number of Computing
Elements (CEs). A CE is a collection of computing resources that are physically located at a
resource provider site (i.e., a cluster, supercomputer, a computing farm), and the cluster is
a collection of Worker Nodes (WNs) that actually perform the tasks.

Figure 1. Large-scale distributed computing infrastructure and interactions between users, VOs, and
resource providers.

Shared resources are inherently very dynamic and volatile which implies that a re-
source that was accessible at a certain time or day in the past may not be available in the
future for an extended length of time or for a few days at a later time. It is also difficult to lo-
cate the available free computing resources since shared resources are constantly departing
and rejoining the VO for a variety of reasons including load balancing, hardware/software
maintenance, etc. Moreover, the capacity of each computing element, which is defined as
the number of available CPU cores, varies significantly across the participating institutions
and also fluctuates over time. Furthermore, the performance (i.e., response time) of each
resource varies greatly, potentially due to the end-to-end network bandwidth, current
system load, local scheduling strategy, and so on.

For example, Figure 2a presents a typical one-day available CEs and the amount of
accessible free CPU cores at the BIOMED VO [12], whereas Figure 2b depicts the average
response times of each CE. As we can see from the Figure 2, not only the number of
CPU cores available in each CE is varied, but also the response times are, which makes
it difficult to forecast the available resources and associated performance of each CE in a
Virtual Organization. On the other hand, there is currently no effective Information Service
(IS) that can deliver accurate information about shared resources and their states. This
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information is critical for identifying and monitoring VO resources as well as scheduling
user tasks on the relevant CEs.

Figure 2. Resource Capacity and Response Time of Each CE on BIOMED VO.

In order to address these obstacles and challenges, we have been interested in under-
standing the computing resource behaviors of VOs over time periods ranging from a few
days to weeks that can be utilized for developing an adaptive resource profiling model that
takes into account both the resource availability and associated performance. Our ultimate
goal is to evaluate the behaviors of CEs and utilize this dynamic information to predict
the probability that a CE will be able to supply a certain number of free CPU cores with
reasonable amount of response time.

2.2. Related Work

Loosely-coupled virtual organizations (VOs) provide significant scalability and cost
advantages over conventional distributed systems. However, the availability of nodes and
the performance capacity (i.e., number of CPU cores, response time, queuing delay, etc.) of
their resources vary significantly in these systems. The performance prediction aids both the
Resource Management System (RMS) and users in making resource consumption decisions
that are optimal for Quality of Service (QoS) compliance. As a consequence, substantial
research on performance modeling of large-scale distributed computing systems, such as
Grid [13,14], Peer-to-Peer [15], and Cloud [16], have been conducted.

Figure 3 depicts the most commonly used approaches for performance modeling,
which consists of application-oriented and resource-oriented predictions. Application-
oriented performance models project the execution times of submitted jobs on the dis-
tributed system or profile the application based on its runtime (i.e., short or long running
times) or resource utilization patterns such as CPU or I/O intensive, or both [17]. The
application-oriented method has the benefit of directly addressing the scheduler’s ultimate
performance measures (deadlines, runtimes, etc.) [18].

In contrast, resource-oriented performance models are often used to forecast host
availability, resource reliability, CPU capability, and end-to-end network bandwidth. A
prospective job’s background load may be calculated using a resource-oriented strategy.
This is directly related to predicting the available CPU capacity or resource level [18]. In
this method, predicting the resource level is achievable regardless of the number of job
tasks running at any given moment.

To make accurate predictions, researchers have typically used time series algorithms
to learn from past information or trace data. To model resource performance, several types
of resources are explored including CPU load, CPU availability, memory, queuing delay,
network bandwidth, disk speed, and so on [19].

Dinda et al. [20] examined the performance of numerous linear time series models
for predicting the average load on a host system, including Autoregressive (AR), Moving
Average (MV), Autoregressive Moving Average (ARMV), and Autoregressive Integrated
Moving Average (ARIMV). According to their results, the Autoregressive technique is best
suited for estimating CPU load on a single host. However, these kinds of static prediction
techniques are effective only for the workloads that are relatively steady.
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Javadi et al. [21] have found a subset of hosts that have common statistical characteris-
tics regarding availability. Additionally, they organize hosts by functionality, which helps
with scheduling and hence minimizes the makspan. Historical data from SETI@Home was
used to simulate resource availability [22]. The authors of [23] investigated the character-
istics of node availability in a large-scale shared computing system. They investigated
PlanetLab’s [24] eligibility period for computing resources, built heuristic models, and
projected idle resource capacity using PlanetLab utilization data traces. These preceding
performance models often interpret resource availability as a binary state, implying that
resources are either accessible or unavailable. However, the authors provide a multi-state
availability model in the study [25] to capture the genuine states of resources such as
available, user present, CPU threshold exceeded, job eviction, and unavailable.

The Network Weather Service (NWS) [26] is a well-studied system for monitoring and
predicting distributed resources by using statistical techniques such as running average,
sliding window average, and the last measurement. To decrease prediction errors and
choose the best predictors, NWS employs a number of adaptive techniques including adap-
tive window average, adaptive window media, media filter, a-trimmed mean, stochastic
gradient, and autoregressive algorithms. It properly forecasts CPU availability and network
bandwidth (TCP end-to-end throughput and TCP end-to-end delay).

Figure 3. Types of performance modeling for large-scale distributed system.

Table 1 summarizes significant research work on resource performance modeling for
distributed environments published in the last two decades. Most of these studies use
traditional time series prediction techniques. The historical data traces of a resource may be
stored and used to forecast future trends, however, it is difficult to efficiently utilize them
by using one of the prediction methodologies. In reality, none of the mentioned prediction
methods have been proved to be 100% accurate. Furthermore, it is clear that certain
methods are more effective than others in achieving a specific goal. As a consequence, at
this moment, it is crucial to consider combining different ways to get the best results.

Table 1. Summary of related work on resource performance modeling for distributed systems.

Resource Type Related Study

CPU load Dinda et al. [20], Smith et al. [17], Verma et al. [27]

Host Machine/Node NWS [26], Javadi et al. [21], Padhye et al. [23], SCOUT [10]

Network Bandwidth NWS [26], EDG ROS [28], Faerman et al. [29]

Memory FACE [30], FAST [31]
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Recently, an increasing number of attempts has been undertaken to predict the resource
characteristics of distributed systems by using neural networks [32] and deep learning
techniques [33,34]. However, these techniques are very complex, resource intensive, and
time demanding. Furthermore, emerging applications [35] such as Unmanned Aerial
Vehicles (UAV), robotics, and self-driving cars need lightweight and simple adaptive
resource profiling methods.

In this study, we provide profiling models based on the linear difference equation [36]
which can effectively predict anticipated values by combining the past data with current
profiled information about computing resources. As a result, the models are computation-
ally efficient, interpretable, and self-adaptive which can be applied to a real large-scale
international and interdisciplinary computing environment for running many-tasks.

3. Resource Profiling and Performance Modeling

In this section, we present details of our Adaptive Filter-based Online Linear Regres-
sion (AFOLR) and Adaptive Filter-based Moving Average (AFMV) resource profiling
and prediction models (in Sections 3.2.3 and 3.2.4 respectively). Both AFOLR and AFMV
models can capture the time-varying characteristics of underlying computing resources
which means that they will have less prediction errors even for highly dynamic resources
(as we will quantitatively see from Section 4.1). As comparison models, we also adopted
Online Linear Regression and Moving Average (described in Sections 3.2.1 and 3.2.2) which
are well-known and conventional prediction models.

First of all, we briefly introduce the overall process of resource profiling and forecasting
which can be effectively utilized for a large-scale job scheduling system.

3.1. Resource Profiling and Forecasting Process

The overall resource profiling and forecasting procedure is illustrated in Figure 4.
Our SCOUT system [10,11] (denoted as “Resource Monitor & Profiler” in the Figure 4)
periodically profiles and records information about each computing element (CE) of the VO
including the number of CPU cores, queue waiting time, and average task response time.
This information can be effectively utilized to forecast resource capability and performance
such as CPU core availability and expected user response time.

Figure 4. The overall process of identifying and forecasting resource capacity.
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Our HTCaaS (High-Throughput Computing as a Service) [37,38] system could take
advantage of this forecasting data in order to efficiently submit a vast number of tasks by
using all available computing resources in the Grid, Supercomputers, and Cloud. For exam-
ple, the drug repositioning simulation needed about 80,000 docking tasks and we were able
to successfully complete the experiment by leveraging 2300 CPU cores foretasted by our
models. Basically, HTCaaS aims to provide researchers with ease of exploring large-scale
and complex HTC problems by leveraging Supercomputers, Grids, and Cloud by effectively
hiding heterogeneity and complexity of harnessing different types of computing infrastruc-
tures from users. HTCaaS has been effectively integrated with national Supercomputers in
Korea, international computational Grids, and Amazon EC2 resulting in combining a vast
amount of computing resources to support most challenging scientific problems.

3.2. Resource Profiling and Prediction Models

Our proposed profiling models are based on the linear difference equation which
combines historical projected values with current profiled information in a VO to make
the model computationally efficient, interpretable, and scalable. To measure the past
predictions, we employ Online Linear Regression (OLR) and Moving Average (MV) in the
proposed models. In this section, we first present the basics of OLR and MV, and then
describe our proposed models in further detail.

3.2.1. Online Linear Regression (OLR)

Typically, the measured or real outputs are highly variable because resource instances
in a distributed scientific computing system are stochastic in nature. The conventional
prediction methods such as linear regression (LR), autoregressive (AR) predict future
resource availability using historical n data points. Recent dynamic changes in resource
availability can be easily captured if we rely on the most recent trends of data rather than
all historical n points information.

A simple linear model of one explanatory variable has two parameters such as β0 and
β1 expressed as in the following Equation (1). Parameters β0 and β1 are estimated from
the n observed data set. In the Equation (1), the subscript i denotes the observational unit,
where i = {1, 2, . . . , n} and n is the total number of observed data.

Yi = β0 + β1Xi (1)

The least squares estimation method [39] has been widely applied to estimate the
parameter values because this technique provides the smallest possible sum of squared
error of the observed Yi from the estimates Ŷ. Let β̂0 and β̂1 be numerical estimated values
of the parameters β0 and β1 respectively. The Equation (1) can be written as follows:

Ŷi = β̂0 + β̂1Xi (2)

The least squares principle chooses β̂0 and β̂1 in a way that minimizes the sum of
squared (SS) of magnitude of the residual ε. The ith residual εi is the difference between
the real output Y and the estimated output Ŷ at the data point i.

SS(Residual) =
n

∑
i=1

(Yi − Ŷi)
2 =

n

∑
i=1

ε2
i

=
n

∑
i=1

(Yi − β̂0 − β̂1Xi)
2

(3)

Applying the derivatives with respect β0 and β1, we can solve the Equation (3) to
estimate the parameters.

∂SS
∂β0

= −2
n

∑
i=1

)(Yi − β̂0 − β̂1Xi) = 0 (4)
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∂SS
∂β1

= −2
n

∑
i=1

)(Yi − β̂0 − β̂1Xi) = 0 (5)

Simplifying the Equations (4) and (5) yields the β̂0 and β̂1 as follows:

β̂0 = Y− β̂1X (6)

β̂1 =
∑n

i=1(Xi − X)(Yi −Y)
∑n

i=1(Xi − X)2
(7)

where X and Y are the means of the Xi and Yi respectively. It can be noted from the
Equation (7) that

(
Xi − X

)
and

(
Yi −Y

)
denote observations expressed as deviations from

their sample mean X and Y respectively. Therefore, estimation of parameters give the linear
regression model equation as follows:

Ŷi = β̂0 + β̂1Xi (8)

Online regression modeling makes forecasting by using a window with size w which
contains the latest profiling information, i.e., w data points out of n (where w < n). Thus,
predicting based on dynamic w interval is known as Online Linear Regression (OLR) model
and the coefficient parameters β0 and β1 are estimated based on the Equations (9) and (10)
where Xw and Yw are the mean of sample data over w interval. This model is also known
as moving linear regression because w is moving towards the recent trends.

β̂w
0 = Yw − β̂w

1 Xw where i = (1, 2, . . . , n− w + 1) (9)

β̂w
1 =

∑w+i−1
j=i (Xj − Xw)(Yj −Yw)

∑w+i−1
j=i (Xj − Xw)2

(10)

For example, suppose we have 100 days (here n = 100) of SCOUT profiling information
including the number of available CPU cores in each computing element. The Online
Linear Regression (OLR) method calculates the regression coefficient parameter β0 and β1
using the most recent w days of profiled data. The length w can be 1 week, 10 days or so on
depending on user preference for prediction. Therefore, the online linear regression model
equation can be calculated as follows:

Ŷw+i = β̂w
0 + β̂w

1 Xw+i (11)

Algorithm 1 describes the OLR approach in depth. Here, L is the collection of all
computing elements in a VO, n denotes the number of datapoints stored in the database, w
denotes the user’s preferred window size (the size of the window can be adjusted), i refers
n-w+1, and D denotes all profiling data gathered by the SCOUT system.
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Algorithm 1: Online Linear Regression (OLR).
Result: Return OLR
Input: List of CEs L , window length w, i and Data (D) of each CE
for Each CE in L do

X̄ = Computed mean of CEl from D
Ȳ = Computed mean of CEl from D

end
for j = i to w+i-1 do

Beta_Numerator + = (xj − X̄) (yj − Ȳ)
Beta_Denominator + = (xj − X̄)2

end
Compute: β1 = Beta_Numerator/Beta_Denominator
Compute: β0 = Ȳ− β_1* X̄
Calculate: OLR using Equation (11)

3.2.2. Moving Average (MV)

Moving average (MV) is widely used especially when data is highly variable. Profiling
information close to the recent n points are typically more relevant than data further away
from the latest because computing resources in a distributed scientific computing system
dynamically changes over some periods of time possibly due to addition of new resources,
removal of old resources or even failures.

Moving average follows the recent trend of the data, not an actual average of the
data and it is useful for smoothing out the noisy raw data. Suppose the sequence of
data X = (x1, x2, . . . , xn), a w-moving average (w interval) is defined from Xi by taking the
arithmetic mean of sub sequences of w terms (as we can see from Equation (12)).

MVw+i =
1
w

w+i−1

∑
j=i

Xj where i = (1, 2, . . . , n− w + 1) (12)

For instance, if our window size is 3, then on day 4, the moving average is generated
by taking the simple average of the preceding three days’ available CPU cores for that
specific CE, and the procedure is repeated. If we have six days of data (201, 202, 230, 213,
180, and 190), then the MV on day 4 will be 211, on day 5 will be 215 and so on.

3.2.3. Adaptive Filter-Based Online Linear Regression (AFOLR)

A difference equation relates the current and past predicted values to current and past
input values [36]. Most commonly expressed difference equation is as follows:

Y(k) = Y(k− 1) + u(k) (13)

Here, Y(k) means the last estimated output value which is calculated using past
Y(k− 1) estimated values and the latest actual input value u(k). Filter technique is widely
applied in the field of prediction modeling because it helps to eliminate the noise from the
output and smooth the estimated value if the system is extremely dynamic (e.g., available
free CPU cores, average response time in a distributed scientific computing environment).
Applying simple filter technique to the prediction model of the Equation (13) is as following:

Y(k) = (1− α) ∗Y(k− 1) + α ∗ u(k) (14)

For α value close to 1 means more heavily relying on the current measurement u(k),
and if the value of α becomes close to 0, we make decisions more based on previous
estimation Y(k− 1) (i.e., 0 6 α 6 1).
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Our proposed AFOLR prediction model forecasts depending on the last predicted
values Y(k− 1) as well as recent profiled information. AFOLR model employs the Online
Linear Regression model (discussed in Section 3.2.1) to estimate the last predicted value
Y(k− 1) within the most recent w intervals, together with the latest profiled data uscout(k).
Therefore, our proposed AFOLR model can be represented using the following equation:

Y(k) = (1− α) ∗Yw
OLR(k− 1) + α ∗ uscout(k) (15)

The proposed AFOLR model basically integrates online linear regression (OLR) to make
it computationally efficient, interpretable, and scalable as illustrated in the Algorithm 2.
It uses the OLR determined in the w-window size as well as the latest profiled informa-
tion uscout.

Algorithm 2: Adaptive Filter-based Online Linear Regression (AFOLR).
Result: Return AFOLR
Input: OLR, α , window length w, uscout
for Each CE in L do

Calculate: AFOLR using the Equation (15)
end

3.2.4. Adaptive Filter-Based Moving Average (AFMV)

In order to address more steep fluctuation of resource availability and reflect the
recent trend, we have devised Adaptive Filter-based Moving Average (AFMV) model by
employing the moving average technique (as discussed in Section 3.2.2). AFMV prediction
model applies similar rationale as AFOLR model so that it estimates the previous value
Y(k− 1) using moving average technique over w intervals. AFMV model can be expressed
in the following generalized form:

Y(k) = (1− α) ∗Yw
MV(k− 1) + α ∗ uscout(k) (16)

Generally speaking, it is difficult to set a magic number for this kind of filtering
technique (i.e., α). In our experiments, we use a heuristic approach based on the standard
deviation (STDEV) of profiled data. For example, with a higher STDEV, more weight is
given on the recent profiled information. More sophisticated and automated approach to
determine the α value will be one of our future work.

The functioning prototype of the AFMV model is described in Algorithm 3. It calcu-
lates the moving average based on the length of the window size (w-lentgh). Then, based on
the most recent profile information uscout, the model predicts value using the Equation (16).

Algorithm 3: Adaptive Filter-based Moving Average (AFMV)
Result: Return AFMV
Input: List of CEs L , window length w, i, and Data (D) of each CE
initialization mvSum;
for Each CE in L do

for j = i to w+i-1 do
mvSum = mvSum + xj

end
MVw+1 = mvSum / w
Calculate: AFMV using the Equation (16)

end
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4. Evaluation

In this section, we present comprehensive evaluation results to justify our proposed
resource profiling and prediction models. We conducted both quantitative analysis and
microbenchmarks experiments on a real VO to demonstrate the reliability and effectiveness
of the AFOLR and AFMV models. Specifically, we utilized well-known linear regression
and moving average as comparison models for the quantitative evaluation (Section 4.1). In
addition, an existing conventional VO resource monitoring service and a simple random-
ized mechanism are exploited as comparison models for executing many-tasks on top of
the distributed scientific computing environment (as described in Section 4.2).

4.1. Quantitative Model Evaluation

In this section, we discuss comparative evaluation results of AFOLR and AFMV
schemes with classical linear regression methods and moving average technique. To
illustrate quantitative accuracy, we use the Root Mean Squared Error (RMSE) analysis. RMSE
can be calculated using following Equation (17) where Yt is the actual value at time t, Ŷt is
the predicted one at time t, and p is the number of data points.

RMSE =

√√√√ 1
p

p

∑
t=1

(Yt − Ŷt)2 (17)

Figure 5 shows evaluation results of five prediction techniques including AFMV,
AFOLR, MV, OLR, and standard linear regression LR (depicted as “Static LR”) in terms
of RMSE. As we can see from the results, our proposed schemes clearly outperform well-
known classical forecasting methods. Interestingly, AFMV shows better prediction accuracy
than AFOLR since a relatively short interval (w = 5) is used for estimation. AFOLR is
basically founded on online linear regression which requires more data over a longer period
(i.e., larger w) to estimate the coefficient parameters. Nevertheless, both of our proposed
methods generate smaller margin of errors compared to the classical regression and moving
average techniques.
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Figure 5. Root Mean Squared Errors of AFMV, AFOLR, MV, OLR, and Standard Linear Regression.

In order to further investigate the accuracy of our proposed models, we also compared
them with the most widely used linear regression and moving average models respectively.
Figure 6a presents the comparative analysis of AFOLR model and conventional Linear
Regression (Static LR). It shows that distances from actual data (depicted as “Actual Core”)
which means the errors of static LR are relatively high and almost move forward statically.
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On the other hand, our proposed AFOLR scheme can capture the recent trend and predict
the data very close to the actual values (“Actual Core” in Figure 6a). This is because it is
capable of adapting to recent fluctuations in computing resource availability. Therefore,
the AFOLR model clearly outperforms the LR technique and demonstrates its usefulness
in predicting even when the datasets are highly variable. We also compared the AFMV
approach against a class of time series-based forecasting techniques such as the moving
average. The Figure 6b shows a comparison of our AFMV and moving average. Similar
to the results of AFOLR in Figure 6a, it is clear that the AFMV model outperforms the
traditional moving average, despite the fact that moving average is a well-known approach
for predicting in the short term from highly fluctuating data.

Figure 6. Sensitivity Analysis: (a) AFOLR vs. Traditional Linear Regression Technique (Static LR)
and (b) AFMV vs. Traditional Moving Average.

4.2. Microbenchmark Experiments

We also conducted microbenchmark experiments from MTC community [40,41] on
the Biomed VO [12] which is a large-scale international and interdisciplinary virtual or-
ganization providing tens of thousands of CPU cores to scientific communities. We used
three different types of BoT (Bag of Tasks) jobs to evaluate our forecasting model (AFMV)
including “Short” (sleep 5 tasks), “Medium” (sleep 50 tasks) and “Long” (sleep 100 tasks)
jobs especially from the perspective of Many-Task Computing (MTC) applications [4]. The
number of tasks in each BoT job category ranges from 250 to 5000.

In addition, four sets of computing elements (CEs) from Biomed VO with different
resource characteristics were selected as followings:

• Profiled Top 10 CE with Core: Top 10 CEs based on model predicted maximum
available free CPU cores (i.e., best 10 CEs based on our proposed models that are
expected to show maximum number of free CPU cores)

• Profiled Top 10 CE with Time: Top 10 CEs based on model predicted minimum
response time (i.e., best 10 CEs based on our proposed model that are expected to
show minimum response times)

• Grid Info Top 10 CE: Top 10 CEs based on the number of free CPU cores provided
by the Grid Information Service which is an existing conventional monitoring service
in VOs.

• Random 10 CE: Randomly selected 10 CEs (i.e., simply a collection of 10 CEs that are
randomly selected)

Performance metrics are Makspan and Success Rate. The makspan of a BoT job is
defined as the time to complete the execution of all tasks. Success Rate is defined as the ratio
of the number of tasks executed successfully to the number of submitted tasks.

Figure 7 shows the Makespans of different sizes of short running BoT jobs with four
sets of CEs. Compared to the other three lists of CEs, CEs with the predicted minimum
response time (“Profiled Top 10 CE with Time”) can achieve the shortest Makspan. As
the number of tasks increases, Makspans of “Grid Info Top 10 CE” and “Random 10 CE”
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grow rapidly. Interestingly, from these results, we can observe that for short running tasks,
expected minimum response time CEs (“Profiled Top 10 CE with Time”) perform better
even the “Profiled Top 10 CE with Core” potentially have more free CPU cores.

Figures 8 and 9 illustrate the Makespans of medium and long running BoTs respec-
tively as we increase the number of tasks. It can be noted from Figure 8 that both predicted
top 10 CEs (“Profiled Top 10 CE with Time” and “Profiled Top 10 CE with Core”) completed
the execution of BoT jobs comparatively within very short time ranging from 100 to 600 s
for 250 to 5000 tasks respectively. On the other hand, the job completion time of randomly
selected CEs takes about 1600 s for 5000 tasks which is approximately 3 times more than
that of profiled CEs based on our proposed model. For the long running BoT jobs, both
predicted CEs lists show almost identical performance, however for 5000 tasks, CEs having
maximum number of free CPU cores exhibits slightly better turnaround time. From this, it
can be arguable that CEs having more free cores can perform better for a large number of
tasks having relatively long running times.
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Figure 7. Makspans of Short BoT jobs with four sets of computing resources.
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Figure 8. Makspans of Medium BoT jobs with four sets of computing resources.

Another important criterion for executing HTC/MTC applications on top of a VO
is the Job Completion Rate which refers to the percentage of tasks that can be successfully
completed. Figure 10 shows that regardless of task execution times (such as Short, Medium,
and Long), both of our predicted Top 10 CEs (“Profiled Top 10 CE with Core” and “Profiled
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Top 10 CE with Time”) can achieve significantly higher job completion rates than the others.
Specifically, both of predicted Top 10 CEs show almost 100% of success rates while “Grid
Info Top 10 CE” hovers around 50% to 70%, and “Random 10 CE” shows even worse
ranging from 20% to 40%. These results demonstrate that our proposed prediction models
can actually improve the user response times and job completion rates for HTC/MTC
applications in a real distributed scientific computing environment.
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Figure 9. Makspans of Long BoT jobs with four sets of computing resources.
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5. Discussion

Our new adaptive approaches for profiling resource performance-related features
(such as the number of available CPU cores and average response times) are based on an
effective linear combination of previously collected values and current profiled data. As
we can see from the comprehensive experimental results from the Section 4, our proposed
schemes have been proved to be effective in a real distributed computing system by
significantly improving the overall user response times and job completion rates.

In addition, our quantitative study confirms the efficacy of our profiling methods. Our
evaluation findings indicate that our approaches outperform more established statistical
models. The comparison of AFOLR with standard linear regression (LR) demonstrates that
the distance from real data, which indicates the error of LR, is quite large and virtually
marches forward statically. Furthermore, it is clear that the AFMV model is better than
the typical moving average, even though the moving average is a well-known method for
making short-term forecasts from dynamically changing data

In the future, a multi-objective-based resource profiling approach will undoubtedly
increase VOs’ resource utilizations and enable user applications to complete their tasks on
time since this technique incorporates many CE performance metrics, including available
computing capacity, response time, waiting time, task failure rate, and task resubmission
rate, and others. In this regard, fuzzy logic may be advantageous since it is capable of mak-
ing judgments in an uncertain environment and providing multi-objective solutions [42–44].
This study can also point to some new areas to investigate such as developing a novel
scheduling method for a resource-shared environment based on resource performance
modeling. Finally, we plan to conduct larger-scale mircobenchmark experiments that can
consist of millions of tasks and also apply our proposed schemes for real MTC applications
(such as drug discovery simulations [45]) in order to further verify the effectiveness of our
proposed mechanisms in a real scientific computing environment.

6. Conclusions

Resources in a shared computing environment have varying computing capacity and
unreliable performance because of autonomous sharing and control from multiple resource
providers. To address this problem, we need to devise effective resource profiling and
modeling mechanisms that can periodically collect resource profiling data and predict the
future available free resources as well as responsiveness of each computing element based
on the profiled data.

In this paper, we presented two novel prediction approaches called AFOLR and AFMV
inspired by the concept of difference equation and filtering technique. Comprehensive
evaluation results are also presented in terms of quantitative analysis and a large number
of microbenchmark tasks. Experimental results show the effectiveness of our proposed
prediction models in a real large-scale international and interdisciplinary computing envi-
ronment. The evaluation results also demonstrate that the proposed models help both the
RMS and users in making resource utilization decisions in order to achieve QoS objectives.
This study paves the way for future research, such as the development of self-adaptive
light-weight filtering approaches to withstand the unpredictable behaviors of resources
in shared distributed platforms. Furthermore, future emerging technologies such as In-
ternet of Things (IoT), UAVs, drones, and autonomous driving, which are fundamentally
resource-restricted, may be explored to see whether our computationally efficient methods
can be applied.
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