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Abstract: In this research paper, the acoustic emission technique and a deep learning framework
based on two types of pre-trained CNN models (alexNet and squeezeNet) and a new model are
proposed to characterize and classify the mechanical behavior of AlSi10Mg components. Specimens
are built in a Selective Laser Melting machine with different bed orientations along X, Y, Z, and 45
degrees. Tensile tests are performed, and AE signals are recorded from these tests. To characterize the
elastic and plastic deformation stages, a time-frequency domain analysis was performed using CWT-
based spectrograms. Three different categories of damage classification strategies were implemented,
and CNN models were trained for each strategy. CNN models including AlexNet, SqueezeNet, and
the new model were used. Several training modes were performed to determine the CNN model
that can accurately classify AE data. Understanding the minimum set of AE signals needed to train
the CNN while having 100% accuracy and understanding the parameters affecting the accuracy of
a CNN and the training time for the efficient classification of AE signals are the main objectives of
this work. The results obtained demonstrated that the new simplified CNN model proposed can
accurately classify the AE signals in a short time compared to AlexNet and SqueezeNet.
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1. Introduction

Additive manufacturing (AM) is a rapidly growing process with advantages over
traditional processes [1]. It provides significantly reduced design constraints, structural
optimization, flexibility, and material-saving characteristics with a wide range of appli-
cations in the aerospace, automotive, and biomedical industries [2,3]. The growing use
and diversity of parts produced during AM enhance the need for the in-depth study of
their mechanical properties [4–6]. The most widely used methods for the AM of metallic
materials are powder-fed systems such as electron beam melting (EBM), selective laser
sintering (SLS), and selective laser melting (SLM). Among the popular methods mentioned
above, SLM is the most popular method for the AM of metal powders for flexibility in
the production of all castable materials, the high quality of parts produced in a short time,
and the high resolution for complex-shaped parts. The aerospace, automotive, and marine
industries focus on powder bed SLM technology for Ti-alloy, Ni-superalloy [7,8], Ni-based
alloys [9], stainless steel [10,11], and Al-based alloys [12–14] components. AlSi10Mg was
used in additive manufacturing for its good mechanical properties such as an excellent com-
promise between lightness, strength, limited restriction, and a high resolution for complex
shapes and structures and a short printing time. Given the almost eutectic composition of
Al and Si, a great weldability can be achieved. Mg plays an important role in age hardening
in the form of β’ and Mg2Si (β phase) [15]. Recently, many works have been published on
the microstructure using a study of the processing parameters of AlSi10Mg fabricated by
SLM [16,17]. During the fabrication of mechanical parts in the SLM process, the orientation
of the construction has direct effects on the anisotropy and microstructural heterogeneity
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of SLM components, especially in AlSi10Mg. In most cases, the crack path in AlSi10Mg
is strongly influenced by microstructural heterogeneity [18–20]. Obtaining an equiaxed
grain remains a challenge, since the cooling rate is high in the range of 106–108 ◦C. Several
investigations demonstrated that the orientation of construction remains a major challenge,
mostly for AlSi10Mg built in SLM, whose cracking trajectories in most cases are related
to microstructural heterogeneity. Therefore, it is important to understand the intrinsic
behavior of this component built on different orientations [6,21,22].

Many authors propose methods for monitoring the mechanical characteristics of spec-
imens based on the acoustic emission (AE) technique. This is a passive, non-destructive
evaluation (NDE) technique used to detect and study specimen damage at a microscopic
scale. The acoustic waves generated contain information about the initiation and progres-
sion of damage. These acoustic waves can be recorded using a piezoelectric sensor. The
recorded waveform can be analyzed in terms of its time-frequency properties to obtain
information on the onset of damage and its evolution. The study of these AE waveforms
can help in understanding the characteristics of the damage [23,24]. Currently, there are
few research papers regarding the damage characterization of the AlSi10 Mg specimen
obtained by the SLM process using the AE technique [25–27]. However, the AE technique
has been successfully used for the damage characterization of other specimens obtained by
other additive manufacturing processes.

For example, Ould et al. studied the characterization of fatigue damage in 304L steel by
the AE technique for different total strain amplitudes. Through the parameter-based approach,
a correlation between the acoustic signals and the damage evolution during the fatigue tests
was obtained [28]. Barile et al. monitored the delamination process of 3D parts obtained
during the Fused deposition modelling (FDM) process. They have also used a parameter-
based analysis of the acoustic emissions, which provided relevant predictive information
about the material under study [29]. Barile et al. studied the crack propagation process in
grade-5 titanium samples subjected to uniaxial fatigue loading using AE and IR thermography.
The AE techniques were found to be more accurate, as they were able to monitor crack
activity and distinguish crack initiation in the beginning stages of the test [30]. Nonetheless,
signal-based approaches are more efficient in comparison to parameter-based approaches,
especially when the target is to assign the acoustic emission signals to their damage sources.

Recently, researchers have developed approaches based on artificial intelligence [31],
particularly the combination of the signal-based AE technique and artificial intelligence
for damage characterization [32]. Some authors have implemented the artificial neural
network (ANN) by using statistical descriptors for intelligent damage monitoring [33–35].
However, Xu et al. and D’Addona et al. stated that ANN is not suitable for capturing the
content of information associated with AE signals [36,37].

Currently, researchers are focusing on developing a deep learning approach using
combined AE signals. The CWT is applied to AE signals, and the scalograms are extracted,
containing the time-frequency. These scalograms are used as an image to be transmitted to
a convolution neural network (CNN) for possible classification.

The CNN is inspired by biological processes, which can automatically learn complex
features during training and are much more computationally efficient than traditional
neural networks due to the convolution process [38]. They can achieve a similar accuracy
as human beings in image classification processes due to their self-learning capabilities
to solve the multiple classification problem [39]. AlexNet is one of the most widely used
neural network models to date.. It was first developed as part of the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC 2012) [40]. Its structure consists of five convolutional
layers (Conv1, Conv2, Conv3, Conv4, Conv5), followed by three maximum pooling layers
(Pool1, Pool2, Pool3) and two normalization layers (Norm1, Norm2). Two fully connected
layers (Fc) are present before the final fully connected layer (Fc), leading to the output.
SqueezeNet was proposed in 2016 by researchers at DeepScale, the University of California
at Berkeley and Stanford University [38]. These networks are suitable for processing both
large-scale and small-scale image inputs.
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The CNN and acoustic emission signals are used to characterize the damage mode of
composite materials and structures. Zhang et al. worked on the classification of damage-
induced acoustic emission signals in UHPC using convolutional neural networks [41].
Several CNNs are used—googleNet, ResNet18, efficientNet, and mobileNetV2—to ex-
plore the time-frequency characteristics of different damage-induced AE signals [41]. The
results of the classification of AE signals showed that ResNet18 achieved the highest over-
all accuracy of 93.94% [41]. Han et al. successfully monitored the cracking-up scaling
from specimen concrete structures using acoustic emissions and convolutional neural net-
works [42]. Sikdar et al. proposed a deep learning approach based on acoustic emission
data for the classification and detection of damage sources in a composite panel. They
measured their AE signals through the piezoelectric sensor array. They used continuous
wavelet transform (CWT) to extract time-frequency scalograms. They constructed a CNN
to automatically extract the discrete damage features from the scalogram images [43]. The
proposed deep learning approach has shown potential for effective damage monitoring
with a high learning accuracy, and an image augmentation approach was proposed in
their research work to generate training data [43]. Barile et al. monitored the damage of
carbon fiber-reinforced polymer composites using the acoustic emission technique and deep
learning. They classified the AE Spectrograms from four damage modes—matrix cracking,
delamination, debonding, and fiber breakage—which were obtained in the Mel scale. The
overall accuracy of their prediction is 97.9%. However, they made a special observation
that the fiber breakage and delamination events could be predicted with 100% accuracy [44]
Xu et al. also used AE and CNN for the damage prognostics of fiber-reinforced composite
laminates [39].

This paper proposes a deep learning framework based on two types of CNN architec-
ture (alexNet and squeezeNet) and a new model. First, tensile tests were performed, and AE
signals were recorded from these tests. The CNN models were used to classify the acoustic
emission signals according to the stages of damage (elastic and plastic deformation), the
acoustic emission signals of the building configuration of the specimens (Tx, Ty Tz, and
T45), and the AE signals with similarities in these specimens. Certain parameters were
varied to see their impact on the accuracy of the constructed CNN models—notably, the
size of the input data and the activation function and pooling layer.

A comparison of three CNNs has been based on the training time and achieved
accuracy.

2. Materials and Methods
2.1. Materials and Testing

In this study, the material used to obtain the specimens was AlSi10Mg. The chemical
composition is shown in Table 1. The AlSi10Mg powder has a density of 2.68 g/cm3 and a
melting range of 570–590 ◦C.

Table 1. Composition of AlSi10Mg.

Element Mass (%)

AI Bal a

Si 11
Mg 0.45
Fe <0.25
N <0.2
O <0.2
Ti <0.15
Zn <0.1
Mn <0.1
Ni <0.05

a Balance percentage.
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The RenAM 500 M system with a 400 W output power (P) and an Nd:YAG laser source
with a wavelength of 1.064 µm was used to melt the AlSi10Mg powder. This additive
manufacturing process, specifically based on SLM, was used to fabricate the specimens. To
achieve an energy density (E) of 20 J/mm2 in a single pass, the laser beam was scanned
across the powder at (v) 100 mm/s. The spot diameter of the melting process was kept at
(d) 200 µm.

The SLM components were constructed for each bed orientation along X, Y, Z, and
45 degrees relative to the build platform (see Figure 1). Samples from each of these
configurations were subjected to tensile tests and analyzed through acoustic emission.
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The thickness of each layer in the SLM process was 20 µm. The recoated layer was
moved along the y-axis, while the laser scanned the samples along the X-axis. After
scanning, the specimens were cooled in air and relaxed at 300 ◦C± 10 ◦C for approximately
2 h. The dimensional data of all specimens built according to ASTM E8M are shown in
Figure 2. The tensile tests were performed in the displacement-controlled mode at a speed
of 1 mm/min in the INSTRON 1342 servo-hydraulic loading machine (10 kN). A uniaxial
strain gauge was placed on the surface of the specimen, approximately in the middle of
the gauge length. To monitor the acoustic activity under the load, the acoustic emission
signal acquisition system was used, as shown in Figure 3. A broadband Pico sensor with
an optimum operating frequency of 200–750 kHz and a resonance of 250 kHz was used to
acquire the AE signals. The Pico sensor has a diameter of 5 mm × 4 mm and is positioned
in the middle of the gauge length. The measured signals were preamplified with a 40 dB
preamplifier. The signals were recorded at 2 MSPS before being filtered through 1 kHz
low-pass and 3 MHz high-pass filters. These tensile tests are performed considering the
orientation (Tx, Ty, Tz, T45) of the specimens as they are produced during the SLM process.
The tests were performed on seven specimens each (Tx, Ty, Tz, T45), and the mechanical
properties were extracted.
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2.2. Continuous Wavelet Transform Based on Acoustic Emission Signals

The continuous wavelet transform (CWT) is a signal processing technique which
extracts the time domain content of acoustic emission signals [45]. The CWT has been
successfully used to characterize damage modes in materials and structures. Grabowska
et al. performed structural health monitoring (SHM) using AE and wavelet analysis [46]. Li
et al. monitored damage in metal panel damage using AE and the adaptive enhancement
variational mode decomposition wavelet packet transform [47]. Burud et al. detected
damage in concrete subjected to bending using AE and wavelet entropy [48]. Baccar et al.
detected wear using the acoustic emission wavelet analysis of AE [49].

The CWT is described by Equation (1).

CWTf (a, b) =
∫ ∞

−∞
f (x)ζa,b(x)dx, a � 0, (1)

ζa,b(x) =
1√
a

ζ

(
t− b

a

)
, a, b ∈ R, a 6= 0 (2)

where the mother wavelet described by Equation (2) is a parameter that determines the
size of the wavelet. b sets the shift along the time axis and is decomposed into wavelet
coefficients. Gao et al. provided more details of CWT [50]. In this paper, the Implementation
CWT algorithm is performed on the MATLAB® (2022a) environment [45].

The ultimate principle is to apply the continuous wavelet transform (CWT), extract the
time-frequency spectrograms of the acoustic emission signals, and then use these spectro-
grams as an image to train a convolutional neural network (CNN) for classification [43,44].
In this work, the characteristics of the acoustic emission signals collected during the tensile
testing of the AlSi10Mg samples are also analyzed in time-frequency using CWT. A com-
parison of CNN architectures is performed. A new, simplified architecture is built in order
to achieve similar performances in a shorter time.

2.3. Deep Convolutional Neural Network

The main element that constitutes a CNN is a chain of convolutional layers (Conv) with
rectified linear unit activation functions (ReLu) (Sigmoid), maximum or average pooling
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layers (Max Pool, Avg Pool), and a fully connected layer. Stochastic gradient descent
(SGD) and a batch normalization operation are typically used to train the models. Some
authors built their models from scratch to solve various classification problems with the
CNN [50,51]. Others based their models on the existing CNN and made some modifications
to optimize the results of the classification [52,53].

This paper presents an exploration of the possibility of improving the accuracy of
AlexNet (see Figure 4) and SqueezeNet. For a good modification, it is important to under-
stand the main parameters that affect the accuracy of a CNN. Based on this understanding
of the parameters and based on the challenges of two previous CNN models, a new model
is proposed.
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The ultimate goal was to have a small number of network parameters while main-
taining a high level of accuracy. This is because a larger number of convolutional layers
will result in a high accuracy but at the cost of greater time consumption and power [54].
Increasing the number of convolutional parameters results in obtaining lower error values
during the training of the networks. Landola et al. claimed that SqueezeNet has 50× fewer
parameters than AlexNet but can achieve about the same accuracy [55,56]. Its structure is
based on the fire module, which allows the model to be compressed, as shown in Figure 5.
The fire module consists of a squeeze convolutional layer with 1 × 1 filters feeding an
expansion layer comprising a mixture of 1 × 1 and 3 × 3 convolutional filters. The integral
structure is shown in Figure 6.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20 
 

 
Figure 5. SqueezeNet architecture. 

 
Figure 6. Internal structure of the fire module in squeezeNet. 

 
Figure 7. New model build. 

Figure 5. SqueezeNet architecture.

Considering the observations of Landola et al. [56] and Krizhevsky et al. [57] regarding
the impact of the number of convolutional layers on the training and evaluation time of the
CNN, a new model is proposed (Figure 7 and Table 2) that aims to reduce the number of
parameters of the network without compromising its accuracy [58]. The main advantage
of the model is the reduction of the parameters and the reduction of the development
time of a CNN. In order to build this new model, to make a comparison with the previous
models, alexNet and squeezeNet, and to understand which are the relevant parameters for
a good model, several training modes are implemented following the approach proposed
in Figure 8.
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Table 2. Configuration of the new model.

Layer Description

Input Layer 32 × 32 × 3 Spectrogram

Convolution 1, Pooling 1
Convolution layer (Filter 3 × 3, 32 Filters)

ReLu layer
Max-pooling Layer (Filter 2 × 2, strides 2)

Convolution 2, Pooling 2
Convolution layer (Filter 3 × 3, 64 Filter)

ReLu layer
Max-pooling Layer (Filter 2 × 2, strides 2)

Convolution 3, Pooling 3
Convolution layer (Filter 3 × 3, 128 Filters)

ReLu layer
Max-pooling Layer (Filter 2 × 2, strides 2)

Convolution 4, Pooling 4
Convolution layer (Filter 3 × 3, 256 Filters)

ReLu layer
Max-pooling Layer (Filter 2 × 2, strides 2)

Fully Connected Layer
Input Size: 4096
Output Size: 64
ReLu Activation

Fully Connected Layer Input Size: 64
Output Size: 4

SoftMax Layer -

Classification Layer -
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3. Results and Discussions
3.1. Tensile Test Results

The mechanical properties, ultimate tensile strength, yield strength, Young’s modulus,
and elongation at break of the specimens are presented in Table 3. The average and the
standard deviation (Std_dev) are used to compare the mechanical properties.

Table 3. Tensile test results of all the specimens.

Orientation Metrics
Yield

Strength
MPa

Ultimate
Tensile

Strength
MPa

Young’s
Modulus E

GPa

Elongation
at Break %

Tx Mean 135.1 212.8 66.3 12.2
Std_dev 2.4 3.9 3.5 1.1

Ty Mean 138.8 215.4 68.4 12.7
Std_dev 2.7 2.2 3 4.6

Tz Mean 123.4 208.7 63.5 7.6
Std_dev 2.3 3.4 2.7 0.5

T45◦ Mean 125.2 212.8 64.3 9.6
Std_dev 2.4 2.5 1.3 1.4

The results for the four groups of specimens are presented in Table 3. Certain observa-
tions were made, especially for the Tx and Ty groups of specimens. First, they exhibited
similar mechanical properties. In addition, they exhibited a high yield strength compared
to Tz and T45. Finally, the Tz group of specimens shows weak mechanical properties
compared to Tx, Ty, and T45. Several authors have shown that the orientation of SLM
components affects their anisotropy, microstructural heterogeneity, and mechanical proper-
ties [59,60]. Figure 9 shows the representative load-displacement curves for four different
groups of specimens (Tx, Ty, Tz, and T45). Figure 10 shows two deformation stages consid-
ered in accordance with ASTM E8. The elastic limit is defined based on the stress–strain
data. The first is elastic deformation, where the deformation is linear and reversible, and
the stresses are less than or equal to the elastic limit. This phase considers the consolidation
zone and the constriction zone, so the strain of the specimen before and after failure is
considered. The average value of the proportion between the elastic limit and the ultimate
limit for all specimens is 130 MPa to 184 MPa. The specimens in the Tx and Ty groups are
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quite similar, unlike those in the Tz and T45 groups. Acoustic emission signals are mea-
sured during both the elastic and plastic phases. A time-frequency analysis is performed,
and several CNN models are built to classify the signals of the different damage stages.
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Figure 10. (A) Elastic stage, (B) plastic stage considered for the AE analysis.

3.2. Damage Characterization Using the CWT of AE Signals

During the tensile test, the AE signals of four groups of specimens were extracted.
Figure 11 shows the representative waveforms of the AE signals received from the speci-
mens constructed in four different orientations. The waveforms of the AE signals character-
istic of the elastic and plastic stages are presented in Figure 12.
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Figure 12. (a) Representative waveforms of the AE signal from the Elastic Stage, (b) Representative
waveforms of the AE signal from the Plastic Stage.

Figure 13 shows the spectrograms of the AE signals for four specimen orientations
obtained with the CWT. The observation of the AE signals and the spectrogram revealed
that Tx and Ty can be considered equivalent. By examining the spectral content within a
given class, an order of magnitude of 0.005–0.3 is observed for Tx in the frequency range
of 200–300 kHz (see Figure 13a). For Ty, in the same frequency range and time interval
as Tx, the magnitude varies by 0.005–0.05 (see Figure 13b). For Tz, from 250 to 300 kHz,
the magnitude varies from 0.05 to 0.03 (see Figure 13c). Finally, for T45, in the frequency
range of 50–300kHz, the magnitude varies from 0.01 to 0.1 (see Figure 13d). A similarity is
observed between the AE signals Tx and Ty, in contrast to the AE signals of Tz and T45.
The same observation was made for the mechanical results of the tensile test (see Table 3).
Figure 14 shows the scalogram of the different stages of elastic and plastic damage. During
the elastic stage, a spectral energy is observed in the frequency range of 200 kHz to 300 kHz,
varying in the order of 0.2–1.5 in terms of magnitude. A similar observation was made
with the spectrogram of the plastic phase, where the frequency content is also found in
the range of 200 kHz to 300 kHz, but a difference in magnitude of 0.005–0.04 is observed,
which is considered small compared to the elastic stage (see Figure 14a,b).
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Figure 13. (a) Spectrogram of the AE signal from Tx, (b) Spectrogram of the AE signal from Ty, (c)
Spectrogram of the AE signal from Tz, and (d) Spectrogram of the AE signal from T45.
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Figure 14. (a) Spectrogram of the AE signal from the Elastic Stage, (b) Spectrogram of the AE signal
from the Plastic Stage.

3.3. Damage Classification Using the Deep Learning Approach

The analysis and processing of the AE signals collected during the tensile test have
been explained in the previous section. These collected AE signals are analyzed by CWT
in the time-frequency domain and visualized with the spectrogram. The frequency-time
content made it possible to categorize the AE signals based on their similarities.

This categorization is shown in Figure 15. The CNN is used to efficiently classify
groups of AE signals based on their similarities. The first mode analysis is used to make
a comparison between the CNN models considered in this work (AlexNet, SqueezeNet,
the new model). The second mode of analysis represent the contribution of a new, simple
CNN model, but with better configurations. Finally, the minimum set achieves a better
classification of AE signals. The stochastic gradient descent algorithm with momentum
is used to train the CNNs. The initial learning rate is set to 0.0001, the maximum number
of epochs for learning is 50, the mini batch has 30 elements, and there are three validation
frequency observations. In order to achieve a better comparison of the results, the training,
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validation, and testing of the three different CNNs were performed in the same laptop with
the configuration. The processor is 11th Gen Intel(R) Core i7-1195G7 and has a speed of
2.92 GHz, with 16.0 GB of RAM.
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The total number of images from each training mode is separated into three parts: 50%
for training the CNN, 25% for validating its accuracy, and 25% for testing to rule out the
overfitting of results.

3.3.1. Classification of AE Signals Based on the Damages Stage

AlexNet, SqueezeNet, and the proposed model were built on Matlab (2022a) using the
Deep Network Designer Toolbox by Mathworks. Several training modes were performed
to make a CNN comparison and determine the best configuration. Table 4 shows the results
of classifying the AE signal groups based on the damage stages. Four training modes were
tested for the three CNN models (alexNet, SqueezeNet, and the new model).

Table 4. Classification of AE signals based on the damage stage.

N◦ Training
Mode [Tm] Model Number of

Inputs

Type of
Activation
Function

Pooling
Avg/Max

Validation
[%] Testing [%] Times

TM 1
AlexNet 200 Sigmoid Avg/Max 50 50 56 min 28 s

SqueezeNet 200 Sigmoid Avg/Max 50 50 46 min 04 s
New Model 200 Sigmoid Avg/Max 50 50 26 min 46 s

TM 2
AlexNet 200 ReLu Avg/Max 100 100 40 min 27 s

SqueezeNet 200 ReLu Avg/Max 100 100 25 min 45 s
New Model 200 ReLu Avg/Max 100 100 19 min 22 s

TM 3
AlexNet 1000 Sigmoid Avg/Max 50 50 3 h 29 min

SqueezeNet 1000 Sigmoid Avg/Max 48.7 50 2 h 57 min
New Model 1000 Sigmoid Avg/Max 50 50 1 h 49 min

TM 4
AlexNet 1000 ReLu Avg/Max 100 100 2 h 07 min

SqueezeNet 1000 ReLu Avg/Max 100 100 1 h 16 min
New Model 1000 ReLu Avg/Max 100 100 36 min 32 s

The first training mode, TM 1, used 200 image inputs, the sigmoid activation function,
and average pooling for the pooling function. The results obtained are shown in Figure 16
for alexNet, SqueezeNet, and the new model, which are at 50% accuracy. An observation
was made on the training time of each CNN: alexNet—56 min 28 s, squeezeNet—46 min 04
s, the new model—26 min 46 s.
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Figure 16. Classification based on the damage stage using TM 1: (a) AlexNet, (b) SqueezeNet, and (c)
Proposed model CNN.

For the second mode, TM 2, all parameters were kept the same as in the first training
mode, except for the activation function, which was changed from Sigmoid to ReLu. The
results are shown in Table 4 and Figure 17. By changing the activation function, the accuracy
of all CNN models reached the maximum value of 100%. The difference in training time
was observed for each model: AlexNet—40 min 27 s, squeezeNet—25 min 45 s, and the
new model—19 min 22 s. In addition, the training time for each CNN model decreased by
about 20% when the ReLu activation function was used.
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Figure 17. Classification based on the damage stage using TM 2: (a) AlexNet, (b) SqueezeNet, and (c)
Proposed model CNN.

For the third training mode, TM 3, the same parameters were used as for the first mode,
but with a higher image input of 1000. Thus, 500 input images were used for each class (the
elastic and plastic stages). The results shown in Table 4 show that AlexNet achieved 50%
accuracy, SqueezeNet achieved 48.7%, and the new model achieved 50%. The development
time increased with the amount of input data: 3 h 29 min for AlexNet, 2 h 57 min for
SqueezeNet, and 1 h 46 min for the new model.

The fourth training mode, TM 4, used 1000 images with the ReLu activation function.
The results obtained are presented in Table 4, where 100% accuracy was achieved for all
CNN models. The processing time for alexNet is 2 h 07 min, for SqueezeNet, it is 61 min 16
s, and for the new model, it is 36 min 32 s.

Based on all the training modes performed to automatically classify the damage stages
of AlSi10Mg specimens, a few observations were made. First, the training time of AlexNet
is greater than that of squeezeNet and the new model, especially for the high number of
parameters [61]. Secondly, the ReLu activation function converges quickly and therefore
takes much less time than the models trained with the sigmoid function. The sigmoid
activation function is a fraction between 0 and 1. As the layers multiply, the global gradient
becomes exponentially small, so each step along the gradient causes only a tiny change to
the weights [62]. With ReLu activation, on the other hand, the gradient is either 0 or 1, so
the global gradient is neither too small nor too large [63].
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3.3.2. Classification of AE Signals Based on the Configuration of the Specimen

The same observation was made for the AE signals categorized based on their configu-
rations (Txy, Tz, T45). Looking at the results presented in Table 5, a simultaneity is observed
with the first damage-based categorization, where the accuracy increases when the sigmoid
activation function is replaced with ReLu. Again, let us observe that the accuracy is still
33.3% lower for AE signals from different specimen orientations. By increasing the input
data, a particular observation was made on the new model, the accuracy increases by 66.7%
compared to alexNet and SqueezeNet. Finally, by changing the sigmoid activation function
to ReLu, an accuracy of 100% is achieved.

Table 5. Classification of AE signals based on the configuration of the specimen.

N◦ Training
Mode [TM] Model Number of

Inputs

Type of
Activation
Function

Pooling
Avg/Max

Validation
[%] Testing [%] Time

TM 1
AlexNet 300 Sigmoid Avg/Max 33.3 33.3 1 h 9 min

SqueezeNet 300 Sigmoid Avg/Max 33.3 33.3 58 min 20 s
New Model 300 Sigmoid Avg/Max 33.3 33.3 35 min 04 s

TM 2
AlexNet 300 ReLu Avg/Max 100 100 49 min 06 s

SqueezeNet 300 ReLu Avg/Max 100 100 38 min 07 s
New Model 300 ReLu Avg/Max 100 100 24 min 00 s

TM 3
AlexNet 1500 Sigmoid Avg/Max 33.3 33.3 4 h 39 min

SqueezeNet 1500 Sigmoid Avg/Max 33.3 33.3 3 h 35 min
New Model 1500 Sigmoid Avg/Max 33.3 33.3 2 h 01 min

TM 4
AlexNet 1500 ReLu Avg/Max 100 100 3 h 10 min

SqueezeNet 1500 ReLu Avg/Max 100 100 2 h 39 min
New Model 1500 ReLu Avg/Max 100 100 1 h 40 s

3.3.3. Classification of AE Signals from Individual Specimens

In this section, the group of AE signals originating from an individual specimen is
classified in terms of their configuration (Tx, Ty, Tz, and T45). Based on the previous result
(see Table 5), the ReLu activation function has been shown to be effective in classifying the
AE signals. Based on this optimal configuration of CNNs, this section examines the amount
of data needed to train a CNN to achieve 100% accuracy.

The results are shown in Table 6. In the first training mode, TM 1, 400 input data
were used, considering 100 per class (Tx, Ty, Tz, and T45) using the ReLu activation
function. Figure 18 shows the results for alexNet (65.0%), squeezeNet (62.0%) and the
new model (68.0% accuracy). The processing time behaves the same as the previous result.
Finally, when the input images are increased from 400 to 2000 at a rate of 500 per class,
an improvement is seen, which is 85.5% for alexNet, 81.1% for squeezeNet, and 90.1%
for the new model (see Figure 19). Thus, for the best CNN configurations, the amount
of input data affects the classification accuracy. A simplified CNN model can have better
classification accuracy.
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Table 6. Classification of AE signals from individual specimens based on the configuration.

N◦ Training
Mode [TM] Model Number of

Inputs

Type of
Activation
Function

Pooling
Avg/Max

Validation
[%] Testing [%] Time

TM 1
AlexNet 400 ReLu Avg/Max 68.3 65 1 h 16 min

SqueezeNet 400 ReLu Avg/Max 61.7 62 55 min 01 s
New Model 400 ReLu Avg/Max 69.7 68 40 min 05 s

TM 2
AlexNet 2000 ReLu Avg/Max 97.2 85.5 4 h 37 min

SqueezeNet 2000 ReLu Avg/Max 96.4 81 4 h 07 min
New Model 2000 ReLu Avg/Max 97.8 90.1 2 h 50 min
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Figure 18. Classification based on the signals generated from individual specimens using TM 1: (a)
AlexNet, (b) SqueezeNet, and (c) the Proposed model CNN.
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Figure 19. Classification based on the signals generated from individual specimens using TM 2: (a)
AlexNet, (b) SqueezeNet, and (c) the Proposed model CNN.

4. Conclusions

This paper proposes a deep learning approach based on AE data. The objective is to
characterize and classify different stages of deformation (elastic and plastic) and different
configurations of the specimen (Txy, Tz, T45) on AlSi10Mg samples obtained during the
SLM process. The process started with tensile tests. The AE signals were extracted. A
time-frequency analysis was performed, using CWT to extract the spectrograms. The
time-frequency content allowed the AE signals to be distinguished from the stages of
damage (elastic and plastic) and from the different configurations of the specimen. Subse-
quently, these spectrograms were used to train three different CNNs, including AlexNet,
SqueezeNet, and a new model. A comparison was made among these three CNN models,
considering the accuracy and development time of the different CNN models. In addition,
a series of training modes were performed to determine the amount of data required to
train a network to achieve 100% accuracy. Changing the parameters from Max-Pooling to
Average-Pooling does not affect the results. Using the sigmoid activation function results in
50% accuracy for the damage stage classification and 33.3% accuracy for the classification
based on the specimen configuration for all the CNN models used. Using the ReLu activa-
tion function, 100% accuracy is achieved for each CNN model. The CNN achieves the same
accuracy but with a different learning time. The new, simplified CNN model classified AE
signals in less time compared to AlexNet and squeezeNet, which have a high number of
parameters. The AE signals, which are from an individual specimen, were classified with
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the optimal CNNs by changing the input data. The results show, first, that increasing the
input data affects the accuracy of CNN classification. Second, the simplified CNN model
can achieve the same accuracy as AlexNet and squeezeNet but in a short time.
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