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Abstract: This study calibrated and compared the capabilities of hourly global horizontal irradiance
(GHI) clear sky models for six Moroccan locations, using the McClear clear sky model as a reference.
Complex clear sky models, namely Bird, Simplified Solis, Ineichen and Perez, and simple clear sky
models, namely Adnot–Bourges–Campana–Gicquel (ABCG), Berger–Duffie, and Haurwitz were
tested. The SOLCAST satellite-based dataset estimates were validated against the McClear clear sky
model. pvlib python was used to configure the models, and ERA5 hourly fractional cloud cover
was used to identify clear-sky days. The study period was from 2014 to 2021, and the study sites
were in different climatic regions in Morocco. Bar graphs, tables, and quantitative statistical metrics,
namely relative mean bias error (rMBE), relative root mean square error (rRMSE), relative mean
absolute error (rMAE), and the coefficient of determination (R2), were used to quantify the skill of the
clear sky model at different sites. The overall rMBE was negative in 5/6 sites, indicating consistent
overestimation of GHI, and positive in Tantan (14.4%), indicating frequent underestimation of GHI.
The overall rRMSE varied from 6 to 22%, suggesting strong agreement between clear sky models and
the McClear clear sky model. The overall correlation was greater than 0.96, indicating a very strong
relationship. Overall, the Bird clear sky model proved to be the most feasible. Complex clear sky
models outperformed simple clear sky models. The SOLCAST satellite-based dataset and ERA5 cloud
fraction information could well be used with quantifiable certainty as an accurate clear sky model in
the study region and in other areas where complex clear sky models’ inputs are not available.

Keywords: clear sky model; global horizontal irradiance; calibration; validation; solar energy
applications; pvlib python; SOLCAST; fifth-generation European Centre for Medium-Range Weather
Forecasts atmospheric reanalysis (ERA5); statistical metrics

1. Introduction

Morocco declared at the Conference of the Parties (COP21) of the United Nations
Framework Convention on Climate Change (UN-FCCC) that it intends to increase its
renewable energy capacity to 52% (20% solar, 20% wind, and 12% hydro) by 2030. Between
2018 and 2030, the country expects to install around 10 GW of renewable energy (RE)
volume (4.5 GW of solar, 4.2 GW of wind, and 1.3 GW of hydroelectric) [1]. The purpose of
this study is to calibrate and validate global horizontal irradiance (GHI) clear sky models
in order to contribute to the establishment of a solar resource data bank and solar energy
infrastructure in Morocco.

Clear sky models are used to estimate solar radiation under clear sky conditions,
meaning when there are no visible clouds in the atmosphere, using solar geometry and
other atmospheric parameters. Solar energy technologies for photovoltaic (PV) or thermal
applications necessitate an evaluation of the available solar energy resource at the selected
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location [2,3]. These measurements are frequently unavailable for the targeted areas and
must therefore be estimated in clear sky conditions [4–7]. Even when in situ observations
are available, there may be gaps in the observation records that must be filled in order
to estimate the solar resource [8–10]. It is important to know how much solar energy is
available at any given location, and clear sky irradiance, specifically GHI, provides that
information. This information is essential for predicting or estimating the performance
of solar energy technologies [11]. As a result, determining the clear sky GHI at a given
location is important for projecting the optimum performance of solar technologies before
they are implemented.

Various clear sky models with varying complexities of input meteorological factors
have been developed and verified throughout time to estimate clear sky GHI for a variety
of solar energy systems, particularly in areas where observations are unavailable. The clear
sky models are either empirically based [12–14] or can be broadband [15,16]. Empirically
based irradiance models need geometric parameters, such as solar zenith angle position,
and/or key climatological parameters, such as sunshine duration, relative humidity, surface
pressure, clearness of the atmosphere, and air temperature as input parameters [17,18],
whereas broadband models need inputs that fully define the atmospheric state in detail,
such as aerosol optical depth, amount of precipitable water, and ozone column [4,19–21].
Specific atmospheric or meteorological characteristics are not always available or are of low
quality, limiting the model outputs’ accuracy [21,22]. GHI at the ground surface can also be
accurately estimated using satellite images [23–27].

The aim of this study is to determine the overall best model to estimate clear sky GHI
in Morocco. The models Bird [13,28], Simplified Solis [29,30], Ineichen and Perez [31,32],
Berger–Duffie [33], Adnot–Bourges–Campana–Gicquel (ABCG) [34], Haurwitz [35,36], and
SOLCAST [37] were calibrated and validated against McClear clear sky model data [38].
The study’s clear sky models were chosen based on the availability of input parameters.
The models considered ranged from simple clear sky models (Berger–Duffie, ABCG, and
Haurwitz) that require few input parameters (such as the sun’s zenith angle (θz) and the
top of the atmosphere’s direct normal irradiance (DNITOA)) to complex clear sky models
(Ineichen and Perez, Bird, Simplified Solis) that require many input parameters in addition
to θz and DNITOA, as summarized in Table 3. The SOLCAST satellite-based dataset was also
included in the study because it performed best when validated against GHI observation
data such as Mabasa et al. [39] in South Africa, Yang and Bright [40] globally using Baseline
Surface Radiation Network (BSRN) [41] stations, and Bright [42] in all climatic regions.
It was included in the study to investigate the possibility of using it with ERA5 hourly
fractional cloud cover data [43] in estimating clear sky irradiance.

The McClear clear sky model was used as a reference because there were no observed
GHI data to be used to validate the clear sky models in the study area. Among alternative
data sets, the McClear clear sky model was chosen because it performed very well when
compared to GHI observation data, for example [11,38,44,45], and it was already preconfig-
ured. ERA5 hourly fractional cloud cover data [43] were used to identify clear-sky days in
the study area because a recent study by Mabasa et al. [45] in South Africa confirmed that
it can identify cloudy and clear-sky days. Comparing hourly model outputs to the McClear
clear sky model outputs related to GHI would therefore establish the overall best method.
To assess the capabilities of the clear sky models, quantitative statistical measures, namely
relative mean bias error (rMBE), relative root mean square error (rRMSE), relative mean
absolute error (rMAE), and the coefficient of determination (R2) were used.

2. Literature Review

El Alani et al. [11] validated the McClear model [20] by comparing it to 1-min average
GHI clear sky irradiance data in Benguerir (Green Energy Park, Morocco). The validation
results are summarised in Table 1. The validation results showed that the McClear model
can accurately estimate clear sky GHI in the context of Benguerir’s unique environment,
where skies are frequently clear. The validation results were used as a basis of forecasting
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the 1-min GHI one day ahead. The study’s challenge was not being able to do data quality
control on observed GHI, which hindered the investigators from critically analysing the
reasons for GHI overestimation. Laaroussi et al. [46] conducted a comparison study of
observed and estimated GHI in Moroccan sites (Missour, Erfoud, Zagora, and Tantan). A
comparison of the measured and estimated GHI revealed good agreement between them,
and the results and quantifications are summarised in Table 1. However, these disparities
were attributed to the consequence of the ground albedo, which was frequently present
below the station’s altitude due to the regular presence of clouds.

Gairaa et al. [47] evaluated the accuracy of five GHI clear sky models using 5-min
interval data in Bourareah, Algeria and 10-min interval data in Ghardaia, the capital
city of the Ghardaia Province in the northern–central region of Algeria in the Sahara
Desert. The authors established that the European Solar Radiation Atlas (ESRA) [48,49] and
Ineichen–Perez [31] models performed the best with results as summarised in Table 1. The
authors recommended that the two models be used as a foundation for renewable energy
applications in the study area.

Sun et al. [50] verified 75 GHI clear sky irradiance measurements, revealing that differ-
ent clear sky models provided varying results in each climatic area. They also discovered
that certain models performed inconsistently in various climates due to an overdependence
on input, and that some model coefficients were created using datasets from climates that
were completely different from the climates in other areas where the models were used.
Laguarda and Abal [51] assessed the accuracy of the three clear sky models ESRA [48,49],
Simplified Solis [29,30], and Kasten [52,53] by using data from five sites located in Uruguay
and neighbouring countries (southeastern South America). The models chosen for evalu-
ation were chosen based on the availability of relevant input data in the area. Clear sky
conditions were automatically detected using Reno et al. [54]’s methodology. There was a
negative MBE across all models and locations, indicating that GHI was underestimated
and the rRMSE values were good, as shown in Table 1. Yang et al. [55] tested the accuracy
of five clear sky models using one clear-sky day in Singapore. The models differed in
performance, and the results were applied to build a new local model.

Ineichen [7] validated 8 clear sky GHI measurements across 20 sites using 16 indepen-
dent input databases. The author found that Linke turbidity had the biggest influence on
model dependability, and therefore that, rather than site-specific observed meteorological
inputs, resulted in the models underestimating solar radiation. Gueymard et al. [56] and
Badescu et al. [57] carried out tests to validate very simple clear sky and cloudy sky GHI
models under the conditions of Romania’s climate and geographical latitudes (Eastern
Europe). In July, the MAE of the clear sky models ranged between 7 and 14%, and in
January, it ranged between 12 and 19%.

Kwarikunda and Chiguvare [58] evaluated three distinct models that were tailored for
the study area’s geographical location and used to estimate clear sky GHI at three places in
Namibia’s subtropical desert climate (Kokerboom, Arandis, and Auas). The models were
considered based on the availability of their input requirements. The validation results
revealed that the models fit the observed data well; the validation results are summarized
in Table 1. As a result, the modified models may be used to compute clear sky GHI in these
study locations as well as other places with comparable climatic conditions. Between 2010
and 2013, Mghouchi et al. [59] evaluated the performance of three models for predicting
GHI in Tetouan, northern Morocco: ASHRAE [60,61], the Campbell model [62], and the
Benjamin model [63] which is also known as the Liu and Jordan model [64]. The authors
observed that the ASHRAE model was more suited for estimating high-temporal resolution
GHI, whereas the Campbell model was better suited for estimating monthly GHI at the
study site.

Kallio and Riihelä [65] examined the estimated clear sky GHI in Finland using four
models with different meteorological inputs. Aerosol Optical Depth and water vapour were
the key meteorological inputs from the MACC and ERA-Interim reanalysis repositories,
and almost all models underestimated GHI at the locations studied. McClear [38,44],
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Ineichen [30,31], and Solis with default Pvlib inputs [30,66] all performed better. The
inclusion of reanalysis inputs increased the Solis model’s biases, which were caused by
atmospheric optical depth (AOD) and water vapour climatology, both of which fail to
accurately represent variability in specific locations and times.

Table 1. Overview of the verification results from the reviewed literature.

Study Year Clear Sky Model rMBE (%) rRMSE (%) R2

El Alani et al. [11]
McClear 0.6% 2.2% 0.96

2021 McClear (day ahead) 0.8% 3.3% 0.99

Badescu et al. [57] 2013 54 models - 7–14%, -

Laaroussi et al. [46] 2016 Various models - less than 30% -

Gairaa et al. [47]
2019 European Solar Radiation

Atlas (ESRA) - 6.26% -

Ineichen–Perez - 3.84% -

Sun et al. [50] 2019 75 GHI clear sky irradiance
models - - -

Mghouchi et al. [59] 2016 ASHRAE [61,62], Campbell,
[63] and Benjamin [64] - - -

Laguarda and
Abal [51] 2017 ESRA, Simplified Solis,

and Kasten
Negative up

to −5.3%
Range between

4.3% and 7% -

Ineichen [7] 2016 Eight high clear sky solar
irradiance models

Negative up
to −1%

Range between 4%
and 5% -

Kwarikunda and
Chiguvare [58] 2021

Berger–Duffie,
Adnot–Bourger–

Campana–Gicquel and
Robledo–Soler

- Range between 4%
and 8%

Exceeded 0.98 for all
three models

Pérez-Burgos et al. [5] 2017
Louche,

Robledo–Soler, and European
Solar Radiation Atlas

-

9.9% to 5.7%
7.8% to 7.4%8.8%

to 6.7%
5.7% to 9.9%

-

Alam [67] 2006 REST, Yang, and CPCR2 - Up to 7%, 13.4%,
and 25.9% -

Pérez-Burgos et al. [5] validated three GHI clear sky models adapted to the Madrid
region. The validation was carried out by comparing the performance of the original and
locally adapted models in estimating GHI; the results are summarized in Table 1. It was
discovered that when the models were locally calibrated, there was a 4% improvement.
They recommended that the study’s calibration methodology be applied to areas with
comparable climatic conditions. The study by Badescu et al. [57] examined fifty-four
GHI clear-sky models, which is a significantly larger sample size than any previous work.
The complexity of the models in the sample ranged from very simple to complex. Most
of the models investigated have already been validated in various geographical areas
at various periods and by using diverse validation methodologies. It is yet unknown
how they correlate in a specific and uniform environment. The following limitations
hindered the study: the input data required by the models did not correspond to what
was available for the place and time, and the authors lacked the metadata that would have
informed them about the accuracy of the data. As a result, missing data were generated by
interpolation, extrapolation, or estimation, resulting in uncertainty in estimated GHI due
to the inadequate information.

Gueymard’s [4] study examined methods for identifying clear-sky times in the litera-
ture; the approach used a wide variety of inputs. Using data from a few days with varying
cloudiness, the author found that various methods had advantages and disadvantages.
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Bird and Hulstrom [13] investigated six GHI clear sky models using theoretical baseline
dependence on transmittance, transmittance after molecular scattering, water vapor trans-
mittance, and ozone transmittance. The study’s findings contributed to the development
of the Bird clear sky model. Gueymard [68] investigated the validity and effectiveness
of 11 GHI clear sky models in estimating GHI. The representations of atmospheric effects
in clear sky models were explored as well as their sensitivity to optical masses, Rayleigh
scattering, ozone absorption, mixed gas absorption, water vapor absorption, and aerosol
extinction. The models’ accuracy was validated by comparing them to data obtained in
situ at seven different locations in California, Canada, Belgium, Switzerland, France, and
India. The more-physical models are found to be generally of higher accuracy and greater
flexibility than empirical models.

Ineichen [69] evaluated 8 GHI clear sky models with 16 distinct databanks of observed
GHI covering 20 years and stations, a range of altitudes including 1600 m, and a wide
range of climates. Given the models’ complexity, the author investigated the impact of
atmospheric parameters and indicated that utilizing meteorological databanks rather than
locally observed meteorological parameters resulted in underestimation of GHI by the
models. According to the author, while accuracy is not heavily reliant on the model, model
selection should be based on either the implementation convenience or the availability
of input parameters. Younes and Muneer [70] analysed four GHI clear sky models at six
different locations in the United Kingdom, Spain, and India. The Meteorological Radiation
Model (MRM) performed best after being locally calibrated. REST2 [15] was the best
performing model among uncalibrated models.

Gueymard [71] used atmospheric data to assess five models capable of forecasting
DNI under clear skies. These models were tested against the results from 18 decomposition
models that were used to predict DNI from GHI. The separation methods were found
to be reasonable but not exceptionally accurate under clear conditions and significantly
inaccurate under non-clear sky conditions. Gueymard [4] investigated 18 models for
estimating GHI based on atmospheric data. Data from Oklahoma, Illinois, Colorado,
Hawaii, and Saudi Arabia were compared to four simple and eight complex clear sky
models. The study revealed that various models were capable of accurately estimating
GHI. The REST2 model performed best, followed by the Ineichen model [69].

Alam [67] used hourly GHI from four Indian regions to analyze three GHI clear sky
models. The REST model was found to be more accurate in Indian areas than the other
two models, as indicated in Table 1. Using monthly average GHI data spanning 14 years,
Ianetz et al. [72] investigated the comparative capabilities of four models for three locations
in Israel’s Negev region. To identify clear-sky days, Iqbal’s [73] filter was used, which
categorized days only based on their daily clearness index [72,73]. The authors discovered
that the Berger–Duffie model, a model presented by Lingamgunta and Veziroglu [74], and
a model proposed by Kondratyev [75] fared the best.

3. Description of the Clear Sky Models

In the Adnot–Bourges–Campana–Gicquel (ABCG) model [34], the sun’s zenith angle
(θz) (for different methods for calculation, see [76–78] for examples) is the main input that
is required to be able to estimate clear sky GHI. The transmittance of 951.39 is already
calibrated. The attenuation of extraterrestrial normal incoming irradiance (DNITOA) as
it passes through the atmosphere is affected by the θz. The Bird, Ineichen and Perez,
Simplified Solis, McClear, Berger–Duffie, and Haurwitz clear models were elucidated in
the study by Mabasa et al. [45]. The SOLCAST satellite-based dataset was also elucidated
in [39,40,42]. The basic models’ equations are given by Equations (1)–(7).

Adnot–Bourges–Campana–Gicquel [34]:

GHI = 951.39· cos θZ
1.15 (1)
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Bird [13]:

GHI =
(DNI cosθz + DIF)(

1− RgRs
) (2)

Ineichen and Perez [32]:

GHI = 0.84DNITOA cos θZe(−0.027AM( fh1+ fh2(TL−1))) (3)

Simplified Solis [30]:

GHI = DNI′TOAe
(
−τg

cos θ
g
z
)
· cos θz (4)

In Equation (4), to account for varying altitudes and atmospheric conditions, the DNITOA
was changed to the enhanced direct normal extraterrestrial solar radiation DNI′TOA, given
by the equation below from Ineichen [30]:

DNI′TOA = DNITOA
(
0.12P0.56

w ·AOD2
700nm + 0.97P0.032

w ·AOD700nm
+1.08P0.0051

w + 0.017 ln
( p

1013
)) (5)

Be Berger–Duffie [33]:
GHI = DNITOA0.7 cos θZ (6)

Haurwitz [35]:

GHI = 1098 cos θZe
−0.057
cos θZ (7)

The variables in Equations (1)–(7), can be defined as follows: DNI is the direct normal
extraterrestrial irradiance; DIF is the diffuse horizontal irradiance; Rg is the ground albedo;
Rs is the sky albedo; DNITOA is the direct normal extraterrestrial irradiance; AM is the
relative air mass; fh1 and fh2 are the coefficients that relate the site altitude with the altitude
of the atmospheric interactions; TL is the atmospheric transmissivity; τ is the total atmo-
spheric optical depth; b is the constant of adjustment for DNI; Pw is the precipitable water
or water vapour in centimetres and AODnm is the aerosol optical depth at 700 nanometres
and p is the surface pressure.

4. Materials and Methods
4.1. Study Area

The study sites were in Morocco, a country in North Africa. Tantan, Fes, Agadir,
Marrakech, Ouarzazate, and Tangier were the study sites, as shown in Figure 1 and Table 2.
The country has a population of 37 million people and a land area of 710,850 square
kilometers. According to the climate change knowledge site [79], northern and southern
Morocco have highly diverse climates. The Atlantic Ocean, Mediterranean Sea, and Sahara
Desert all have a significant influence on rainfall and temperature. The rainiest months are
October through May. High temperatures prevail in the southern and southeastern dry
and semi-arid regions, with average monthly temperatures ranging from 9.4 ◦C (December,
January) to 26 ◦C in Morocco (July, August). The months with the most rain are October to
April, and the months with the least rain are June to August [79]. The Moroccan Agency for
Energy Efficiency (AMEE) and the National Center of Meteorology recently collaborated
to create a new climatic zoning map for Morocco [80,81]. All of the new climate zones in
Morocco share similar solar irradiation, altitude, and other key climatic characteristics. A
key city serves as the indicator for each zone, as shown in Figure 1.



Appl. Sci. 2023, 13, 320 7 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25 
 

 

4. Materials and Methods 

4.1. Study Area 

The study sites were in Morocco, a country in North Africa. Tantan, Fes, Agadir, 

Marrakech, Ouarzazate, and Tangier were the study sites, as shown in Figure 1 and Table 

2. The country has a population of 37 million people and a land area of 710,850 square 

kilometers. According to the climate change knowledge site [79], northern and southern 

Morocco have highly diverse climates. The Atlantic Ocean, Mediterranean Sea, and Sa-

hara Desert all have a significant influence on rainfall and temperature. The rainiest 

months are October through May. High temperatures prevail in the southern and south-

eastern dry and semi-arid regions, with average monthly temperatures ranging from 9.4 

°C (December, January) to 26 °C in Morocco (July, August). The months with the most 

rain are October to April, and the months with the least rain are June to August [79]. The 

Moroccan Agency for Energy Efficiency (AMEE) and the National Center of Meteorology 

recently collaborated to create a new climatic zoning map for Morocco [80,81]. All of the 

new climate zones in Morocco share similar solar irradiation, altitude, and other key cli-

matic characteristics. A key city serves as the indicator for each zone, as shown in Figure 

1. 

 

Figure 1. A map showing the climatic zones and solar intensities of the study sites. The map was 

sourced from: www.marocmeteo.ma (accessed on 16 March 2022) [81]. 

Table 2. A table showing study area: Latitude, longitude, altitude, climate region or climate type, 

mean annual values of relative humidity, water vapour, the total number of clear-sky days used per 

site where the percentage of the annual average share of clear-sky days is given in brackets. 

Station 

 

WMO 

Code 

Latitude  

(° N) 

Longitude  

(° E) 

Alti-

tude  

(m) 

Köppen 

Climate Type 

Number of 

Clear-Sky 

Days  

Relative 

Humidity 

(%) 

Water 

Vapor  

(g/kg) 

Marra-

kech  
60230 31.617 −8.033 466 

Mid-Latitude 

Steppe and De-

sert Climate 

(Bsh). 

196 (24.5%) 55 0.16 

Fes 60141 33.933 −4.983 579 
Mediterranean 

Climate (Csa) 
138 (17.25%) 38 0.11 

Figure 1. A map showing the climatic zones and solar intensities of the study sites. The map was
sourced from: www.marocmeteo.ma (accessed on 16 March 2022) [81].

Table 2. A table showing study area: Latitude, longitude, altitude, climate region or climate type,
mean annual values of relative humidity, water vapour, the total number of clear-sky days used per
site where the percentage of the annual average share of clear-sky days is given in brackets.

Station WMO
Code

Latitude
(◦ N)

Longitude
(◦ E)

Altitude
(m)

Köppen
Climate Type

Number of
Clear-Sky

Days

Relative
Humidity

(%)

Water
Vapor
(g/kg)

Marrakech 60230 31.617 −8.033 466
Mid-Latitude Steppe

and Desert
Climate (Bsh).

196 (24.5%) 55 0.16

Fes 60141 33.933 −4.983 579 Mediterranean
Climate (Csa)

138
(17.25%) 38 0.11

Agadir 60252 30.383 −9.567 23
Mid-Latitude Steppe

and Desert
Climate (Bsh)

130
(16.25%) 61 0.17

Tangier 60100 35.733 −5.803 21 Mediterranean
Climate (Csa)

38
(4.75%) 73 0.19

Ouarzazate 60262 30.933 −6.910 1140
Tropical and

Subtropical Desert
Climate (Bwh)

232
(29%) 59 0.16

Tantan 60285 28.437 −11.103 45
Tropical and

Subtropical Desert
Climate (Bwh)

62
(7.75%) 64 0.18

4.2. Data and Methodology

As shown in Table 3, different clear sky models necessitate different sets of input
parameters. There are a few input parameters that apply to all different models.

www.marocmeteo.ma
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Table 3. A table summarising different inputs required by different models.

Input/Model Bird Simple Solis Ineichen–Perez McClear Haurwitz Berger–Duffie ABCG

Zenith Angle X X X X X X X

Albedo X - - X - - -

AOD1240 nm X X - - - - -

AOD550 nm X X - X - - -

AOD380 nm X - - - - - -

AOD500 nm X - - - - - -

AOD700 nm - X - - - - -

Temperature X X - X - - -

Humidity X X - X - - -

DNITOA X X X X - X X

D (Julian day) X X X X X X X

Solar constant X X X X - - -

Pressure X X X X - - -

Altitude X X X X X X X

Linke Turbidity - - X - - -

Ozone X - - X - - -

Absolute airmass - - X - - - -

Relative airmass X - X - - - -

Apparent Elevation - X - - - - -

Asymmetry X - - - - - -

Total inputs 16 12 9 11 3 4 4

4.2.1. Meteorological Data (Temperature, Humidity, Pressure)

Temperature, humidity, and pressure data were sourced from Meteomanz [82]. Meteo-
manz delivers observed meteorological data from global sites sourced from surface synoptic
observations (SYNOP) and Binary Universal Form for the Representation of meteorological
data (BUFR) information supplied by accredited meteorological stations as well as forecast
atmospheric information derived from Global Forecast System (GFS) models and European
Centre for Medium-Range Weather Forecasts (ECMWF). The data were accessible as 3-h
averages; the linear interpolation method was used to obtain hourly averages from the
3-h averages.

Observation data were sourced for the eight-year period of 2014–2021. Quality control
of raw datasets was provided based on the semiempirical method [83]. Missing data were
filled in. Minor data gaps (up to six measurement cycles missing) were filled in using the
linear regression method; for longer data gaps, gap-filling was performed using data from
the preceding method and 1–3 days prior to the data gap, leaving a maximum of three
hours of adjustment time to fit the measured and interpolated data. It is noted that the
distribution of the SYNOP stations and quality of observations in Morocco are better than
in most other parts of Africa [84,85]. Water vapour was calculated from hourly temperature
and hourly humidity data using a methodology given by [45,86–89]. The methodology
used is summarised by Equations (8) to (12):

Pw = 0.1·HV.PV (8)
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where HV is the apparent water vapor scale height (in km) and PV is the surface water
vapor density

(
in g

m3

)
. These are given by Equations (9) and (11), respectively:

HV = 0.4976 + 1.5265·X + e(13.68·X−14.9188·X3) (9)

With X =
T

273.15
(10)

PV = 216.7·RH· es

T
(11)

With es = e(22.33− 4914
T −

109220
T2 −0.0039015·T) (12)

where T is the temperature (in ◦C) and RH is the relative humidity (in %).

4.2.2. Ozone Data

Ozone (O3) is an oxygen molecule composed of three oxygen atoms. Its role in the
atmosphere is to act as a sunscreen, i.e., it shields the Earth against dangerous ultraviolet
(UV) rays from the Sun. O3 in the atmosphere is a powerful absorbent of solar energy that
enters the atmosphere. It is a greenhouse gas. At wavelengths less than 295–300 nm, no
irradiance reaches the Earth’s surface. The amount of O3 in the atmosphere affects the
Earth’s surface radiation at a wavelength between 300 and 315 nm. The O3 data used in the
study were sourced from CAMS [90,91] as monthly climatological averages, with monthly
O3 climatological average values representing all the O3 hourly values for that month.

4.2.3. Linke Turbidity Data

The Linke turbidity factor (TL, for an air mass of 2) is a good way to determine how
the sun’s rays are absorbed and scattered by the atmosphere under clear skies. When the
sky is clear, TL can be used to determine how much solar radiation is attenuated by the
atmosphere. If the atmosphere is clear and dry, then the TL would be equal to 1. The
depletion of solar radiation by the clear-sky environment affects the value of TL. The TL
data used in the study were sourced from CAMS [91] as monthly climatological means,
with monthly TL climatological average values representing all the TL hourly values for
that month.

4.2.4. Aerosol Optical Depth

The aerosol optical depth (AOD) is the coefficient of irradiance attenuation by the
atmosphere. AOD data used in the study were sourced from SODA [92] as 3-h averages.
AOD 1240 nm, AOD 550 nm, AOD 500 nm, AOD 380 nm, and AOD 700 nm were calcu-
lated using the Angstrom law [93,94]. The Angstrom law methodology was also applied
by [45,86] in their clear sky model studies. The Angstrom turbidity law [93,94] was applied
as follows: the Angstrom exponent (α) of the aerosol from the two known AOD wave-
lengths was found, and then the calculated α from those two known wavelengths was used
to calculate the unknown AO. Equations (13) to (18) from [93,94] were used for this:

τλ

τλ0
=

(
λ

λ0

)−α

(13)

τλ = τλ0

(
λ

λ0

)−α

(14)

τ700nm = τλ0

(
700 nm

λ0

)−α

(15)

τ500nm = τλ0

(
500 nm

λ0

)−α

(16)
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τ380nm = τλ0

(
380 nm

λ0

)−α

(17)

where:
τλ is the optical thickness at unknown wavelength (AOD380, AOD500 and AOD700);
τλ0 is the optical thickness at the known wavelength (AOD550 or AOD1240);
λ is the wavelength of the unknown AOD ( AOD380, AOD500 and AOD700);
λ0 is the wavelength of the known AOD (AOD550 or AOD1240);
α is the angstrom, or alpha exponent, of the aerosol. It is related to the particle

size distribution.
The alpha exponent, or Angstrom, of the aerosol (α) is calculated as in Equation (18):

α = − log


(

τλ1
τλ2

)
(

λ1
λ2

)
 (18)

where τλ1
τλ2

is the ratio of known optical thickness measurements AOD550
AOD1240

and λ1
λ2

is the ratio
between the known wavelengths 550nm

1240nm .

4.2.5. Albedo Data

Albedo is a measure of a surface’s ability to reflect sunlight. Light-coloured surfaces
(high albedo) return a notable amount of the sun’s energy back into the atmosphere. Dim
surfaces (low albedo) absorb large amounts of the sun’s light. Surface albedo is a way
to measure how much short-wave irradiance is reflected away from the Earth’s surface.
The albedo data used in the study were sourced from EUMETSAT’s Satellite Application
Facility on Climate Monitoring (CMSAF) [95] as pentads. The desert has a high albedo,
but because of its relatively dry and cloud-free atmosphere, its hot surface emits a lot of
infrared radiation into space.

4.2.6. Solar Geometry

The solar angles were calculated with pvlib python using the Solar Position Algorithm
(SPA) [66,96]. The solar zenith angle θz is given in Equation (19) and in [73,97] as:

cos θz = sin∅· sin δ + cos∅· cos δ· cos ω (19)

where ∅ is the altitude of the site and δ is the solar declination angle in terms of the day of
the year (D) as given by Cooper [98] and shown as Equation (20):

δ = solar declination = −23.45 sin
(

360(D + 284)
365

)
(20)

where ω is the hour angle, given by [66,98,99] and as shown in Equation (21):

ω = 15◦·(ST − 12) (21)

and with:
ST = STD + 4·(Lst − Llocal) + E (22)

where ST is solar time, STD is local standard time, Lst is the standard meridian for the local
time zone, Llocal is the local longitude, and E is the equation of time given by Equation (23).

E = 229.18(0.0.000075 + 0.001868 cos B− 0.032077 sin B− 0.014615 cos 2B
− 0.04089 sin 2B)

(23)

B = (D− 1)·360
365

, (24)
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Duffie and Beckman [97] defined the relative air mass (AM), which is the optical path
length where irradiance is scattered and absorbed when the sun is not directly overhead,
as Equation (25):

AM =
1

cos θZ
(25)

Kasten and Young [100] proposed that the relative air mass model given by Equation (25)
should be modified to account for the curvature of the Earth. Equation (26) gives the
modified version, which is the formulation used in this study:

AM =
1

cos θz + 0.50572·(6.07995 + (90− θz))−1.6364)
(26)

To account for the effects of altitude, multiply the relative air mass by station pres-
sure (in pascals) divided by pressure at sea level (101325). According to Bird et al. [101],
this pressure-corrected air mass is known as absolute air mass (AMa), which is given in
Equation (27):

AMa = p· AM
101325

(27)

where p is the station pressure in pascals.

4.2.7. Extraterrestrial Solar Irradiance

The amount of solar radiation arriving at the top of the Earth’s atmosphere is ap-
proximated by extraterrestrial solar irradiance. Direct normal extraterrestrial irradiance
(DNITOA), is the irradiance that is perpendicular to the direction of solar radiation and is
given by Equation (28) as in Duffie and Beckman [97]:

DNITOA =
( r

R2

)
ISC (28)

where ISC = 1367 W
m2 , the solar constant recommended by the World Meteorological

Organization recommendation, according to Gueymard [102];
r is the middle distance of Earth from the Sun;
R is the instantaneous distance of the Earth from the Sun;
the ratio

(
r

R2

)
is the eccentricity factor, Eo, which by approximation is:

Eo = 1 + 0.0333 cos [(
2πD
365

)] (29)

where D is the Julian day. Thus, Equation (29) is approximated as:

DNITOA =

[
1 + 0.0333 cos

(
2πD
365

)]
·ISC (30)

4.3. Methodology

Figure 2 summarizes the methodology used in the study. The process began with the
collection of ERA5 hourly fractional cloud cover data [43], i.e., the average portion of the
sky covered by clouds when observed from a specific location per each study station from
2014 to 2021. The hourly data were summed to produce daily fractional cloud cover data for
each site. A clear-sky day occurred when the daily fractional cloud cover for each station
was zero. Following the identification of clear-sky days, the hourly McClear clear sky
model data timesteps were compared to modelled clear-sky data. Each model’s clear-sky
data were generated by solving the algorithms in Section 3 and entering parameters in
Table 3. The matched timesteps of data were further filtered by considering only the hours
when the zenith angle was less than 90 degrees, i.e., only the hours between sunrise and
sunset, during the validation process. Each model’s performance was benchmarked using
statistical metrics.
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Table 4. Four performance classes to rank clear sky GHI models.

Model Skill rMBE rRMSE R2

Poor ≥|±10|% ≥15% ≤0.97
Average ≥|±5|%, <|±10|% ≥10%, <15% >0.97, ≤0.98,

Good ≥|±2|%, <|±5|% ≥5%, <10% >0.98, ≤0.99,
Excellent <|±2|% <5% >0.99

4.4. Model Validation Using Statistical Metrics

The statistical metrics that were used to quantify the performance of the clear sky
models are described here, one of which is the relative mean bias error (rMBE), which
reflects the degree of error in percentage terms. A higher rMBE means that the model
performed poorly, and a lower rMBE means that the model performed excellently. When
the rMBE value is negative, it implies that the model overestimates GHI, while positive
rMBE values imply that the model underestimates GHI. The relative root mean square
error (rRMSE) is another percentage error measure that measures the degree of error in
percentage terms. The rRMSE is not affected by the direction of the error, and it places
additional emphasis on big errors. A greater rRMSE value means that the model performed
poorly, while a smaller rRMSE value means that the model performed very well. The
relative mean absolute error (rMAE), which quantifies the definite value of the error
between the measured and estimated values, was also considered in the study as it gives a
better outlook of estimation skill. A higher value of rMAE implies that the model has low
estimation skill, while a low rMAE implies that the model has higher estimation skill and
accuracy. The coefficient of determination (R2) is a quantitative gauge of the extent of the
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correlation between the change of the estimated and measured variables in a certain period.
The nearer R2 is to 1, the more suitable the accuracy of the prediction. The equations of the
metrics are given in Equations (31) to (37) below.

MBE =
1
n

n

∑
i=1

(Pi−Oi) (31)

rMBE = 100 ∗ 1
n

n

∑
i=1

(Pi−Oi) (32)

MAE =
1
n

n

∑
i=1
|Pi−Oi| (33)

rMAE = 100 ∗ 1
n

n

∑
i=1

|Pi−Oi|
Oi

(34)

RMSE =

√
1

n− 1

n

∑
i=1

(Pi− Po)2 (35)

rRMSE =
100
Oi
∗
√

1
n− 1

n

∑
i=1

(Pi− Po)2 (36)

R2 = 1− ∑n
i=1 (Pi−Oi)2

∑n
i=1
(

Pi−Oi
)2 (37)

where Oi is the measured value, Pi is the predicted value, Oi is the mean of the measured
values, Po is the observed value, i is the time point, and n is the total number of points used.

4.5. Model Benchmark

Each model’s performance was evaluated using a classification methodology devel-
oped by Engerer et al. [103]. The classification limits for a model’s skill are summarised
in Table 4. The colouration in the table aids in identifying a model’s skill in addition to
quantitative margins, with blue depicting excellent skill, green depicting good skill, yellow
depicting average performance, and pink depicting poor performance. The table was
adapted from [101] and was previously applied by [45,104].

4.6. Most Feasible Clear Sky Model per Station

The most feasible model at each of the 6 sites was decided by initially selecting the
best performing models for each metric. Then, from that group, the most feasible model at
a site was the model with the maximum count across all statistical metrics. A quantitative
comparison of the most favourable barometer was computed as the maximum tally of the
four statistical metrics (rMBE, rRMSE, rMAE, and R2).

5. Results
5.1. SOLCAST Results

SOLCAST overestimated GHI (i.e., negative rMBE) at Agadir (−5%), Ouarzazate
(−13%), Tangier (−3%), and Marrakech (−4%), as shown in Figure 3. However, at the Fes
station, rMBE was 0%, indicating that the estimates from GHI SOLCAST and McClear were
comparable. The Tantan station (+21%) had an underestimation of GHI (i.e., positive rMBE).
Figure 4 shows that the hourly rRMSE was less than 10% at four stations: Marrakech (5%),
Tangier (4%), Fes (9%), and Agadir (8%), indicating a low bias between the datasets. This
indicates very good agreement between McClear and SOLCAST at the Marrakech and
Tangier stations, and good agreement (based on Table 4 model benchmarks) at the Fes and
Agadir stations. The rRMSE was greater than 20% at Ouarzazate (20%) and Tantan (27%),
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indicating high bias between the datasets and poor agreement between SOLCAST and
McClear at these two locations.
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Figure 4. Hourly relative root mean square error (rRMSE) of modelled clear sky GHI against McClear
clear sky GHI.

Figure 5 shows that three stations, Marrakech (5%), Tangier (3%), and Agadir (5%), had
rMAEs less than 5%, indicating low bias between the datasets and very good agreement
between McClear and SOLCAST at these three locations. In Fes and Ouarzazate, there was
good agreement, with rMAEs less than 10% and 15%, respectively, whereas Tantan (23%)
had poor agreement as indicated by high bias.

Table 5, which indicates the coefficient of determination (R2) at all six stations, shows
that R2 > 0.99 in three stations, namely Agadir (0.995), Marrakech (0.999), and Tangier
(0.999), indicating excellent performance based on Table 4 model benchmarks. At the Fes
station, the coefficient was (0.985), indicating good correlation between SOLCAST and
the McClear clear sky model. At Ouarzazate (0.96) and Tantan (<0.97), the corelation was
less than 0.97; this shows poor correlation between SOLCAST and the McClear clear sky
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model. In Figure 6, SOLCAST was closer to McClear, indicating good agreement but with
variations between stations. The performance of SOLCAST model with stations is also
summarised in the supplementary material Tables S1 to S6 and Figure S6.
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Table 5. Hourly mean observed GHI (W/m2) and coefficient of determination (R2) of clear sky
models against GHI measured in situ.

Station Mean GHI
(W/m2) Solis SOLCAST Bird Haurwitz Ineichen

and Perez ABCG Berger

Marrakech 518.1 0.997 0.999 0.998 0.99 0.998 0.99 0.99

Fes 494.7 0.999 0.985 0.999 0.997 0.998 0.996 0.996

Agadir 485.9 0.988 0.995 0.997 0.99 0.997 0.99 0.99

Tangier 545.2 0.998 0.999 0.999 0.996 0.998 0.996 0.998

Ouarzazate 518.3 0.99 0.96 0.99 0.99 0.99 0.98 0.99

Tantan 379.5 0.95 0.97 0.97 0.98 0.97 0.98 0.97

5.2. Bird Results

According to Figure 3, the GHI was overestimated at Agadir (−3.5%), Ouarzazate
(−10.5%), Tangier (−3.7%), and Marrakech (−3.2%), but it was underestimated at Tantan
(19.2%). According to Figure 4, rRMSE was less than 10% at four stations, namely Agadir
(5.9%), Fes (3.0%), Tangier (4.2%), and Marrakech (4.2%), indicating low bias between
McClear and Bird. The rRMSE at the Tantan station was greater than 25%, indicating poor
agreement between McClear and Bird at this station. Figure 5 shows that four stations,
namely Agadir (4%), Fes (2.6%), Tangier (3.8%), and Marrakech (3.4%), had rMAEs less
than 5%, indicating low bias between the datasets and very good agreement between
the McClear and Bird models at these four locations. While rMAE was less than 15% in
Ouarzazate (11.0%), indicating average performance, rRMSE was (21.8%), indicating poor
agreement as indicated by high bias. Table 5 shows the coefficient of determination (R2) at
each of the six stations, with R2 > 0.99 in all cases, indicating excellent performance based
on Table 4, with the exception of Tantan whose coefficient was (0.96), indicating a poor
relationship between the Bird and McClear models. The performance of Bird clear sky
model with stations is also summarised in the supplementary material Tables S1 to S6 and
Figure S1.
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5.3. Adnot–Bourges–Campana–Gicquel (ABCG) Results

From Figure 3, ABCG overestimated the GHI at Marrakech (−14.5%), Tangier (−11.9%),
Ouarzazate (−21.4%), Agadir (−13.5%), and Fes (−15.9%), whereas it was underestimated
at Tantan (3.4%). From Figure 4, which gives the hourly rRMSE, rRMSE was less than 15%
in Tantan (14.5%) and Tangier (14.6%), which shows average agreement in these stations
between McClear and ABCG, whereas it was more than 15% in the other stations, which
indicates poor agreement in these stations between McClear and ABCG. From Figure 5,
which indicates rMAE, at four stations, namely Agadir (14.1%), Tantan (11.6%), Tangier
(12.2%), and Marrakech (14.7), the rMAEs were less than 15%, which shows good agree-
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ment. However, at Ouarzazate (21.9%) and Fes (16.0%), the rMAEs were greater than 15%,
indicating poor agreement as indicated by high bias.

From Table 5, which indicates the coefficient of determination (R2) at all six stations,
R2 > 0.99 in all stations, indicating excellent performance based on Table 4 with the excep-
tion of Ouarzazate with good performance (0.98) and Tantan (<0.98), where the coefficient
of (0.97) indicates poor correlation between the ABCG and McClear clear sky models based
on Table 4 model benchmarks. From Table 6, ABCG was feasible at one station: Tantan.
Here, it had a minimum rMBE and maximum R2 of (0.99). According to Figure 6, the ABCG
clear sky model was not closer to McClear, showing poor agreement but differing at various
stations. The performance of ABCG clear sky model with stations is also summarised in
the supplementary material Tables S1 to S6 and Figure S2.

Table 6. Best-performing clear sky models per hourly statistical metrices, most feasible model, and
rank of performance (classification).

Station Minimum
rMBE

Minimum
rRMSE

Minimum
rMAE

Maximum
R2

Most
Feasible Rating

Marrakech BIRD BIRD BIRD BIRD/
SOLCAST BIRD 4/4

Fes SOLCAST BIRD Solis Bird/SOLIS/
IPN Solis 2/4

Agadir HWZT BIRD BIRD BIRD/IPN BIRD 3
4

Tangier IPN IPN IPN BIRD/
SOLCAST IPN 3

4

Ouarzazate BIRD BIRD BIRD SOLIS/IPN BIRD 3
4

Tantan ABCG ABCG ABCG ABCG ABCG 4/4

5.4. Berger–Duffie (BDD) Results

From Figure 3, BDD overestimated GHI in four stations, namely Marrakech (−8.2%),
Tangier (−5.2%), Fes (−9.1%), and Agadir (−6.8%), whereas it underestimated GHI at
Ouarzazate (14.9%) and Tantan (12.9%). From Figure 4, which gives the hourly rRMSE,
rRMSE was less than 15% in Agadir (13.1%), Tangier (6.3%), and Marrakech (13.4%), which
shows average agreement at these station between McClear and BDD. rRMSE was more
than 15% at the rest of the stations, which indicates poor agreement between McClear and
BDD. From Figure 5, which indicates rMAE, two stations, Agadir (10.5%) and Fes (11.2%),
had rMAEs of less than 15% and thus showed good agreement, while poor agreement was
shown at the rest of the stations with rMAE of greater than 15%, indicated by high bias.

From Table 5, which indicates the coefficient of determination (R2), R2 > 0.99 in all
stations indicating excellent performance with the exception of Ouarzazate, showing good
performance (<0.99), and the Tantan (0.97) station, where the coefficient indicates poor
corelation between BDD and McClear clear sky model based on Table 4 model benchmarks.
From Table 5, BDD was not feasible at any of the six stations based on Section 4.6 criteria
when compared to other clear sky models. From Figure 6, BDD was not closer to McClear,
which shows poor agreement that varies at different stations. The performance of BDD clear
sky model with stations is also summarised in the supplementary material Tables S1 to S6
and Figure S3.

5.5. Ineichen and Perez (INP) Results

From Figure 3, INP overestimated GHI in five stations, namely Marrakech (−9.0%),
Tangier (−2.2%), Ouarzazate (−10.9%), Fes (−4.2%), and Agadir (−4.2%), whereas it was
underestimated at Tantan (17.3%). From Figure 4, which gives the hourly rRMSE, rRMSE
was less than 15% in Agadir (13.1%), Tangier (6.3%), Marrakech (13.4%), and Fes (13.9%),
which shows average agreement at these stations and between McClear and SOLCAST,
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whereas it was more than 15% at the Tantan (20.0%) and Ouarzazate (20.1%) stations, which
indicates poor agreement in these stations between McClear and SOLCAST. From Figure 5,
which indicates rMAE, all stations’ rMAE values were less than 15%, which shows good
agreement with the exception of the Tantan (19.8%) station, where rMAE was greater than
15%, thus indicating poor agreement as indicated by high bias.

From Table 5, which indicates the coefficient of determination (R2) at all six stations,
R2 > 0.99 in all stations, indicating excellent performance based on Table 4 except the
Tanat (0.97) station, where the coefficient indicates poor correlation between the INP and
McClear clear sky models. From Table 6, INP was feasible at Tangier station, showing
minimum rMBE at Tangier and maximum R2 of (0.99) at Ouarzazate, Agadir, and Fes. From
Figure 6, INP was closer to McClear, which shows good agreement that varies at different
stations. The performance of INP clear sky model with stations is also summarised in the
supplementary material Tables S1 to S6 and Figure S5.

5.6. Simplified Solis Results

From Figure 3, Simplified Solis overestimated GHI in five stations, namely Marrakech
(−5.4%), Tangier (−5.2%), Ouarzazate (−13.0), Fes (−2.1%), and Agadir (−8.7%), whereas
it underestimated GHI at Tantan (11.5%). From Figure 4, which gives the hourly rRMSE,
rRMSE was less than 15% at Agadir (12.7%), Tangier (4.2%), Marrakech (4.2%), and Fes
(3.0%), which shows average agreement in this station and between the McClear and
Simplified Solis clear sky model, while it was more than 15% at Tantan (25.7%) station
which indicate poor agreement in this station and between McClear and Simplified Solis
clear sky model.

From Figure 5, which indicates rMAE, all of the stations showed an rMAE of less than
15%, which shows good agreement, except for the Tantan (19.6%) station where rMAE was
greater than 15%, thus indicating poor agreement as indicated by high bias. From Table 5,
which indicates the coefficient of determination (R2) at six stations, all stations showed
R2 > 0.99, indicating excellent performance based on Table 4 with the exceptions of the
Agadir (<0.99) station, where the coefficient indicates average correlation, and Tantan (0.95),
where the coefficient indicates poor performance. From Table 6, Solis was feasible at Fes
station, and it has a maximum R2 of (0.99) at Fes and Ouarzazate. From Figure 6, Solis
was closer to McClear, which shows good agreement that varies at different stations. The
performance of Solis clear sky model with stations is also summarised in the supplementary
material Tables S1 to S6 and Figure S7.

5.7. Haurwitz Results

From Figure 3, the Haurwitz clear sky model overestimated GHI in five stations,
namely Marrakech (−4.6%), Tangier (−2.3%), Ouarzazate (−12.2%), Fes (−6.1%), and
Agadir (−3.5%), whereas it underestimated GHI at Tantan (15.9%). From Figure 4, which
gives the hourly rRMSE, rRMSE was less than 15% in Agadir (7.7%), Tangier (5.4%),
Marrakech (7.7%), and Fes (8.0%), showing average agreement in these stations between
the McClear and Haurwitz clear sky modes. It was more than 15% at the Tantan (21.4%)
and Ouarzazate (15.7%) stations, which indicates poor agreement in these stations. From
Figure 5, which indicates rMAE, all of the stations showed an rMAE of less than 15%, which
shows good agreement, with the exception of the Tantan (17.7%) station where rMAE was
greater than 15%, thus indicating poor agreement as indicated by high bias.

From Table 5, which indicates the coefficient of determination (R2) at all six stations,
R2 > 0.99 in all stations, indicating excellent performance based on Table 4, with the excep-
tion of the Ouarzazate (<0.99) station, where the coefficient indicates average correlation,
and Tantan (0.97), where the coefficient indicates poor correlation between the Haurwitz
and McClear clear sky models. From Table 6, Haurwitz was not feasible at any of the six
stations based on Section 4.6. criteria when compared to other clear sky models, and it
has the minimum rMBE at Agadir. From Figure 6, Haurwitz was closer to McClear, which
shows good agreement that varies at different stations. The performance of Haurwitz clear
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sky model with stations is also summarised in the supplementary material Tables S1 to S6
and Figure S4.

6. Discussions

According to Table 2, Table 6, and Figures 3–5, there was no significant variation in
model performance between sites with different humidity content, number of clear-sky
days per year, and annual water vapour content. However, there was a notable variation
when considering Tantan, the station with the lowest latitude 28.437 (◦ N), and Tangier,
the station with the highest latitude 35.733 (◦ N). The differences were as follows: from
Figure 3, when comparing these two sites with extreme latitudes, all the clear sky models
underestimated GHI at the Tangier station as shown by negative rMBE values, and it is
also noted that small values of rMBE less than −10% were reported with the exception
of the ABCG model (−11.9%). At the Tantan station, except for the ABCG model (3.4%),
positive large rMBE values greater than +10% were observed. This means that the ABCG
model, a simple clear sky model that only depends on the sun’s zenith angle, performed
well at low-latitude sites, while the other models considered in the study performed well
at high-latitude sites. Farahat et al. [105] also discovered a substantial fluctuation in solar
radiation with latitude in Saudi Arabia, and after dividing the study region {15–55 (◦S)} into
5◦ intervals, they reported the best tilt angles to be 20 (◦ S), 25 (◦ S), and 30 (◦ S), depending
on the location.

When comparing rMAE and rRMSE at these two sites, the Tantan station performed
poorly, with both rMAE and rRMSE values greater than 10% in all models except for ABCG,
whereas the Tangier station performed well, with both rMAE and rRMSE values less than
10% in all models except for ABCG.

When considering coefficient of determination (R2), all clear sky models at Tangier
had R2 greater than 0.988, whereas all clear sky models at Tantan had R2 less than 0.977.
This demonstrates that latitude affects the performance of clear sky models, with high
latitude favouring the ABCG clear sky model and low latitude favouring complex models.
It was also observed that, overall, complex models outperformed simple clear sky models.

The SOLCAST satellite-based dataset had a comparable performance with complex
clear sky models, and it performed better than simple clear sky models except in two
locations with extreme altitudes, Tantan (45 m) and Ouarzazate (1140 m), where it showed
poor performance, indicating that SOLCAST performs poorly at both very high and very
low altitudes. Overall, SOLCAST and ERA5 cloud cover can be used together as an accurate
clear sky model in areas where complex clear sky models do not have inputs.

McClear is not a perfect model and may introduce some bias that affects validation
results in some areas, even though its inputs are high resolution and it has demonstrated
excellent performance in various studies around the world. Another study limitation was
the lack of reference observation GHI data to validate the clear sky models. Using reference
data, future studies will validate models, particularly McClear. Another limitation was the
lack of hourly aerosol data, so 3-h aerosols from CAMS AOD had to be interpolated. AOD
380 nm, 700 nm, and 500 nm were unavailable, and the AOD at 1240 nm had to be derived
and interpolated; this could have influenced the results.

Even though [27,101] discovered that ozone does not vary much over time and has
a low influence on GHI, using monthly averages may introduce some bias. High spatial
and temporal resolution model inputs are necessary to fully assess the performance of the
clear sky model. To solve this challenge, meteorological institutions collecting observations
should also record these critical meteorological parameters (albedo, ozone, water vapour,
Linke turbidity, cloud cover, and aerosols).

7. Conclusions

The study validated and evaluated the performance of clear sky models, namely
Bird, Simplified SOLIS, Ineichen and Perez, including simple clear sky models Adnot–
Bourges–Campana–Gicquel (ABCG), Berger–Duffie, and Haurwitz as well as the SOLCAST
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satellite-based dataset against the McClear clear sky model (see also Equations (1)–(7)).
The study period ranged from 2014 to 2021 at five sites with different climates, namely
Marrakech, Agadir, Fes, Tangier, and Ouarzazate.

ERA5 was used to filter out cloudy days. ERA5 and SOLCAST satellite-based data
sets can be used as a clear sky model tool in the study area and in regions where there are
no inputs to calibrate complex clear sky models.

The models were configured using pvlib python, and different input parameters were
gathered per the requirements of each model, ranging from those of simple models, which
require simple input parameters, to those of complex models, which require more input
parameters. Statistical metrics have been calculated, namely the relative mean bias error
(rMBE), the relative root mean square error (rRMSE), the relative mean absolute error
(rMAE), and the coefficient of determination (R2). The models were ranked according to
how well they performed in the study area.

The Bird clear sky model was the overall most feasible model in the study area. ABCG
showed overall poor performance, but it was the best performer at Tantan station, a site
with low latitude 28.437 (◦ N). The SOLCAST satellite-based dataset performed better
than simple clear sky models, but it struggled in very low (45 m) and very high (1140 m)
altitude sites. In the absence of meteorological inputs to calibrate complex clear sky models,
SOLCAST and ERA5 cloud data can be used to filter clear-sky days.

The availability of observation data, particularly GHI data measured in situ, was a
challenge in this study; as a result, the McClear clear sky model was used as a reference.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app13010320/s1. Table S1–Table S6, which show clear sky model-
estimated GHI versus McClear model prediction at all six stations studied with validation statistical
metrics. The colours in the tables are used to indicate the clear sky model’s skill in estimating
GHI-based statistical metrics, with blue representing excellent performance, green representing good
performance, yellow representing average performance, and pink representing poor performance.
Figure S1–Figure S7 show the scatter plots of McClear-modelled hourly GHI against other clear sky
model-modelled hourly GHI at all six stations under study.
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