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Abstract: Connectors are powerful architectural elements that allow the specification of interactions
between software components. Since the connectors do not include behavior in UML, the components
include the behavior for coordinating the components, complicating the designs of components and
decreasing their reusability. In this study, we propose the enrichment of UML connectors with
behavioral specifications. The goal is to provide separation of concerns for the components so
that they are freed from coordination duties. The reusability of the components will increase as
a result of such exogenous coordination. Additionally, using the associated behaviors, we aim
to resolve the ambiguities that arise when n-ary connectors are used. We use a series of QVTo
transformations to transform UML models that include connector behaviors in ALF specifications
into UML models which include fUML activities as connector behavior specifications. We present a set
of example connectors specified using the proposed method. We execute the QVTo transformations
on the example connectors to produce models that represent platform-independent definitions of the
coordination behaviors. We also present and discuss cases from real-life large-scale avionics software
projects in which using the proposed approach results in simpler and more flexible designs and
increases component reusability.

Keywords: ALF; behavior; connector; fUML; model transformation; port; QVT; QVTo; UML

1. Introduction

Using models in software development to cope with complexity and increase quality
is a proven approach employed by model-driven software development (MDSD). In MDSD,
models do not only constitute documentation but they are also considered equal to code,
as their implementation is automated [1]. MDSD saves time by increasing productivity
and reducing implementation errors. The approach has become more popular since the
introduction of the Unified Modeling Language (UML) [2]. Due to its ability to precisely
define the structural and behavioral aspects of the software systems, UML is widely used in
safety-critical real-time embedded software development. UML specification has matured
over the years. Extensions for real-time software development and systems engineering are
introduced. Open-source and commercial tool support for UML also increased significantly.

Although there are languages for software architecture description, the current ver-
sion of UML covers the core concepts, such as components, ports, and connectors. UML
provides various diagrams for modeling the structural and behavioral aspects of soft-
ware systems. Component diagrams describe the structures of the components and the
communication among them using ports and interfaces. The ports define interfaces of
software components and their interactions with the environment using required and
provided interfaces. Starting with UML 2.0, ports can also be included in the designs of
encapsulated classifiers.

Among various advantages of using ports, the most important one is to decouple
components and encapsulated classifiers from their environments. Second, ports provide
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an additional encapsulation for the interfaces of components and structured classifiers by
providing or requiring specific interfaces and inhibiting access to others. Finally, since
the ports provide unique interaction points, the same interface provided by different
ports can semantically correspond to distinct capabilities. This makes it possible for an
encapsulated classifier to provide an interface more than once as part of port contracts for
distinct purposes.

Connectors are used to connect ports inside the definition of components and the
encapsulated classifiers. Connectors are powerful architectural elements that allow the
specification of interactions between encapsulated software components. While the compo-
nents and ports provide context-independent encapsulated behaviors, connectors provide
context-setting interaction patterns [3]. UML enables this distinction between the context of
use and the use-independent context by providing encapsulated classifiers and connectors
as separate entities.

Besides binary connectors that connect two ports, UML also supports n-ary connectors
that can connect with more than two ports. UML states that the semantics is the same
when a port is connected to multiple ports using an n-ary connector or using multiple
binary connectors representing the same n-ary connector. However, the semantics is left
unspecified for either case. Furthermore, connectors are used only to specify links that
connect connectable elements in UML. Therefore, the connected components must include
the coordination behavior for routing requests to specific destinations. However, this
entangling of coordination logic inside the components adds unnecessary complexity to
their designs and decreases their reusability.

This article presents an approach to specify coordination logic outside the connected
components by associating additional behavior specifications with UML connectors. We
use the term enhanced connectors for the connectors with associated behaviors. Behaviors
associated with the connectors enable them to perform exogenous coordination for the
connected elements by relying exclusively on externally specified behaviors. Furthermore,
the approach also provides a method for resolving ambiguities when n-ary connectors are
used to coordinate more than two connectable elements.

We use Action Language for Foundational UML (ALF) [4] for specifying connector
behaviors. ALF can be used to declare the structural and behavioral parts of Foundational
UML (fUML) [5] models using textual notation. The textual notation simplifies the defini-
tion and maintenance of the models that become too complex using the graphical notation.

Using a series of QVT Operational Mappings Language (QVTo) [6] model transfor-
mations, we transform models with enhanced connectors into models that contain classes,
objects, and fUML activities that implement connector behaviors. The resulting models
include platform-independent definitions of the structural and behavioral specifications
required for coordination. They can be used to generate code, or they can be transformed
into other design models.

We illustrate the connector behavior specification method and the model transfor-
mations using a set of example connectors. We then present cases from real-life avionics
software projects where we can use the method to simplify design, increase reusability, and
resolve ambiguities. Furthermore, we evaluate the method’s applicability for asynchronous
coordination and its relation with the ProtocolStateMachines in UML (This article follows
UML’s general convention, which capitalizes the first letter of classifier names such as
Behavior, OpaqueBehavior, Property, ProtocolStateMachine, etc.).

We first presented the enhanced connector concept in our previous study [7]. In the
previous study, we presented the motivation for the enhanced connectors and proposed
a conceptual solution without presenting an implementation. This article completes the
previous study by providing a working solution implemented with model transforma-
tions. Additionally, we present results from our research on the applicability of enhanced
connectors in real-life large-scale avionics software projects.

The rest of this article is organized as follows: Section 2 presents the related research.
Section 3 describes the problem in detail and provides the motivation for the solution of the
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problem. Section 4 presents the approach for the specification of connector behaviors using
ALF. Section 5 describes the model transformations. Section 6 presents the set of example
connectors developed using the proposed approach. Section 7 lists the cases from real-life
avionics software projects where we apply enhanced connector concepts. Section 8 presents
an analysis of how the approach can be applied to asynchronous coordination. Section 9
includes an analysis of how enhanced connectors are related to ProtocolStateMachines in
UML. Section 10 presents our discussions and future work. Finally, Section 11 wraps up
our conclusions.

2. Related Work

Connectors were studied before UML was introduced. One of the earlier studies
defines architectural connectors as explicit semantic entities [3]. The study specifies the
connectors as a collection of protocols that characterize the role of each participant in an
interaction and how these roles interact. They illustrate how this scheme can be used
to define a variety of architectural connectors, and they provide a formal semantics for
connectors based on the Communicating Sequential Processes (CSP) [8]. Using the formal
semantics definition, they describe a system in which architectural compatibility can be
checked analogously to type-checking in programming languages. They use an architec-
tural language (Wright) [9], augmented with a formal notation (CSP), which clears out
ambiguities and allows more precise architectural definitions. The study also supports
complex interaction patterns using the first-in, first-out (FIFO) ordering of messages.

The study in [10] evaluates the capabilities of UML 2.0 for documenting component
and connector views. The study mentions that the lack of connectors and structured
classifiers in prior UML versions weakened the language significantly. Therefore, the
introduction of the connector concept in UML 2.0 added considerable strength to the
language. They mentioned that a connector in UML is just a link between two or more
connectable elements which cannot be associated with a behavioral description or attributes
that characterize the connection. To compensate for the lack of behavior association,
they considered using associations or association classes to represent the connectors in
component and connector views.

UML-RT [11] brings some of the concepts in Real-time Object-Oriented Modeling
(ROOM) [12] into UML. In UML-RT, connectors correspond to ROOM bindings, which
are abstract views of signal-based communication channels interconnecting two or more
ports. UML-RT protocols represent the behavioral aspects of connectors. The protocol
concept was imported into later versions of UML from UML-RT as ProtocolStateMachines.
ProtocolStateMachines are state machines that specify valid communication sequences.
They can be associated with ports, interfaces, and classifiers.

MARTE [13] defines a real-time connector concept that inherits UML connectors and
adds attributes specific to the real-time domain. While MARTE does not limit itself to
binary connectors, it also does not add additional power to UML for the specification of
connector behavior.

SysML [14], the modeling language created for systems engineering, is an extension
of UML 2.5. SysML introduces new concepts, such as multi-level nesting of connector
ends and connector properties. On the contrary, to keep the language simple, some
of the complex features related to ports and connectors, such as ProtocolStateMachine,
ProtocolConformance, Collaboration, and CollaborationUse, are excluded. However, the
exclusion of notational and metamodel support for n-ary connectors is the most crucial
concern for our study. Lacking n-ary connectors in SysML implies that the connectors
for coordinating more than two connectable elements are only possible if an equivalent
structure is formed using multiple binary connectors.

Outside of UML, Reo coordination language [15] is one of the mechanisms for coor-
dination. By defining what is called an interaction machine, Reo frames the motivation
for coordination [16]. An interaction machine is different from a Turing machine because
while its next decision depends on its state and the current input in the input tape, it also
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depends on the inputs it obtains from its environment. The study argues that although the
coordination protocols are crucial and error-prone parts of software, they are often embed-
ded implicitly in the behavior of the software. This makes maintenance and modification
of the coordination software difficult, and its reuse becomes almost impossible. As a result,
the study argues that the coordination of the components should be handled separately
and should be implemented outside of the components. The formal semantics of Reo have
been presented in [17] using timed data streams.

The study presented in [18] also draws attention to exogenous communication. They
argue against components calling methods from each other. The study argues that the
components can be fully decoupled from each other only if connectors possess the whole
control flow in the system. Therefore, they indicate that objects are not good candidates for
components because they call methods from each other. Their work excludes n-ary connectors.

The work presented in [19] proposes an architectural definition based on components,
ports, and connectors; however, they deliberately exclude n-ary relations. They introduce
FIFO queues on component ports to aid asynchronous communications.

The study in [20] presents a formal framework to support the rigorous design of
software architecture focusing on the communication aspects. They use UML class dia-
grams to describe the high-level architecture model, where classes represent the software
components, and associations represent the relationships between them. They propose
using Alloy [21] to formalize the communication styles and to verify the conformance of the
communication styles at the model level. As a reusable library of connectors, they provide
four basic connector behaviors: message passing, message passing with FIFO ordering,
remote procedure call, and distributed shared memory. The proposed approach supports
the validation of communication behavior at the software architecture design level of a
distributed system.

The study presented in [22] uses the π-ADL [23] to provide a formal semantics for the
SysADL [24] models. The study maps SysADL architecture descriptions to π-ADL using
model transformations defined in the ATLAS Transformation Language (ATL) [25]. The
behaviors of connectors in SysADL are described as compositions of ports on either side
of the binary connectors. SysADL also enables using ALF statements to define details of
component behaviors and to instantiate elements in the model. However, since SysADL is
an architecture description language based on SysML modeling language, it inherits the
same omissions from UML regarding the n-ary connectors.

3. Motivation and Problem Statement

In this section, we first present the motivation for our research. We then describe the
problem in detail using examples. Finally, we illustrate the specific problems that should
be addressed by the connector behavior specification method.

3.1. Motivation

In its current form, a connector in UML connects two compatible connector ends, but
it does not play an active role in coordinating the connected entities. Consequently, the
coordination problem is addressed inside the connected components. This solution, called
endogenous coordination, makes the design of the connected elements unnecessarily complex
because their design must also include coordination logic. It also reduces reusability since we
cannot use the components in a scenario that involves different coordination requirements.

Alternatively, we can implement the coordination logic within the connectors to
achieve exogenous coordination. This type of coordination increases the reusability of the
connected components and simplifies their design since the connectors take on the coordi-
nation responsibility. It also allows the reuse of the connector behavior specifications in
similar coordination scenarios.

Our motivation is to achieve exogenous coordination by associating behaviors with
the connectors. Aside from increasing reusability, associated behaviors can help resolve
ambiguities when we use n-ary connectors. In UML, we can connect a port that requires an
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interface to multiple ports providing the same interface. Figure 1 presents an example of
this scenario. We can construct the scenario using three binary connectors or using a single
quaternary connector that has four connector ends.

a:A

b:B

c:C

d:D

Figure 1. Single requester connected to multiple providers.

3.2. Problem Statement

The previous versions of UML leave the case shown in Figure 1 as a semantic variation
point and do not define which providers will receive the request. The current version of
UML [2] mentions that semantics is the same when we use three binary connectors or a
single quaternary connector. It also indicates that the instance that will handle the request
is determined at execution time. As a result, UML still does not provide a method to define
the routing of requests for this case.

Figure 2 shows a part of the abstract syntax for the connectors defined in the UML.
According to the definition, the Behavior classifier is associated with the Connector classifier
using the contract role. Note that the contract role of a connector is distinct from the contract of
a port specified by the required and provided interfaces of the port. As an explanation for
the contract role, UML indicates that behaviors may be associated with connectors as contracts to
specify valid interaction points across the connector. However, the kind of behaviors that can be
associated with connectors is not defined. Conversely, for other types of behaviors, such as
ProtocolStateMachines, the exact purpose is documented, constraints are determined, and
the application of the concept is demonstrated with concrete examples [2].

Connector

Behavior
+connector

+contract*

*

Figure 2. Abstract syntax in UML showing the contract role.

We propose using the behaviors indicated by the contract role to define the coor-
dination behavior. As a result, the complex coordination logic implemented inside the
connected elements can be taken outside and implemented as behaviors of connectors.
Separating the coordination concern from other responsibilities of the elements can increase
their reusability. Behaviors associated with connectors also help resolve the ambiguities
which may arise when we use n-ary connectors to connect more than two connectable
elements. Finally, we can reuse the connector behavior specifications across scenarios that
involve similar coordination requirements.
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3.3. Merging Replies and Requests

Before going into details of connector behavior specification, we describe the specific
issues the connector behavior specification method should cover. In the example scenario
shown in Figure 1, let us assume that the connector behavior is designed so that when
object a makes a request, the request is sent to all connected providers. Additionally, let
us assume that the interface used to specify the contract of the ports is XIfc. Let us also
assume that the interface declares an operation xOp, which returns an integer value.

When object a makes a request, the request will be sent to all three providers b, c, and
d. Providers will handle the request and reply with an integer value. There will be three
different replies from the providers, but the original requester object a expects only one
reply. We can modify the design of object a, as shown in Figure 3, so it expects three distinct
replies from three separate ports, but doing so will reduce its reusability. The reduction in
reusability is caused by having to modify the design of object a if we add another provider.

req

rb

b

c

Requester

Providers

d

rc

rd

Request

Replies from 

Providers

Return value

aa

b

c

d

Figure 3. Modifying object a in Figure 1 to receive replies from multiple ports.

Without modifying the requester, the connector behavior can perform one of the
operations described in Figure 4 to solve the problem caused by multiple replies. In the
first strategy shown in Figure 4a, the connector behavior discards replies from all providers
and sends a default reply to the requester. In the second strategy shown in Figure 4b, the
connector behavior chooses the reply from one of the providers. In the third strategy shown
in Figure 4c, the connector behavior uses the replies from all providers to calculate a merged
reply and sends this merged reply to the requester.

A similar problem can exist for merging requests when there are multiple requesters,
as shown in Figure 5. For this scenario, requests received from objects a, b, and c can be
merged into a single request and sent to the provider object d. Alternatively, the connector
can choose one of the requests and forward it to the provider, discarding other requests.

As a result, the two examples demonstrate the need for merging replies for cases
involving multiple providers and the need for merging requests for cases involving multiple
requesters. In the next section, we describe how to specify connector behaviors that also
include the merge functionality.
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reqa

b

c

Requester

Providers

d

r req

rb

a

b

c

Requester

Providers

d

rc

rd

rb

Request

Replies from 

Providers

Return value

b

c

d

req

rb

a

b

c

Requester

Merged 

Reply

Providers

rc

rd

rm

Request

Replies from 

Providers

Return value

d

b

c

d

(a) (b)

(c)

rb

rc

rd

Request

Replies from 

Providers

Return value

Default 

Reply

b

c

d

Figure 4. Reply merge strategies for the example case presented in Figure 1: (a) Replies from providers
are discarded, and a default reply is returned. (b) One of the replies is chosen. (c) Replies from
providers are merged into a single reply.

a:A

b:B

c:C

d:D

Figure 5. Multiple requesters connected to a single provider.

4. Connector Behavior Specification

Behaviors associated with connectors should address the following concerns:

1. They should allow specifying the routing of requests. Routing of requests includes de-
ciding the destinations for forwarding the requests and the conditions for forwarding
the requests.

2. They should provide mechanisms for designing behaviors for merging the requests
or replies when required.

3. They should enable the reuse of specified connector behaviors.
4. They should be platform-independent to allow transformation into platform-

specific models.

In this section, we describe the connector behavior specification method which satisfies
the above objectives.
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4.1. Using Buffers for Replies and Requests

We use request and reply buffers for the specification of merge behaviors. We model
the reply merge operation required in the "single requester-multiple providers" scenario (see
Figure 1) using buffers dedicated to providers. We store the replies from providers in the
reply buffers. Then, we operate a merge strategy over the elements in the reply buffers to
combine the replies into a merged reply.

Similarly, we model the request merge operation required in the "multiple requesters-
single provider" scenario (see Figure 5) using buffers dedicated to requesters. In this case,
we store the requests from multiple requesters in the request buffers. Then, we operate a
merge strategy over the elements stored in the request buffers to combine the requests into
a merged request. We define two types of buffers for requests or replies:

• Single-copy buffers are for storing a snapshot copy of requests or replies in which
subsequent requests or replies overwrite the previous ones.

• FIFO buffers are for storing subsequent requests or replies using first-in, first-
out ordering.

For example, in the case presented in Figure 4c, we store the three replies returned
from the providers in three separate single-copy buffers. Then we iterate over each buffer
and combine the returned replies into a merged reply.

Figure 6a shows requests received from multiple requesters. In this example, we store
the requests in single-copy request buffers. After receiving requests from all requesters,
we combine the requests stored in buffers as a merged request and forward the merged
request to the providers. Figure 6b shows another example that involves a single requester
with a single FIFO buffer. In this example, we store the subsequent requests received from
the requester in the FIFO request buffer. When the FIFO buffer becomes full, we combine
the requests stored in the buffer as a merged request and then send that request to the
connected providers.

ra

rb

rc

rm

a

b

c

Requesters

Buffered 

requests

Providers

Merged 

Request

d

e

f

r2a

b

c

Requester

Buffered 

requests

rm

Providers

d

Merged 

Request

r1 r3

(a)

(b)

Figure 6. Merging requests using buffers: (a) Storing requests from multiple requesters in single-copy
request buffers. (b) Storing subsequent requests from a requester in a FIFO request buffer.
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Examples in Figure 4a,b do not require buffers since the former connector discards
all replies, and the latter chooses one of the replies and sends it back to the requester.
Consequently, connector behaviors for these cases will not include the behavior for merging
the replies.

4.2. Using ALF to Specify Connector Behavior

In UML, Behavior is an abstract classifier, and its specializations are StateMachine,
Interaction, Activity, and OpaqueBehavior. Therefore, these are the types of behaviors that
can be associated with the connectors using the contract role. We propose using activities
specified in ALF for connector behavior specification. ALF is a surface notation for fUML.
It can be used to declare a model’s structural and behavioral parts using textual notation.
fUML is a subset of UML, which only includes a specific set of UML concepts to allow
executable models.

Because ALF is a surface notation for fUML, complete models specified using ALF are
also limited to the subset of UML covered by fUML. However, there are other intended uses
for ALF. While ALF maps to the fUML subset to provide its execution semantics, in case the
execution semantics is not required, ALF is also usable in the context of models not restricted
to the fUML subset [4,26]. By using ALF only to specify the coordination behaviors of the
enhanced connectors, we allow other parts of the model to use the UML concepts outside
of the fUML context. ALF provides significant advantages for the specification of activities.
When we use graphical notation, the specification of even simple behaviors can become
quite complex, hard to understand, and maintain. We can denote the same behaviors using
ALF in a more readable and maintainable format. Figure 7, an example included in the
ALF specification [4], shows the distinction between the two formats. The figure shows
the implementation of the same quick sort algorithm using both ALF notation and activity
diagram notation.

In our previous study [7], we proposed using Interactions specified by sequence di-
agrams for connector behavior specification. Since using imperative logic for the merge
behaviors was not feasible with sequence diagrams, we have proposed using the target
programming language to specify the behaviors for merging requests and replies. In this
study, we address this problem by using ALF. The connector behaviors specified using
ALF also include the behaviors for merging replies and requests, along with behaviors for
routing requests. To define the connector behaviors, we use an OpaqueBehavior element
for which we provide the specification using ALF in combination with specific Properties
to denote the reply and the request buffers. The OpaqueBehavior allows the connector
activity to have additional Properties, making room for stateful connector behaviors.

Figure 8 shows an example UML model where we define an enhanced UML connector.
Listing 1 shows the body of the OpaqueBehavior developed using ALF for the connector
behavior specification. The connector behavior sends incoming requests to all connected
providers and then stores the replies from the providers in the single-copy reply buffers
(line 3). OutPort denotes the array of providers (e.g., objects b and c in the figure). The term
arg used in the ifc.xOp(arg) operation call represents the argument of the request.

After sending requests to all providers, we execute a reply merge strategy (lines 7–19),
in which we merge replies from each provider using integer addition. The PRV_CNT term
used in line 10 is a placeholder evaluated as the actual number of providers by the model
transformations explained in the upcoming sections.
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Figure 7. The Quicksort algorithm using ALF and graphical notation.

Figure 8. UML diagram and the UML model for the enhanced connector that sends requests to
each provider: (a) Composite structure diagram showing the requester, providers, and the enhanced
connector. (b) UML model showing the connector behavior.
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Listing 1. Connector behavior specification using ALF for the model in Figure 8.

1 I n t e g e r i = 1 ;
2 for ( i f c in t h i s . OutPort ) {
3 t h i s . ReplyBuffer [ i ] = i f c . xOp( arg ) ;
4 i ++;
5 }
6
7 / / Reply merge s t r a t e g y :
8 i = 1 ;
9 I n t e g e r sum = 0 ;

10 while ( i <= PRV_CNT) {
11 I n t e g e r i n t v a l = t h i s . ReplyBuffer [ i ] ;
12
13 i f ( i n t v a l != null ) {
14 sum = sum + i n t v a l ;
15 / / I n v a l i d a t e v a l u e s t o r e d in t h e b u f f e r
16 t h i s . ReplyBuffer [ i ] = null ;
17 }
18 i ++;
19 }
20 return sum ;

Table 1 shows the terms that can be used in connector behavior specifications. OutPort
is used to route requests to a specific provider by indexing it with an integer. ReplyBuffer[i]
is used to access the reply from a specific provider and InPort[i].RequestBuffer is used to
access a request from a specific requester. Besides these terms, any legitimate ALF syntax
can be used within the connector behavior specifications.

Table 1. Special terms used in connector behavior specifications.

Term Description

OutPort[1..*] Ordered array of references to the providers. An operation declared
in the port contract can be called using this reference.

ReplyBuffer[1..*] Reply buffer for storing replies from the providers.

InPort[1..*].RequestBuffer Ordered array of references to the request buffers for each requester.

PRV_CNT Placeholder for the number of providers.

REQ_CNT Placeholder for the number of requesters.

arg Name of the argument of the operation which is declared by the
interface provided/requested by the port.

4.3. Enhanced Connector Profile

Using a profile is one of the methods for extending UML. Figure 9 shows the UML
profile developed for representing the enhanced connector concepts. Defining stereotypes
for enhanced connectors enables the model transformations to differentiate between the
standard UML model elements and the model elements used for the enhanced connectors.

We apply the ConnectorBehavior stereotype to OpaqueBehaviors that we use to specify
connector behaviors. In UML, since Behaviors are Classifiers, they are allowed to have
Properties. We denote the reply and request buffers using specific properties of OpaqueBe-
haviors. ReplyBuffer and RequestBuffer stereotypes generalize the abstract Buffer stereotype,
which extends the metaclass Property. The stereotype Buffer has a type property, whose
type is BufferType enumeration. BufferType defines two enumeration literals that denote
FIFO and single-copy buffers.

We distinguish the enhanced UML connectors from the standard UML connectors
by setting their contract role to an OpaqueBehavior. We also apply the EnhancedConnector
stereotype to enhanced connectors to avoid ambiguity in case the contract role is used for
another purpose.
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Figure 9. Enhanced connector profile.

Most of the current UML tools do not support creating n-ary connectors. Therefore,
we represent n-ary enhanced connectors using an n-1 number of binary connectors. We des-
ignate one of the binary connectors as the primary enhanced connector by setting its contract
role to an OpaqueBehavior. Then, we designate the remaining n-2 binary connectors that
are part of the n-ary enhanced connector as the secondary enhanced connectors. We create
dependencies from the primary enhanced connector to the secondary enhanced connectors
to form a group of connectors that constitute the n-ary connector. Figure 8a shows one such
dependency among the connectors using a dashed line. The contract role of the secondary
enhanced connectors is empty.

5. Model Transformations

We use the stereotypes in the enhanced connector profile to develop the UML model
that includes the enhanced connectors. We apply a series of model transformations that use
this model as input. The transformations convert the input model into a model in which
fUML activities represent the connector behaviors. Figure 10 shows the overall workflow
for executing the model transformations. The model that is the input of the transformation
engine is called the E1 model. We transform the E1 model into the E2 model, and then we
eventually transform the E2 model into the E3 model.

The E2 model is the platform-independent model that includes a class generated for
the connector. This class implements the connector behavior, and an object of this class acts
as the enhanced connector. Any specific attribute of the connector behavior in the E1 model,
along with the properties denoting the reply and request buffers, becomes Properties of the
class generated for the connector in the E2 model.

In the E2 model, in addition to the operation which describes the connector behavior,
we create operations for initializing buffers and setting up relations. We use ALF to provide
the specifications of the connector behavior and the behavior of the created operations. We
transform these ALF specifications into fUML activities in the E3 model.

The E3 model does not include any concepts specific to the enhanced connectors
and thus can be transformed into a platform-independent or a platform-specific model.
Alternatively, using a model-to-text transformation, the E3 model can be transformed into
a programming language such as Java or C++.

We implemented the model transformations using QVTo [6]. We used Papyrus [27] to
develop the UML models, and the QVTo plugin of Eclipse [28] to develop and test model
transformations. In the following sections, we describe the model transformations in detail.
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Figure 10. Enhanced connector transformation process.

5.1. Transformation from the E1 Model into the E2 Model

We construct the E2 model from the E1 model using a model transformation. Figure 11
shows the E2 model that results from the E1 model shown in Figure 8. The transformation
from the E1 model into the E2 model involves performing the following steps for each
enhanced connector found in the E1 model:

• Let us call the class which contains the enhanced connector the container class (e.g., the class
ECls shown in Figures 8 and 11). A class with the name ConnectorCls_<ConnectorName> is
created as a nested class of the container class. We call this class the connector class.

• An object of the connector class is created under the container class.
• Let XIfc be the interface required or provided by the ports connected by the enhanced

connector. Two ports are added to the connector class with the names reqPort and
prvPort, which require and provide the interface XIfc, respectively.

• Connectors that connect the requesters to the prvPort of the connector class are created.
• Connectors that connect the providers to the reqPort of the connector class are created.
• A class with the name RequestPortCls is created as a nested class of the connector class. An

object of this class with the name InPort is also created as a Property of the connector class.
• A port with the name prvPort is created in RequestPortCls, which provides the interface XIfc.
• Properties of the OpaqueBehavior that represent the enhanced connector behavior,

except the properties denoting the request buffers, are moved under the connector
class. Properties that denote the request buffers are moved under RequestPortCls.

• A property named ownerConnector is created in RequestPortCls. The type of owner-
Connector is set to the connector class.
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• A constructor with a single argument is created for RequestPortCls. The type of the
argument is the connector class. Implementation for the constructor is added as an
OpaqueBehavior using ALF. The implementation sets the ownerConnector property
to the argument of the constructor. This way, RequestPortCls knows the connector
class, which owns itself.

• An operation that implements the operation declared by the interface XIfc is created
under RequestPortCls. An OpaqueBehavior that acts as the method of this operation is
also added. Implementation of the operation performs the following actions:

– If a request buffer is defined, it stores the incoming request in the buffer allocated
for the requester.

– It forwards the request to the connector class using the ownerPort property. The
connector then executes the actual coordination behavior.

• A constructor is created under the connector class, and an OpaqueBehavior using
ALF is added as its method. The behavior of this constructor instantiates the InPort
property of the connector class.

• Multiplicities of the port prvPort and the property InPort inside the connector class
are set to the number of requesters.

• Multiplicities of the port reqPort and the property OutPort inside the connector class
are set to the number of providers.

Figure 11. E2 model for the example shown in Figure 8: (a) Composite structure diagram that
contains the requester, providers, and the object of the connector class. (b) Composite structure
diagram for the connector class. (c) UML model showing the connector behavior and other behaviors
generated by the model transformation.

Behavior specifications of the created constructors and operations are specified us-
ing ALF. The E2 model contains all the structural and behavioral artifacts required to
define the coordination behavior for the enhanced connector. In the next transformations,
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we transform the OpaqueBehaviors specified using ALF into behaviors specified using
fUML activities.

5.2. Transformation from the E2 Model into the E3 Model

The transformation from the E2 model to the E3 model involves transforming Opaque-
Behavior elements specified using ALF into fUML activities. Generated fUML activities are
used as methods of operations, replacing OpaqueBehaviors.

We use the ALF reference implementation [29] to compile ALF specifications into fUML
activities. ALF reference implementation can directly execute ALF models. Alternatively, it
can transform ALF models into fUML models. However, since our E2 model has elements
outside of the fUML scope, we cannot use it directly. To use the ALF reference implementa-
tion, we generate an ALF module, which only includes the elements from the E2 model
required for the enhanced connector behavior specification. The transformation responsible
for generating this ALF module is called E2toAlf.

Listing 2 shows the ALF unit generated from the E2 model shown in Figure 11 using
E2toAlf. We then use the ALF reference implementation to compile this model into an
fUML model. After we obtain the fUML model for the generated ALF unit, we import
the fUML activities for the constructors and the operations which describe the connector
behavior into the E2 model. The model transformation responsible for importing fUML
activities into the E2 model is called E2toE3. It takes two inputs: the fUML model generated
by ALF reference implementation and the E2 model. The fUML activities replace the
OpaqueBehaviors that act as methods in the E2 model.

Imported fUML activities still contain references to some of the model elements which
reside in the fUML model. For example, they reference the connector class, RequestPortCls,
and specific Properties inside the fUML model. The referenced model elements also have
their original copies in the E2 model. Therefore, the transformation updates the references
to point to the corresponding model elements that reside in the E2 model. The resulting
model after importing in the fUML activities and updating references is the E3 model.

5.3. Execution and Implementation of the Model Transformations

We developed the Java program EcTransformer to execute the transformations in the
required order as shown in Figure 10. We have also experimented with ATL [25] to
implement the model transformations before choosing QVTo. Even though ATL could meet
our requirements, we preferred QVTo because it was standardized by Object Management
Group (OMG), like UML and ALF. However, we had to develop an equivalent method in
QVTo for a practical feature of ATL called the refining mode.

In the refining mode, an ATL model transformation only changes specific elements in
the input model, leaving everything else the same. The refining mode of ATL is distinct
from the in-place model transformations of QVTo because it saves the output as a different
model and does not modify the input model. It is suitable for our needs because we only
transform the parts of the input model regarding the enhanced connectors.

QVTo does not have the refining mode, but it supports in-place transformations.
However, when we use this option, QVTo modifies the input model. We solve this problem
by using the Java API of QVTo. We define the transformations as in-place transformations.
Therefore, the model transformations modify the input models when we run them manually
from inside Eclipse, using QVTo run configurations. However, when the Java program
EcTransformer runs them, it takes the in-memory representations of the output models and
saves them as different models. Using this method, we can obtain functionality in QVTo
equivalent to the refining mode of ATL.
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Listing 2. ALF unit generated from the E2 model shown in Figure 11.

1 package MultiDestRequester_E1 {
2 / / The i n t e r f a c e in t h e p o r t c o n t r a c t
3 public a b s t r a c t c l a s s XIfc {
4 public a b s t r a c t xOp( in arg : I n t e g e r ) : I n t e g e r ;
5 }
6
7 / / The c o n n e c t o r c l a s s
8 public c l a s s Connector1_ConnectorCls {
9 InPort : RequestPortCls [ 1 . . 1 ] ordered nonunique ;

10 OutPort : XI f c [ 2 . . 2 ] ordered nonunique ;
11 ReplyBuffer : I n t e g e r [ 2 . . 2 ] ordered nonunique ;
12
13 / / O p e r a t i o n f o r r o u t i n g r e q u e s t s merging r e p l i e s from p r o v i d e r s
14 public xOp( in arg : I n t e g e r ) : I n t e g e r {
15 I n t e g e r i = 1 ;
16 for ( i f c in t h i s . OutPort ) {
17 t h i s . ReplyBuffer [ i ] = i f c . xOp( arg ) ;
18 i ++;
19 }
20
21 / / Reply merge s t r a t e g y :
22 i = 1 ;
23 I n t e g e r sum = 0 ;
24 while ( i <= 2) {
25 I n t e g e r i n t v a l = t h i s . ReplyBuffer [ i ] ;
26
27 i f ( i n t v a l != null ) {
28 sum = sum + i n t v a l ;
29 / / I n v a l i d a t e v a l u e s t o r e d in t h e s i n g l e copy b u f f e r
30 t h i s . ReplyBuffer [ i ] = null ;
31 }
32 i ++;
33 }
34 return sum ;
35 }
36
37 @Create public Connector1_ConnectorCls ( ) {
38 I n t e g e r i = 1 ;
39 while ( i <= 2) {
40 t h i s . InPort [ i ] =
41 new RequestPortCls ( t h i s ) ;
42 i = i + 1 ;
43 }
44 }
45
46 / / The c l a s s f o r r e c e i v i n g and s t o r i n g t h e r e q u e s t s
47 public c l a s s RequestPortCls {
48 public ownerConnector : Connector1_ConnectorCls [ 1 . . 1 ] ;
49
50 @Create
51 public RequestPortCls ( in c : Connector1_ConnectorCls ) {
52 t h i s . ownerConnector = c ;
53 }
54
55 public xOp( in arg : I n t e g e r ) : I n t e g e r {
56 / / Forward t h e r e q u e s t t o t h e c o n n e c t o r o b j e c t
57 return t h i s . ownerConnector . xOp( arg ) ;
58 }
59 }
60 }
61 } / / end p a c k a g e
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6. Example Connector Behaviors

In this section, we present example connectors developed using the proposed method.
Besides clarifying the application of the method in different cases, the examples also
demonstrate the expressive power of the connector behavior specification method.

6.1. The Round-Robin Requester

The round-robin requester connector coordinates a single requester and multiple
providers. It sends each request made by the requester to the providers in a round-robin
order and sends the received reply to the requester. Figure 8a shows the composite structure
diagram for the E1 model. Listing 3 shows the connector behavior specification.

Listing 3. Connector behavior specification for the round-robin requester.

1 I n t e g e r r e s u l t = t h i s . OutPort [ t h i s . Index ] . xOp( arg ) ;
2 t h i s . Index = t h i s . Index + 1 ;
3 t h i s . Index = t h i s . Index % PRV_CNT;
4 return r e s u l t ;

The behavior uses the integer Index property of the OpaqueBehavior that represents
the connector behavior in the E1 model. We initialize the Index property in the E1 model by
providing a default value of IntegerLiteral 1. When a request arrives, the connector behavior
sends the request to the provider indicated by the Index property, storing the reply in a
local variable result. Then, it increments the Index property and applies a modulo operation
to prevent the value of Index from overflowing past the number of providers. Finally, the
connector behavior returns the value stored in the result as a reply to the requester.

A buffering mechanism is not required for this connector since it does not send
requests to multiple providers simultaneously. The connector can also coordinate multiple
requesters by sending the request it receives from any requester to the providers in a round-
robin order. Additionally, based on this specification, we can define a random destination
sender connector, which forwards incoming requests to a random provider using a similar
behavior specification. We can achieve this by modifying the ALF code in line 2 to use a
call to a random number generator.

6.2. The Multiple Destination Sender

In this type of coordination, there are multiple providers. There can be a single
requester or multiple requesters. When a requester makes a request, the connector sends
the request to all providers. Then, the connector merges the replies from the providers into
a single reply and sends it back to the original requester. The requester does not know that
the requests are sent to more than one provider. Therefore, the coordination happens in an
exogenous style.

Listing 1 shows the connector behavior in ALF. The behavior forwards the request
to each connected provider by iterating over the OutPort property of the connector (lines
1–5). It stores replies from the providers in the single-copy buffers. After each provider
returns with a reply, the behavior executes a reply merge strategy by summing up the
returned values (lines 8–19). Note that ALF mandates the null check in line 13. If we do
not use the null check, ALF does not allow the summation of intval and sum since intval
can be null, and multiplicities of the operands will not match in that case. The connector
behavior invalidates the value stored in the single-copy buffer by setting it to null after
using it (line 16). Finally, it returns the sum variable to the requester.
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6.3. The Less Frequent Sender

The less frequent requester connector coordinates a single requester and a single
provider. It can be used in cases where the requester makes frequent requests, but the
provider expects them less frequently.

Listing 4 shows the connector behavior specification in ALF. The connector has a
FIFO buffer which can store a limited number of requests. The connector achieves the
coordination by collecting requests in the request buffer until the request buffer reaches
a predefined size, indicated by the MaxRequestCount property of the OpaqueBehavior
representing the connector behavior. When enough requests are collected, the connector
behavior merges them as a single request by summing up the request values. Finally, the
connector behavior sends the merged request to the provider.

The requests are dequeued from the FIFO request buffer until the buffer is empty.
Figure 6b presents an illustration in which subsequent requests are stored in the FIFO buffer
and merged into a single request. For the requests that do not cause sending an actual
request to the provider (i.e., when the number of requests in the buffer has not reached the
MaxRequestCount limit), the connector replies to the requester with a default reply. The
default reply value is stored in the DefaultReply property of the connector behavior, which
is initialized to IntegerLiteral 0 by providing its default value in the E1 model.

Listing 4. Connector behavior specification for the less frequent sender.

1 I n t e g e r returnValue = t h i s . DefaultReply ;
2 i f ( t h i s . InPort [ 1 ] . RequestBuffer . s i z e ( ) == t h i s . MaxRequestCount ) {
3 / / Merge r e q u e s t s :
4 I n t e g e r sum = 0 ;
5 while ( t h i s . InPort [ 1 ] . RequestBuffer . s i z e ( ) != 0) {
6 I n t e g e r request = t h i s . InPort [ 1 ] . RequestBuffer . removeFirst ( ) ;
7 i f ( request != null ) {
8 sum = sum + request ;
9 }

10 }
11 returnValue = OutPort [ 1 ] . xOp(sum ) ;
12 }
13 return returnValue ;

6.4. The Request Barrier

The request barrier connector coordinates multiple requesters and a single provider.
Figure 12 shows its structural configuration in the E1 model. The main functionality of
the connector is to act as a barrier until all requesters make a request. It collects incoming
requests in the single-copy request buffers. After the connector receives requests from each
requester, it merges the requests stored in the request buffers into a single request and then
forwards it to the provider. Listing 5 shows the connector behavior specification.

The connector specification uses a boolean property BarrierOn to keep track of the
connector state. When a request is received, the connector behavior checks if the request
buffer of each requester is empty. It sets the BarrierOn flag to true if one of the requesters
has an empty request buffer, indicating that the corresponding requester did not make any
request yet (lines 1–9). Setting the BarrierOn flag to true means the barrier is closed, and the
requests cannot pass through. In this case, the connector does not forward requests to the
provider. Instead, it replies to the requester with a default reply (lines 11, 12, and 28).
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ECls

 + a: ACls [1]
 + pA: RequesterPortType [1]

 + d: DCls [1]

 + pD: ProviderPortType [1]

 + b: BCls [1]
 + pB: RequesterPortType [1]

 + c: CCls [1]
 + pC: RequesterPortType [1]

Figure 12. E1 level UML model composite structure diagram for the request barrier connector.

Listing 5. Connector behavior specification for the request barrier.

1 I n t e g e r i = 1 ;
2 t h i s . BarrierOn = f a l s e ;
3 while ( i <= REQ_CNT) {
4 I n t e g e r request = t h i s . InPort [ i ] . RequestBuffer ;
5 i f ( request == null ) {
6 t h i s . BarrierOn = t rue ;
7 }
8 i ++;
9 }

10
11 I n t e g e r returnValue = t h i s . DefaultReply ;
12 i f ( t h i s . BarrierOn == f a l s e ) {
13 / / Merge r e q u e s t s
14 I n t e g e r mergedRequest = 0 ;
15 i = 1 ;
16 while ( i <= REQ_CNT) {
17 request = t h i s . InPort [ i ] . RequestBuffer ;
18 i f ( request != null ) {
19 mergedRequest += request ;
20 / / I n v a l i d a t e t h e consumed r e q u e s t
21 t h i s . InPort [ i ] . RequestBuffer = null ;
22 }
23 i ++;
24 }
25 returnValue = t h i s . OutPort [ 1 ] . xOp( mergedRequest ) ;
26 t h i s . BarrierOn = t rue ;
27 }
28 return returnValue ;

The connector sets the BarrierOn flag to false if all requesters have non-empty request
buffers, indicating that each requester made at least one request. Setting the BarrierOn flag
to false means the barrier is open, and requests can pass through. In this case, the connector
merges multiple requests into a single request and sends the merged request to the provider
(lines 13–28).

Figure 13a shows the composite structure diagram, and Figure 13c shows the UML
representation for the E2 model. The E1toE2 model transformation replaces the enhanced
connector in the E1 model with an object of the connector class denoting the connector. The
model transformation sets the multiplicity of the port prvPort of the connector class to the
number of requesters, which is 3. Figure 13b shows the internal structure of the connector
class, which contains the InPort property.
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Figure 13. E2 level composite structure diagrams and UML models for the request barrier connector:
(a) Composite structure diagram for the request barrier connector. (b) Composite structure diagram
for the connector class. (c) E2 level UML model.

The InPort property is an instance of the RequestPortCls class. The transformation
also sets the multiplicity of the InPort property to the number of requesters. One of the
responsibilities of the InPort property is to differentiate between requests received from
different requesters. The operations defined in the connector class can access the request
received from a specific requester by indexing the InPort property with the requester index.
If we do not use the InPort property, we should directly implement the operations declared
in the coordinated interface inside the connector class. However, this implementation will
cause subsequent requests to overwrite each other.

Figure 14a shows the UML model for the connector class in the E3 model for the request
barrier connector. The figure shows the fUML activities that replace the OpaqueBehaviors
(e.g., xOp$method$1 and Connector1_ConnectorCls$method$1). For example, xOp$method$1 is
the fUML activity implementing the connector behavior for routing and merging requests.
Figure 14b shows the inner model elements for this activity, and Figure 14c shows the
internal model elements of the structured activity node inside this activity.
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Figure 14. (a) E3 UML model for the request barrier connector class. (b) E3 UML model for the
request barrier connector fUML activity. (c) Inner elements of the E3 model request barrier connector
fUML activity.

7. Application of Enhanced Connectors in Avionics Software Projects

This section presents the applications of enhanced connectors in real-life projects.
We show examples from real-life projects in which using enhanced connectors simplifies
the design and increases reusability. We examined six large-scale safety-critical avionics
software projects. We developed a tool that searches the project model files to find cases
where the application of the enhanced connectors is appropriate. We searched the model
files for two cases. For the first case, we searched for classes having more than one port
requiring the same interface. For the second case, we searched for classes that provide and
require the same interface at multiple ports. Figure 15 illustrates the cases searched. We
studied the results for both cases to determine if we can use enhanced connectors instead
of existing connectors.

In the following sections, first, we present background information regarding the
development environment and the requirements for the projects we have studied. After
that, we introduce the cases where using enhanced connectors is beneficial.
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Figure 15. Cases searched in real-life projects: (a) Case 1: a class having more than one port that
requires the same interface. (b) Case 2: a class that provides and requires the same interface at
multiple ports.

7.1. Background

The studied projects conform to DO-178C, Software Considerations in Airborne Systems
and Equipment Certification [30]. DO-178C is the primary document by which the certification
authorities such as Federal Aviation Administration, European Union Aviation Safety Agency,
and Transport Canada approve all commercial software-based aerospace systems. Because
of the inability to accurately apply reliability models to software, the concept of development
assurance is applied by most safety-focused industries, including the aviation industry [31].

Table 2 shows the development assurance levels defined in DO-178C according to the
safety impact of functionalities implemented in software. Level-A is the highest assurance
level. Errors in level-A software can have catastrophic consequences leading to the loss
of the aircraft, flight crew, or attendants. Level-D defines the development assurance
level with the lowest safety impact. Level-E corresponds to no safety impact. DO-178C
defines 71 objectives, all of which must be satisfied for level-A software. Moreover, 30 of
the objectives require independence for level-A software. For example, independence for
software requirement reviews means that the engineers who develop the requirements
cannot be the reviewer of the requirements, or they cannot develop the test cases for
these requirements.

Table 2. DO-178C development assurance levels.

Level Failure Condition Objectives With Independence

A Catastrophic 71 30
B Hazardous 69 18
C Major 62 5
D Minor 26 2
E No Safety Effect 0 0

In addition to DO-178C, the avionics software projects we examined conform to
ARINC-653 [32]. ARINC-653 is a software specification for space and time partitioning in
safety-critical avionics real-time operating systems. Implementation of the standard allows
hosting multiple applications of different software development assurance levels on the
same hardware in the context of integrated modular avionics (IMA) [33] architecture.

ARINC-653 decouples running applications from the real-time operating system
using the application programming interface called the application executive (APEX). Each
application software is called a partition. Space partitioning indicates that each application
has its own memory space, and time partitioning indicates that each application has
its dedicated time slot allocated. Inside each partition, multiple processes can run, and
multitasking between the processes using preemptive scheduling is allowed. In ARINC-
653, a process is similar to a thread in the UNIX operating system. It shares the same address
space with other processes and operates on the same global data. On the other hand,
a partition in ARINC-653 corresponds to a process in the UNIX operating system, which
assigns dedicated and protected virtual address spaces to the processes.

7.2. Case I: Multicasting Periodic Data

The first case for which the application of enhanced connectors is beneficial involves
the communication between software components running inside the same ARINC-653
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partition. In an ARINC-653 system, communication among the partitions is performed
using sampling ports and queuing ports. A sampling port is used to send periodic data.
The port retains a single copy of the data, and the recently arriving data overwrite the
previous copy.

ARINC-653 allows connecting a source sampling port to multiple destination ports
for sending data to more than one partition. If another partition needs the same data in
the future, we only add a port to the list of destination sampling ports. We do not need to
change the design of the source partition by adding another source port.

Although ARINC-653 solves the problem of multicasting data among the partitions,
we also have a similar problem inside the partitions. We can have multiple software compo-
nents running inside a partition. The communication among these software components is
modeled using UML ports, and the data should also be multicast among these components
when required.

Figure 16 shows an example scenario where a software component in partition A
produces data. The software component sends the data to ports that belong to two other
software components in the same partition. Additionally, it sends the data to a source
sampling port defined on partition A. The data are then sent from this port to two additional
destination ports, which reside on partitions B and C. As a result, the data produced by
the source software component are sent to four destinations: Cmp1, Cmp2, partition A, and
partition B. The ARINC-653 implementation handles the multicasting of sampling port
data to partition A and B in this scenario. However, we need to implement a solution for
multicasting the data to Cmp1, Cmp2, and the source sampling port of partition A.

Cmp1 Cmp2

Cmp3
Partition C

Partition A Partition B

Figure 16. Sampling data produced by a software component sent to multiple destinations. An
enhanced connector is used inside Partition A to multicast data.

Without using enhanced connectors, we have to manually multicast the data by creat-
ing three separate ports on the source software component or by inserting an additional
object which replicates the data to multiple destinations using multiple source ports. Cre-
ating three ports on the source decreases reusability by coupling the design of the source
component to the number of destinations. On the other hand, inserting an additional
object to replicate the data requires manually designing intermediary classes and objects
to perform the multicasting. We can solve this problem using the enhanced connector
presented in Section 6.2: the multiple destination sender. By using the enhanced connector,
we can decouple the source component from the multicasting concern.

In addition to multicasting periodic data among the top-level software components
inside the partitions, we observed that lower-level objects inside the top-level software
components also used distinct ports to send the same data to multiple objects. The multiple
destination sender enhanced connector is also applicable for these cases.

7.3. Case II: Handling Different Configurations

Avionics software projects we studied include requirements for supporting different
configurations of devices. An example is using separate communication devices in two
different configurations. Version A of the aircraft uses the communication device Com1, and
version B uses Com2. In this case, the software components which control Com1 and Com2
are designed to use the same interfaces to communicate with other software components.
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Depending on the project configuration, an intermediate class routes the requests to the
active communication device.

Figure 17a shows the Selector object in the existing design, which forwards the in-
coming requests to Com1 or Com2 device accordingly. Figure 17b shows the new design,
where we use an enhanced connector that reads the project configuration and forwards
the requests to either device. The selector class is replaced with an enhanced connector.
If a third device is used in the future, we can modify the connector behavior to handle
the change.

Com1

Com2

Container

Selector

Com1

Com2

Container

(a) (b)

Figure 17. Selector pattern, which forwards requests to different communication devices depending
on the project configuration: (a) Existing design that uses a dedicated object. (b) Updated design that
uses an enhanced connector.

We encountered the conditional forwarding of requests in another case where two
ports with identical required interfaces were connected to two ports of different objects.
One of the two objects was for testing purposes, and the other was the live object. The
application forwarded the requests to the test object when running in test mode and to the
live object when not running in test mode. An enhanced connector can also handle this
kind of conditional message routing.

7.4. Case III: Handling Redundant Devices on the Platform

In the projects we examined, some of the cases where multiple ports of the same class
required the same interface were designed to handle the redundant devices in the platform.
In avionics systems, there are often two devices of the same functionality to minimize
the risk of losing critical functions. Having two devices also helps detect sensor errors
by comparing readings from both devices. This system design method, known as dual
redundancy, is used for the devices responsible for critical system functions.

Figure 18a shows a typical dual redundant device management scenario in the projects
we examined. In the existing design, Component1 is responsible for the device functionali-
ties specific to the avionics software application. Responsibilities of this component can
change depending on the avionics software application. On the other hand, Component2
is responsible for the device functionalities only in the scope of the device’s capabilities.
Responsibilities of Component2 do not change depending on the application, so it can
be reused in avionics software applications that require a dual redundant setup of the
same device.

Component1 includes a device manager software component (DeviceMgr) which man-
ages a dual redundant device configuration. Additionally, there are two separate objects
in Component1 which perform application-specific device management and data transfor-
mation tasks for the individual devices (Dev1Src and Dev2Src). The data from the devices
also follow two separate communication channels towards other software components
and partitions. Data sent by Dev1Src and Dev2Src arrive at device controllers Dev1Dest and
Dev2Dest inside Component2.
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Figure 18. Handling Redundant Devices on the Platform: (a) Existing design: Dedicated communica-
tion channel for each device. (b) Updated design: Single communication channel for multiple devices
using an enhanced connector inside Component2.

The existing design is easy to understand and implement, but if we need to add a third
copy of the device to the system in the future, we should establish a third communication
channel. However, adding a third channel will change the design of all the software
component classes on the communication path.

Figure 18b shows the updated design. Using the Dev1/Dev2Src object, we can obtain
requests for both devices and forward them into a single port by adding the device identifi-
cation information to the requests. Then, the enhanced connector inside Component2 can
multiplex the requests to the correct device by reading the device identification information.
Compared to the original design, the updated design is more resilient against adding or
removing devices. If we need to add a third device, we will not have to change the ports of
the classes in the communication path (e.g., Component1, Component2).

7.5. Case IV: Blocking Requests Depending on the Condition

In this case, an intermediate object between two ports is used to allow or block requests.
Figure 19a shows the existing design. During runtime, when objects of these classes receive
a request through the port that provides the interface, they check a particular condition.
They forward the incoming request only if the checked condition holds. Otherwise, they
block and drop the request.

(a)

(b)

Cond

Check

Component

Requester Provider

Component

Requester Provider

Figure 19. Blocking or forwarding requests depending on the runtime condition: (a) Existing design:
Using an intermediate object for conditionally blocking the request. (b) Updated design: Using an
enhanced connector that can conditionally block the request.

Figure 19b shows the updated design using an enhanced connector. We implement the
required coordination behavior by checking the particular condition inside the connector
behavior. We observed that the conditional forwarding and blocking of the requests is used
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in several places in the projects, and they are implemented as separate classes and objects.
Enhanced connectors can replace these objects, simplifying the design.

7.6. Case V: Choosing a Single Reply Among Many Providers

In this scenario, multiple identical devices can respond to a request. A software
component that acts like the multiple destination sender connector sends the same request
to all devices. When all the providers reply, the response from one of the providers is used
according to a selection algorithm.

Figure 20a shows the existing design, where the requester object is responsible for its
own functionality, in addition to the responsibility of multicasting requests to four devices
and choosing a reply. Figure 20b shows the updated design using an enhanced connector.
The enhanced connector can perform multicasting of the request to each provider and then
selection of the reply of a specific provider. We can decouple the requesting side from the
selection algorithm and increase its reusability by using the enhanced connector.

(a) (b)

Device1

Component 

Device2

Device3

Device4

Requester/ 

Reply 

Evaluator

Device1

Component

Device2

Device3

Device4

Requester

Figure 20. Choosing a single reply among the replies from many providers: (a) Existing design: The
requester contains the behavior for multicasting the requests and evaluating the replies. (b) Updated
design: Using an enhanced connector to multicast requests and evaluate the replies.

7.7. Case VI: Discriminating Between Multiple Requesters

Figure 21a shows the existing design for this case. In this case, a software component
receives requests of the same type from multiple relay ports. There are checker objects
behind each relay port to which incoming requests are forwarded. The checker objects set
the source field of the requests depending on the relay port the message is received (e.g.,
Checker1 sets the source field to 1). Then, the provider object can drop or accept requests
from specific requesters based on the source information set by the checker objects.

Figure 21b shows the structure diagram for the updated design using an enhanced
connector. The enhanced connector can discriminate between requests received from
different ports using the InPort property. The InPort property is an ordered collection. Thus,
the request stored in a particular index of the InPort property corresponds to a requester
at that index. The connector behavior sets the source field of the request according to the
requester who sent the request. The connector then forwards the request to the provider.

(a) (b)

Component

Checker2

Checker1

Checker3

Checker4

Provider

Component

Provider

Figure 21. Discriminating between requesters to selectively accept requests from specific sources:
(a) Existing design: Using dedicated objects to set the source field of incoming requests. (b) Updated
design: Using an enhanced connector to set the source field of incoming requests.
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7.8. Case VII: Sending Requests in Round-robin Order

In the projects we have examined, we found multiple objects providing the same
interface signaled in round-robin order. Since connecting a single requester to more than
one port providing the same interface causes ambiguity when using standard UML ports,
individual request ports were used in the design for each provider. Figure 22a shows
the existing design. The algorithm for round-robin sending of requests was implemented
inside the requesting component, along with other responsibilities.

(a) (b)

Provider1

Component

Provider2

Provider3

Provider4

Requester

Component

Provider1

Component

Provider2

Provider3

Provider4

Requester

Component

Figure 22. Sending requests to providers in a round-robin order: (a) Existing design: Requester
component sends requests in round-robin order using multiple ports. (b) Updated design: Using an
enhanced connector to send requests in round-robin order.

Figure 22b shows the updated design using an enhanced connector. In the updated
design, we can avoid duplicating the ports for each provider. Furthermore, we take the
implementation for round-robin sending of requests outside of the requesting component.
As a result, we can free the requesting component from this coordination responsibility.

8. Handling Asynchronous Coordination

This study presented enhanced connector behavior specifications using synchronous
coordination. In this section, we generalize the approach also for asynchronous coordi-
nation. When using synchronous coordination, the provider blocks the requester until it
completes execution and returns with a reply. When using asynchronous coordination, the
requester can continue execution while the provider handles the request.

UML implements synchronous coordination using synchronous operation calls and
asynchronous coordination using signals or asynchronous operation calls. Aside from
the method of operation call and usage of signals, the distinction between synchronous
and asynchronous coordination also depends on objects being active or passive. In UML, a
passive object does not have its own thread of control. It only exhibits its behavior when
one of its operations is called from the environment. In contrast, an active object has its
own thread of control.

Figure 23 shows the sequence diagrams for synchronous and asynchronous messaging
between a requester and a provider when enhanced connectors are not used. In the
synchronous case shown in Figure 23a, the requester waits for the reply from the provider
before it can send another request. In the asynchronous case shown in Figure 23b, the
requester is not blocked, so it can send a second request before it receives the reply to its
first request. In this case, the provider must be an active object since passive objects cannot
handle requests asynchronously.

Figure 24 shows the sequence diagrams for synchronous and asynchronous messaging
between a requester and a provider when an enhanced connector is involved. In the
synchronous case shown in Figure 24a, the connector acts as another passive object in
between, preserving the overall synchronous behavior the requester observes when an
enhanced connector is involved or not.
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Figure 23. Synchronous and asynchronous handling of requests without using enhanced connectors:
(a) Synchronous handling of requests. (b) Asynchronous handling of requests.

In the asynchronous case shown in Figure 24b, we design the connector as an active ob-
ject which acts asynchronously. In the figure, filled arrows indicate synchronous messages,
and unfilled arrows indicate asynchronous messages. Upon receiving an asynchronous
message, the connector does not block the requester. When the connector decides on the
routing of the message, it also forwards the request to the provider asynchronously. Thus,
the connector is not blocked while waiting for a reply from the provider.

As a result of describing the order of messaging in both synchronous and asynchronous
cases, we showed that using a passive object as a connector in the synchronous case and
using an active object as a connector in the asynchronous case allows preserving the
semantics of coordination in both cases.

Figure 24. Synchronous and asynchronous handling of requests using enhanced connectors:
(a) Synchronous handling of requests using enhanced connectors. (b) Asynchronous handling of
requests using enhanced connectors.

9. Relation with Protocol State Machines

UML defines the concept of ProtocolStateMachines, similar to the protocol concept in
UML-RT [34] and ROOM [12]. ProtocolStateMachines allow the definition of protocols
that should be followed when interaction occurs using ports. In this section, we show how
enhanced connectors can be used in the presence of ProtocolStateMachines.

Figure 25 shows an example ProtocolStateMachine. This ProtocolStateMachine defines
the order of operation calls and state changes for reading a file from the disk. The protocol
enforces calling the initialize operation first, then calling a series of read operations, and
then ending the communication with a finalize operation. When the operations initial-
ize, read, and finalize are declared in an interface that defines the contract of a port, this
ProtocolStateMachine can enforce sending the requests in the specified order.
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Figure 25. Protocol state machine example.

Let us assume that the ProtocolStateMachine shown in Figure 25 is used for reading
data from a single disk. Let us also assume that we have three disks in the system, and we
want to read the same data simultaneously to increase reliability. We can use an enhanced
connector between the requester and three disk managers. The enhanced connector can
replicate the read requests to three disks and then compare the data, eventually returning
with success to the original requester only if all three read requests return the same data.
This example shows how enhanced connectors and ProtocolStateMachines can be used
together and indicates that the two concepts are orthogonal concepts that complement
each other.

However, enhanced connectors and ProtocolStateMachines are not totally independent
concepts. In the same scenario using three disks, if the requests are routed in a round-robin
style by the enhanced connector, this may cause inconsistencies. We should send the
initialize request to all disks before we can route the subsequent read requests to the three
disks in round-robin order. Otherwise, we will send read requests to some disks that are
not initialized. Likewise, we should replicate the finalize request to all three disks.

The above observation indicates that when enhanced connectors are used in the
presence of ProtocolStateMachines, the connector behavior specification should satisfy the
constraints of the ProtocolStateMachine that bounds the coordination among the connected
ports. In this example, we can design the connector to execute different behaviors for the
initialize, read, and finalize requests. Specifically, the connector can use the multiple destination
sender behavior for the initialize and finalize requests and the round-robin requester behavior
for the read requests. As a result, using a combination of two different connector behaviors,
the constraints of the ProtocolStateMachine can be satisfied.

10. Discussion

This study aimed to develop an approach for the specification of connector behaviors
in UML and test it by using example connectors and cases from real-life avionics software
projects. Our results indicate that UML can benefit significantly from the enhanced connec-
tors. By demonstrating the proposed approach using example connectors and the cases
from real-life projects, we showed that the contract role in UML can be utilized to enable
exogenous coordination, increasing the power of UML.

Previous studies [10,15,18] also emphasized the importance of exogenous coordination
in different contexts and using different approaches. Since earlier versions of the UML
did not have ports and connectors, the study in [10] proposed using association classes to
define connector behaviors. We preferred using connectors because connectors can relate
specific instances of classes. On the other hand, association relations apply to all instances
of classes.

The study in [18] proposes that connectors possess the whole control flow in the
system to decouple components from each other. Consequently, their setup requires each
component to act as passive objects defined in UML. In contrast, our findings indicate that
objects should possess the control flow in the synchronous coordination case. However, in
the asynchronous case, connectors should have their own control flow besides other active
objects in the system.

Although we demonstrated the proposed approach using synchronous coordination
problems, we also showed how the concept could be applied to asynchronous coordination.
Additionally, we included an analysis that evaluates the relation of the approach with the
ProtocolStateMachines in UML. ProtocolStateMachines were imported to UML-RT [11]
from ROOM [12]. UML further inherited the concept from UML-RT. UML-RT defines the
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protocols independent from any specific context; therefore, they are reusable [35]. The
connector behaviors we propose are also loosely coupled with the coordinated components
since they are specified using the interfaces. Therefore, they are also reusable.

ProtocolStateMachines do not affect behavior; however, they impose constraints on
the legal state transitions for associated classifiers [2]. On the contrary, enhanced connec-
tors affect the behavior, but as a result of our analysis, we conclude that the coordination
behavior specified by enhanced connectors should conform to the protocols. Unlike en-
hanced connectors, ProtocolStateMachines are limited to the definition of behavior for
binary interaction patterns because higher-order protocols have not been addressed in
UML, ROOM, or UML-RT. As a result of analyzing the relation of ProtocolStateMachines
with the enhanced connectors, we conclude that the two concepts complement each other
rather than rendering each other obsolete.

Using ALF to specify connector behaviors proved to be much more potent than using
sequence diagrams proposed in our previous study [7]. Besides routing the requests, ALF
is also suitable for defining merge behaviors. ALF was introduced as a surface notation
for fUML. However, existing research [26] and the ALF specification [4] encourage its
usage outside the fUML scope when execution semantics is not required. Our findings,
which demonstrate using ALF to specify connector behaviors in UML models, support this
use case.

Our use of reply and request buffers agrees with the existing research. The work in [19]
proposes FIFO queues on component ports for aiding asynchronous communications,
similar to the FIFO request queues we use in behavior specifications. FIFO ordering of
messages was also practiced in [8]. Our experience in using FIFO buffers and single-copy
buffers for both asynchronous and synchronous coordination supports the finding that
the buffers add significant power to the method for defining the connector behaviors. The
buffers enable ALF specifications to operate on the entire set of requests or replies for
creating merged replies and requests.

As a result of implementing multiple complex model transformations, we conclude
that QVTo [6] is suitable and mature enough for developing model transformations. Al-
though QVTo does not support the refining mode of ATL [25] that enables making a few
changes on the input models, we could eliminate the limitation by programmatically
capturing the results of the in-place QVTo model transformations.

Our findings indicate that UML and existing tools need to put more emphasis on n-ary
connectors. Although UML includes support for n-ary connectors, most of the tools, such
as MagicDraw [36], IBM Rhapsody [37], Papyrus [27], StarUML [38], and IBM Rational
Rose [39], do not support them. Some of the tools only have support for n-ary associations.
SysML [14] also excludes the support for n-ary connectors.

Although most of the tools exclude them, we observed that n-ary connectors were
mentioned as examples in previous studies [40–44] and used without indication of any
specific problems. Therefore, after surveying existing work, we conclude that there are not
enough reasons for excluding support for n-ary connectors from the tools. Nevertheless,
there are some challenges regarding n-ary associations, especially concerning the meaning
of multiplicities. The work in [45] showed that the lower multiplicities are problematic.
Therefore, they propose introducing inner and outer multiplicities in UML. Their proposal
still needs to be incorporated into the current version of UML.

The studies in [45–47] suggest representing n-ary relations by introducing an addi-
tional class and n binary relations. The fact that an n-ary connector can be represented
by an object and n binary connectors might be the cause of why the tools do not support
the n-ary connectors. We also use an object and n binary connectors in the E2 model to
represent an n-ary connector. In the E1 model, we use n-1 binary connectors without an
object to represent an n-ary connector. Since developers will not work directly in the E2
model, it is reasonable to represent an enhanced connector in the E2 model using multiple
binary connectors and an object. However, representing an n-ary connector with multiple
binary connectors in the E1 model means that the behavior specification for the n-ary
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connector scatters into several connectors. Our solution for this problem was to specify
connector behavior only for the primary enhanced connector and then establish dependencies
from the primary enhanced connector to the other binary connectors, which we call the
secondary enhanced connectors. Although this solution is sufficient for demonstrating the
enhanced connector concepts, we conclude that lacking n-ary connector support in the
tools complicates modeling efforts significantly and introduces unnecessary complexity
into the models.

The motivation of our study is in parallel with Reo [15] since we specify connectors to
coordinate components that are unaware of the coordination. Unlike UML connectors, Reo
channels do not support message passing between components using method calls. Addi-
tionally, Reo relies on channel composition for expressing different connector behaviors.
Since we cannot use connectors as ConnectorEnds in UML, we cannot attach a connector
to another connector. Therefore, composition support in UML is not possible without
modifying the UML metamodel. Consequently, our study relies on behavior specifications
to specify complex coordination logic rather than composition.

The cases we demonstrated from the real-life projects showed that the enhanced con-
nector concept is applicable. In [48], we addressed the problem of efficient code generation
methods for UML ports that results in minimal runtime overhead and compact code size.
We can use the same code generation methods to realize the UML ports included in the E3
UML models.

The future research directions for this study are as follows: First, introducing com-
position support for the UML connectors is a valuable future research direction. The
composition support can enable the building of higher-level enhanced connectors by using
existing connectors. Second, we are motivated to implement the proposed approach in the
"IBM Rhapsody Developer UML modeling tool" as a plugin for utilizing the approach in
large-scale avionics software projects. However, we still need research on the efficient and
safe realization of the fUML activities in object-oriented programming languages to use
the approach in real-life DO-178C certifiable projects. Third, in the case given in Figure
6b, to increase the runtime efficiency, we can perform the merge operations while caching
subsequent requests. In such cases, we can design the connector behavior to employ multi-
ple threads to perform the merge operations in parallel to caching of the requests. Future
research is required to achieve this parallelization using multiple active objects that con-
stitute the connector behavior. Finally, future work is required to define well-formedness
rules for the E1 model using Object Constraint Language (OCL) [49] statements to develop
a fully functional production-ready system.

11. Conclusions

This article presented a method for specifying behaviors of UML connectors for
coordinating the components exogenously. We have demonstrated the effectiveness of
enhancing connectors with behavioral representations as articulated further in this section.

We proposed a solution that uses ALF to specify connector behaviors. We used the
contract role of the UML connectors for associating behaviors specified in ALF. We then
used QVTo transformations to generate UML models in which fUML activities represent
the connector behaviors. The resulting models also include binary connectors and classes
representing the connectors. They can be transformed further into code, other platform-
independent models, or platform-specific models.

We demonstrated the connector specification method and the transformations by
presenting example connectors. Additionally, we presented cases from real-life large-scale
avionics projects where using enhanced connectors simplifies the design, increases the
reusability of the components, and helps resolve ambiguities. We showed that the approach
applies when using synchronous and asynchronous coordination. We also showed that the
enhanced connector concept is consistent with the ProtocolStateMachine concept in UML.



Appl. Sci. 2023, 13, 643 32 of 34

Author Contributions: Conceptualization, A.T.K. and A.H.D.; Data curation, A.T.K.; Formal analysis,
A.T.K.; Funding acquisition, A.T.K.; Investigation, A.T.K. and A.H.D.; Methodology, A.T.K. and
A.H.D.; Project administration, A.T.K.; Resources, A.T.K.; Software, A.T.K.; Supervision, A.H.D.;
Validation, A.T.K. and A.H.D.; Visualization, A.T.K. and A.H.D.; Writing—original draft, A.T.K.;
Writing—review and editing, A.T.K. and A.H.D. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC was funded by ASELSAN.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: UML models for the example connectors presented in the paper, QVTo
model transformations, the Enhanced Connector Profile, the Java application EcTransformer, and
a copy of the ALF reference implementation can be accessed from the GitHub repository https:
//github.com/alperkocatas/enhanced-uml-connectors/tree/v1.0.1 (accessed on 2 January 2022).
Additionally, the Code Ocean capsule at https://codeocean.com/capsule/6929314/tree/v2 (accessed
on 2 January 2022) allows a reproducible run and analysis of the results using a web browser.

Acknowledgments: The motivation for research on the enhanced UML connector concepts came
to life from working in the avionics software industry, then starting a challenging Ph.D. program
in model-driven software engineering. Without the support from a large number of people, its
completion would have been even more of a challenge, which is why we want to thank our supporters.
First, we want to thank Aselsan Inc. for providing the resources for working on the research problems
that emerged from the use of cutting-edge technology. Even with support from industry, we could get
lost in a sea of different problems. Therefore we want to give our special thanks to Halit Oğuztüzün
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