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Abstract: The carbonation of reinforced concrete is one of the intrinsic factors that cause a significant
decrease in service performance in concrete structures. To decrease the effect of carbonation-induced
corrosion during the lifetime of the concrete structure, a prediction of carbonation depth should be
made. The carbonation of concrete is affected by many factors, such as the compressive strength of the
concrete, service life, carbonation time, carbon dioxide concentration, working stress, temperature,
and humidity. On the basis of these seven parameters, combined with the predictive power of
the adaptive network-based fuzzy inference system (ANFIS) and principal component analysis
(PCA), which can reduce data dimensions before modeling, we introduced a novel approach—the
PCA–ANFIS model—that can predict the carbonation of reinforced concrete. Practical engineering
examples were adopted to verify the superiority of the suggested PCA–ANFIS model, with 90% of
the carbonation depth data used for training and 10% used for testing. The root mean square error
(RMSE) values for the ANFIS, ANN, PCA–ANN, and PCA–ANFIS training were 12.23, 6.28, 5.42,
and 1.38, respectively. The results showed that the PCA–ANFIS model is accurate and can be used as
a fundamental tool for predicting the service life of concrete structures.

Keywords: carbonation depth of reinforced concrete structures; principal component analysis (PCA);
adaptive network-based fuzzy inference system (ANFIS); forecast

1. Introduction

Concrete is one of the most widely used and versatile building materials in the world.
However, the carbonation of concrete poses a significant threat to its structural integrity.
This process occurs when the alkali in the concrete structure reacts with carbon dioxide
(CO2) in the environment, resulting in the production of calcium carbonate (CaCO3). As
a result, the basicity of the concrete environment is reduced, and its original protective
effect for reinforcement is compromised. This is the primary reason for steel bar corro-
sion in concrete [1]. In reinforced concrete structures, corrosion of the reinforcement can
cause the corroded products to expand, generating pressure on the surrounding concrete.
This pressure can eventually lead to the deterioration of the concrete’s durability. Thus,
understanding the carbonation process and its impact on concrete structures is crucial for
ensuring their longevity and safe use.

Concrete carbonation is a complex physicochemical process involving numerous
unknown factors. Due to the random nature of building environments and the uncertainties
regarding concrete quality, carbonation depth in concrete structures is highly variable and
difficult to predict. Even in identical environmental conditions, carbonation depth can be
vastly different for concrete structures of the same strength [1]. As a result, understanding
the underlying mechanisms of carbonation and its impact on concrete structures is critical
to ensuring the longevity and safety of these structures.
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Carbonation modeling and the prediction of carbonation depth are essential for eval-
uating the durability of reinforced concrete structures [2]. Over the past few decades,
numerous experts and scholars have analyzed concrete carbonation theory and experimen-
tation in order to develop prediction models. Niu Ditao et al. developed a calculation
model for predicting carbonation depth based on carbonation theory and experimental
results [3], while Khunthongkeaw et al. proposed a mathematical approach to predict
carbonation depth based on accelerated tests [4]. However, it is important to consider envi-
ronmental conditions as influencing factors in carbonation rates. Yamada et al. evaluated
the influence of environmental conditions on the carbonation process in concrete structures,
while Woyciechowski et al. presented the “self-terminated carbonation model,” which
takes into account these factors [5,6].

Wu et al. [7] established predictive modeling for the depth of carbonation of iron
tailings powder concrete by introducing various influential factors. The carbonation process
is very complex and is influenced by many factors, and there is interaction between
biochemical factors, such as fungi and mildew; these factors affect the carbonation reaction.
Modern machine learning algorithms can construct forecasting models with effects from
empirical data, which may then be used to forecast features in future investigations [8].

Given that the carbonation process is complex and influenced by multiple factors,
including interactions with biochemical factors such as fungi and mildew, artificial in-
telligence can provide new research avenues for carbonation depth forecasting. Neural
network models, such as the adaptive neuro-fuzzy inference system (ANFIS), have been
applied to carbonation depth forecasting with high prediction precision [9–11]. However,
the accuracy of these models depends on the quality of the input data. Principal component
analysis (PCA), a popular algorithm for solving multicollinearity problems, can optimize
artificial neural network models by eliminating redundant data.

This paper presents a novel approach, the PCA–ANFIS model, for predicting carbon-
ation depth in concrete structures. The model combines PCA with ANFIS to eliminate
redundant data and optimize the input variables. The practical engineering example pre-
sented in this paper demonstrates the superior performance of the proposed PCA–ANFIS
model.

2. Methods
2.1. Principal Component Analysis (PCA)

In practical applications, researchers are often faced with datasets containing multiple
correlated indicators. This correlation makes the analysis of these datasets more complex
and difficult. Principal component analysis (PCA) is a statistical method that can be used
to address this problem by reducing the dimensionality of the data.

PCA involves the linear transformation of high-dimensional datasets into a smaller
number of comprehensive indicators, which are known as principal components. These
principal components are ranked according to the variance that they explain in the data [12,13].
The principal component with a larger variance contains more information and contributes
more to explaining the variability in the data. This makes PCA a useful tool for identifying
the most important variables in a dataset and reducing the dimensionality of the data to
enhance analysis.

2.1.1. The Basic Idea and Theoretical Foundation of Principal Component Analysis

Principal component analysis (PCA) is a useful technique for reducing the number
of dimensions in a dataset prior to modeling. Mathematically, PCA combines original
multiple indices into a linear combination of variables. Fi = a1iX1 + a2iX2 + · · ·+ aPiXP.
Without any restrictions, there could be many linear combinations. Hence, there are specific
requirements placed on this linear combination to ensure that it is useful [14–16].

(1) F1, F2, · · · , Fp reflects the information for the original indexes. This is determined
by the values of variance sorted in descending order. The greater the variance explained by
a principal component, the more information it contains from the original indices. F1 is



Appl. Sci. 2023, 13, 5824 3 of 11

called the first principal component, F2 is called the second principal component, and Fi is
called the ith principal component.

(2) The second requirement for PCA linear combination is that each principal com-
ponent should exclude the information contained in the preceding principal components.
This means that the principal components should be independent of each other, ensuring
that subsequent components do not contain information from previous ones.

2.1.2. Principal Component Analysis of Carbonation Depth

To apply PCA to the carbonation depth prediction model, six influential factors were
selected: the compressive strength of the concrete, service life, carbon dioxide concentration,
working stress, temperature, and humidity. The following steps were taken for PCA:

(1) The first step in PCA involved standardizing the correlative matrix of the dataset
from the input variables to many samples. The coefficient matrix was then calculated,
and the secular equation was derived from it; finally, the eigenvalues λi(i = 1, 2, ..., 6) and
eigenvectors of the correlation matrix were obtained.

(2) The variance contribution proportion VCP (βi) was calculated according to the
eigenvalues (λi) of the covariance matrix, and the contribution of cumulative variance
proportion CVCP (ηi) was calculated from the cumulative sum of the variance contribution
proportion. VCP (βi) and CVCP (ηi) can be calculated using the following equations:

βi =
λi

p
∑

j=1
λi

(1)

ηi =

i
∑

k=1
λk

p
∑

k=1
λk

(2)

where βi is the variance contribution proportion and ηi is the cumulative variance contribu-
tion proportion.

(3) The third step of PCA involved identifying the principal components. This is
typically accomplished by checking whether the cumulative value of the component
variance percentage (CVCP) satisfies a specific standard or whether the eigenvalue is
above 70–80% [17]. Once the principal components are identified, a matrix composed of the
corresponding eigenvectors of the eigenvalues of every principal component is generated.
This matrix is referred to as the component projection matrix or score coefficient matrix.
The original dataset can then be converted into a reduced-dimension sample matrix and
projected using this projection matrix.

(4) The correlation coefficient was calculated between the sequences as follows:

Fi = α1iX1 + α2iX2 + . . . + αPiXP (3)

where Fi is the principal component and αi = (α1i, α2i, · · · , αpi) is the relational degrees of
the principal component with the initial variables.

The relational coefficient is
√

λiαji between the principal component and Xj variables;
the coefficients in Equation (1) should satisfy α1i

2 + α2i
2 + · · ·+ αpi

2 = 1, i = 1, 2, · · · , p.

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The fuzzy neural network is a combination of neural networks and fuzzy logic, which
offers the advantages of both linear and non-linear processes [18]. The neural network is
composed of a set of connected artificial neurons using computational connection methods
to process information [19]. The adaptive neural network (ANN) can understand the
relationships between the data input and output when it has sufficient information [20].
The calculation principles and methods of ANN can be found in the literature [21]. Recently,
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neural networks and fuzzy logic systems have garnered significant attention in the field
of intelligent control, as they can adjust inputs and outputs through a hybrid algorithm
that combines back-propagation learning methods with the least squares method. The
hybrid algorithm can also automatically generate if–then rules while allowing the fuzzy
logic system to adapt membership function parameters. This enables the relevant FIS to
detect and trace the given input and output data [22,23].

The nonlinear mapping ability of neural networks allows for massive information
storage, error tolerance, self-adaptive learning, and the ability to store incorrect information.
These capabilities drive the ANFIS system toward self-adaptation, self-organization, and
self-learning, making intelligence, self-adaptation, and optimization the primary develop-
ment trend of ANFIS.

The ANFIS model is composed of five layers, with each layer consisting of several
nodes. Similar to neural networks, the inputs of each layer are obtained by the nodes from
the previous layer in the ANFIS structure. Figure 1 describes an ANFIS structure. Figure 1
shows that the neural network contains m inputs (X1, X2, . . . Xm), each one comprising
n MFs; in addition, a layer with R fuzzy rules and an output layer contributed to the
construction of the model. In the first layer, the number of nodes can be calculated by
N = m× n. The number of nodes in other layers (layers 2–4) is related to the number of
fuzzy rules (R) [24,25].
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Each layer in an ANFIS model is described as follows:
The boxes in the figure mean that the relevant parameter can be adjusted adaptively

at each node, and the circle is the opposite. The first layer is the fuzzy layer; input data are
fuzzed in this layer and input data are converted to linguistic type Aij using membership
functions. The output of the first layer is as follows:

O1
ij = µij(Xi), i = 1, 2, . . . , m, j = 1, 2, . . . n (4)

where µij is the jth MF for input Xi.
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The second layer is the product layer. The output of each node represents the excitation
intensity of a fuzzy rule, and each node can be gained by multiplying the linguistic inputs
calculated in the first layer:

O2
k = Wk = µ1e1(X1)µ2e2(X2) . . . µmem(Xm) (5)

where k = 1, 2, . . . , R and e1, e2, . . . , em = 1, 2, . . . n.
The third layer is the normalized layer: the ratio of the incentive intensity of the jth

fuzzy rule to the sum of the incentive intensities of all rules:

O3
k = Wk =

Wk
W1 + W2 + . . . + Wk

(6)

The fourth layer is the defuzzification layer; each node of this layer is an adaptive
node with node function, and the weighted output of each node depends on the if–then
rules. The output of the fourth layer is as follows:

O4
k = Wk fk (7)

where fk represents the output of kth fuzzy rules. The rules are expressed as follows:
If (X1 is A1e1 ) and (X2 is A2e2 ) and . . . and (Xm is Amem ), then:

fk =
m

∑
1=1

pie1 Xi + rk (8)

where piei and rk are the consequent parameters, e1, e2, . . . , em = 1, 2, . . . n, and k = 1, 2, . . . , R.
The fifth layer is the output layer:

O5
k = Y =

n

∑
K=1

Wk fk (9)

In this study, the root mean square error (RMSE) was selected for the inspection of
training and checking model performances; it is expressed by the following equation:

RMSE =

√
∑M

Z=1 (SZ −YZ)
2

M
(10)

where M is the total number of training factors, SZ is the measured data, and YZ is the
result from the predictive models.

2.3. Adaptive Data

To demonstrate the practicality and validity of the PCA–ANFIS model, fifty groups of
measured carbonation data from more places, which had great randomicity due to many
factors, were collected. The measured data had great uncertainty or discreteness, leading
to relatively large errors in the calculation results of the model. The measured carbonation
data are shown in Table 1.

This paper used three models, ANFIS, ANN, and PCA–ANFIS, with 50 datasets to
predict the carbonation depth of the concrete structure. For modeling, the carbonation
depth data were randomly divided into two groups; 90% (45 data sets) of the carbonation
depth data was used for training, and 10% (5 data sets) was used for testing the models.
MATLAB software was employed to train the data.
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Table 1. Carbonation depth data of engineering.

NO. 1 2 3 4 5 6 7 8 9 10 11 12 13

y/a 5 5 5 5 5 5 5 3 15 15 39 39 13
fc/MPa 20 20 20 20 20 25 20 20 28 28 28 38 28
T/◦C 21.3 21.3 21.3 21.3 21 21 21 13.3 18.3 18.3 11.6 11.6 15.4

H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.71 0.8 0.8 0.59 0.59 0.77
kco2 1.5 1.5 2 2 1.8 1.8 1.8 2 1.8 1.8 1.8 1.8 1.4

ks 1.1 1 1.1 1 1.1 1 1 1.1 1 1.1 1 1 1
X/mm 12 10 14 16 12 10 10 17.2 8.8 8.85 20.5 15 10

NO. 14 15 16 17 18 19 20 21 22 23 24 25 26

y/a 52 52 32 56 56 18 18 12 12 35 31 31 31
fc/MPa 18 18 28 18 18 28 38 28 28 10 18 28 18
T/◦C 7 7 9.3 15.7 15.7 15.7 15.7 15.7 15.7 13.3 13.3 13.3 13.3

H 0.65 0.65 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.71 0.71 0.71 0.71
kco2 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.4 1.4 1.2

ks 1 1.1 1 1 1.1 1 1.1 1 1 1 1 1.1 1
X/mm 45 38 7 25 20 8.5 10 5.95 8.7 23.2 12.8 11.1 24

NO. 27 28 29 30 31 32 33 34 35 36 37 38 39

y/a 31 31 40 40 21 32 32 32 4 30 30 30 30
fc/MPa 28 28 28 28 28 25 20 15 30 38 20 20 25
T/◦C 13.3 13.3 7.3 7.3 7.3 7.3 7.3 7.3 13.3 13.3 13.3 13.3 13.3

H 0.71 0.71 0.57 0.57 0.57 0.46 0.46 0.46 0.71 0.71 0.71 0.71 0.71
kco2 1.2 1.2 1.4 1.4 1.4 1.2 1.2 1.2 1.4 1.2 1.2 1.2 1.2

ks 1 1.1 1 1 1 1.1 1.1 1 1.1 1 1 1 1
X/mm 15 26 10.8 10.1 6.2 15 19 23 5.22 11.4 20.1 20.4 21.3

NO. 40 41 42 43 44 45 46 47 48 49 50

y/a 16 13 16 26 26 22 22 31 40 38 40
fc/MPa 18 18 18 18 28 18 18 20 18 18 18
T/◦C 13 13 13 1.14 1.14 16.3 16.3 16.3 16.3 16.3 16.3

H 0.65 0.65 0.65 0.59 0.59 0.79 0.79 0.79 0.79 0.79 0.79
kco2 1.4 1.4 1.4 1.2 1.2 1.4 1.4 1.2 1.2 1.2 1.2

ks 1 1 1 1 1 1 1 1.1 1 1 1
X/mm 32.4 12.2 19.5 6.4 7.5 31.8 37.6 24 28.15 17.3 15.4

3. Analysis of the Practical Engineering Data and Results

The practical engineering data used in this study are listed in Table 1 and were sourced
from previous literature [3] that focused on carbonation depth forecasting in concrete
structures. The data were used to verify the superiority of the proposed PCA–ANFIS
model. Carbonation depth is influenced by many factors, including the compressive
strength of the concrete, service life, carbonation time, impact factors of carbon dioxide
emission in the air, impact factors of the stress state of the concrete structure, temperature,
and humidity.

Due to the highly nonlinear relationship between carbonation depth and other influ-
encing factors, the principal component analysis method was used to reduce the dimensions
of the original input data; the reduced variables were used as the input data of the adaptive
neural fuzzy inference system; and the results were obtained after iterative calculation.
Finally, the prediction model of carbonation depth based on the PCA–ANFIS network was
established.

3.1. Principal Component Analysis for Concrete Cover Crack

In Table 1, the carbonation depth h is considered the output sequence, compressive
strength of concrete fc/MPa; the service life y/a, the impact factor of carbon dioxide con-
centration kco2 , the impact factor of working stress of the concrete structure ks, temperature
T/◦C, and humidity H serve as the influence sequence.



Appl. Sci. 2023, 13, 5824 7 of 11

The principal component analysis of all influencing factors was carried out, as shown
in Table 2. The principal component selection criteria were that the CVCP exceeded
70–80%. Since the CVCP of the first through the fourth principal components represented
approximately 90.23%, these four components already contained most of the message
required for the evaluation. This shrunk the model scale because the first six influential
factors were reduced to four. According to Equation (3), the high-dimensional input
matrix with six variables in Table 1 was transformed into a low-dimensional one with four
variables. The PCA results are shown in Table 3.

Table 2. Analysis results of PCA.

Principal
Component No. Eigenvalues λi VCP CVCP (%)

1 2.28 41.31 41.31
2 1.29 19.71 61.02
3 0.99 15.40 76.42
4 0.88 13.81 90.23
5 0.46 7.82 98.05
6 0.11 1.95 100.00

Table 3. Summary of data after dimension reduction by the PCA method.

NO. 1 2 3 4 5 6 7 8 9 10 11 12 13

Y1 2.41 2.10 3.23 2.92 2.87 2.56 2.55 1.90 1.92 2.23 −0.69 −0.69 0.83
Y2 0.15 −0.84 0.78 −0.21 0.54 0.10 −0.45 1.52 0.39 1.38 1.05 2.15 0.17
Y3 −1.28 0.60 −1.19 0.69 −1.23 1.04 0.65 −1.16 1.14 −0.74 0.77 1.54 1.10
Y4 0.16 −0.31 −0.96 −1.43 −0.53 −0.54 −0.99 −1.72 −0.18 0.29 −0.92 −0.02 0.43

NO. 14 15 16 17 18 19 20 21 22 23 24 25 26

Y1 −2.02 −1.70 −1.67 −0.70 −0.39 0.53 0.84 0.72 0.72 −0.76 −0.30 0.02 −0.63
Y2 −0.78 0.21 0.49 −2.05 −1.06 −0.29 1.80 −0.19 −0.19 −2.13 −0.93 1.16 −1.18
Y3 −0.25 −2.13 0.77 −0.34 −2.22 0.99 −0.11 1.08 1.08 −0.67 0.05 −1.05 0.01
Y4 −0.58 −0.12 0.24 0.96 1.43 1.12 2.49 1.00 1.00 −0.68 −0.48 0.89 −0.03

NO. 27 28 29 30 31 32 33 34 35 36 37 38 39

Y1 −0.62 −0.31 −1.99 −1.99 −1.37 −2.29 −2.29 −2.61 0.89 −0.59 −0.59 −0.59 −0.59
Y2 −0.08 0.91 0.81 0.81 1.13 1.75 1.20 −0.34 1.85 1.04 −0.94 −0.94 −0.39
Y3 0.79 −1.09 0.69 0.69 0.96 −1.37 −1.76 −0.27 −0.50 1.59 0.18 0.18 0.57
Y4 0.87 1.34 −0.27 −0.27 −0.64 −0.28 −0.73 −1.65 0.54 1.76 0.13 0.13 0.58

NO. 40 41 42 43 44 45 46 47 48 49 50

Y1 −0.15 −0.05 −0.15 −2.50 −2.49 0.74 0.74 0.44 −0.17 −0.10 −0.17
Y2 −0.44 −0.39 −0.44 −0.09 1.01 −1.20 −1.20 −0.40 −1.76 −1.73 −1.76
Y3 0.26 0.30 0.26 0.10 0.88 0.19 0.19 −1.70 −0.11 −0.08 −0.11
Y4 −1.06 −1.12 −1.06 −1.15 −0.25 −0.17 −0.17 1.10 0.63 0.59 0.63

3.2. Establishment of Predicting Models Based on ANFIS, ANN, PCA–ANN, and PCA–ANFIS
Models

Using practical engineering data on carbonation depth in concrete structures from
Table 1, this study employed principal component analysis (PCA) to establish the traditional
ANFIS model, the ANN model, the PCA–ANN model, and the PCA–ANFIS model for
carbonation depth forecasting. The data in Table 3 after dimension reduction by PCA were
used as the input vector for the PCA–ANFIS model and the PCA–ANN model, while the
data in Table 1 formed the input vector for the ANFIS model and the ANN model, with
carbonation depth as the output vector in both cases. For both models, 45 subsamples were
retained as training data, with the remaining five subsamples used as checking data.

The predicted results were influenced by the parameter set for the ANFIS models and
PCA–ANFIS models, including the type of fuzzy-based rule, the number of membership
functions (MFs), and the membership function types [26]. For the ANFIS model and the
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ANN model, six nodes were used in the input layer, and one node was used in the output
layer. By contrast, the PCA–ANFIS and PCA–ANN models had four nodes in the input
layer and one node in the output layer according to the results of PCA. After conducting
multiple fitting trials, the RMSE value was set to 6.5 × 10−4, the iteration number was set
to 136 epochs, and the structures with different MFs for each input 2-2-4-3 topography
were found to have the lowest values of RMSE. The choice of membership functions also
influenced the accuracy results, with the generalized bell being selected to train and check
the network based on its testing performances.

Overall, this study aimed to improve the accuracy of carbonation depth forecasting in
concrete structures by using PCA and ANFIS models to reduce the dimensionality of the
input data and test the combination of these models.

3.3. Comparison of Calculation Results

The model structure with 2-2-4-3 for the PCA–ANFIS model with four nodes is shown
in Figure 2; the membership function plots of gbellmf of the four inputs were all the same,
and the Levenberg–Marquardt algorithm of ANN was selected. Table 4 shows the RMSE of
the ANFIS, ANN, PCA–ANN, and PCA–ANFIS models, and Table 5 shows the measured
values and predicted values by the ANN, ANFIS, PCA–ANN, and PCA–ANFIS models.
The RMSE of training and checking the results of the above models is shown in Table 5.
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Figure 2. The model structure with 2-2-4-3 for the PCA–ANFIS model.

Table 4. RMSE of ANFIS, ANN, and PCA–ANFIS models.

Predicting
Model

Type of
Membership

Functions

Number of
MFs

Epochs
(Run Times) Algorithm RMSE of

Checking

ANN Levenberg-
Marquardt

6.28
PCA–ANN 5.42

ANFIS gbellmf 3-3-3-3-3-3 50 (>20 min) 12.23
PCA–ANFIS gbellmf 2-2-4-3 136 (<30 s) 1.38
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Table 5. The results of different models for estimating carbonation depth data for checking data.

Measuring Data of
Carbonation
Depth/(mm)

Predicting Value of Carbonation Depth/(mm) by Different Models

ANN ANFIS PCA–ANN PCA–ANFIS

12 9.58 10.23 8.23 11.81
10 7.27 32 21.9 8.72
14 7.89 21.56 13.1 14.26
16 6.31 3.27 21.46 15.63
12 13.67 18.46 8.67 9.2

4. Discussion

As shown in Table 4, both the ANFIS and PCA–ANFIS models employed gbellmf
membership functions, with the number of MFs set to three for each input, 3-3-3-3-3-3
topography for ANFIS, and 2-2-4-3 topography for PCA–ANFIS. The PCA–ANFIS model
demonstrated higher efficiency due to PCA’s dimensionality reduction, resulting in faster
convergence times than the ANFIS model, which had redundant inputting variables, as
evidenced by the time taken to run 50 epochs. In addition, Table 4 shows that the PCA–
ANFIS model achieved higher performance accuracy than the ANFIS and ANN models.

Because the carbonation depth data was collected from actual engineering, the pre-
diction accuracy was likely affected by different criteria in data collection and calculation
methods.

The combined model PCA–ANFIS has strong learning and expression abilities, but the
selection of fuzzy rule conclusion parameters and membership function parameters is a key
factor hindering the improvement of ANFIS performance, which limits the application and
forecast accuracy of the ANFIS model. Therefore, it requires optimization algorithms to
enhance the ANFIS conclusion parameters and membership function parameters to obtain
higher forecast accuracy for carbonation depth.

5. Conclusions

The carbonation depth of concrete is a vital parameter for evaluating the durability
of reinforced concrete structures. The factors influencing concrete carbonation depth
are complex and unpredictable, including concrete compressive strength, service life,
carbonation time, carbon dioxide concentration, working stress, temperature, and humidity.
In this paper, the ANFIS and PCA–ANFIS models were used to predict the carbonation
depth of concrete, and the following conclusions were drawn:

(1) Principal component analysis (PCA) effectively resolved the multicollinearity issue
between the original inputs of the neural network, resulting in a reduction in the number
of inputs for the neural network. This ensured the neural network’s prediction accuracy
while reducing its training time.

(2) Comparing the RMSE of the ANFIS, ANN, PCA–ANN, and PCA–ANFIS models
showed that the forecasting accuracy of the PCA–ANFIS model was higher than that of the
ANFIS model, and that of the PCA–ANN model was higher than that of the ANN model;
in addition, the model’s running time was saved. This demonstrated that the PCA–ANFIS
model can provide reliable and scientific guidance for predicting the carbonation depth of
concrete structures.

(3) The carbonation of concrete is influenced by various factors with complex rela-
tionships, especially when practical engineering data are hard to obtain. The Bayesian
network’s advantage is evident. The use of the PCA–ANFIS model can effectively predict
the carbonation depth of concrete structures in similar situations.
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