
Citation: Popoli, A.; Pierotti, G.;

Ragazzi, F.; Sandrolini, L.;

Cristofolini, A. FLARE: A Framework

for the Finite Element Simulation of

Electromagnetic Interference on

Buried Metallic Pipelines. Appl. Sci.

2023, 13, 6268. https://doi.org/

10.3390/app13106268

Academic Editor: Andreas Sumper

Received: 7 April 2023

Revised: 15 May 2023

Accepted: 16 May 2023

Published: 20 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FLARE: A Framework for the Finite Element Simulation of
Electromagnetic Interference on Buried Metallic Pipelines
Arturo Popoli * , Giacomo Pierotti , Fabio Ragazzi , Leonardo Sandrolini and Andrea Cristofolini

Department of Electrical, Electronic and Information Engineering, University of Bologna, 40136 Bologna, Italy;
giacomo.pierotti2@unibo.it (G.P.); fabio.ragazzi4@unibo.it (F.R.); leonardo.sandrolini@unibo.it (L.S.);
andrea.cristofolini@unibo.it (A.C.)
* Correspondence: arturo.popoli@unibo.it

Abstract: The functionality of buried metallic pipelines can be compromised by the electrical lines that
share the same right-of-way. Given the considerable size of shared corridors, computer simulation is
an important tool for performing risk assessment and mitigation design. In this work, we introduce
an open-source computational framework for the analysis of electromagnetic interference on large
earth-return structures. The developed framework is based on FLARE—an efficient finite element
solver developed by the authors in MATLAB®. FLARE includes solvers for problems involving static
electric and magnetic fields, and DC and time-harmonic AC currents. Quasi-magnetostatic transient
problems can be studied through time-marching or—for linear problems—with an efficient inverse-
Laplace approach. In this work, we succinctly describe the optimization of time-critical operations
in FLARE, as well as the implementation of a transient solver with automatic time-stepping. We
validate the numerical results obtained with FLARE via a comparison with the commercial software
COMSOL Multiphysics® . We then use the validated time-marching analysis results to test the
accuracy and efficiency of three numerical inverse-Laplace algorithms. The test problem considered
is the assessment of the inductive coupling between a 500 kV transmission line and a metallic pipeline
buried in the soil.

Keywords: numerical simulation; pipeline integrity; AC interference; earth-return; finite element
analysis; inverse-Laplace; optimization

1. Introduction
Concerns over Metallic Pipelines Integrity

It is well known that high-voltage alternate current (HVAC) transmission lines
can be the cause of significant electromagnetic interference effects on nearby metallic
structures [1,2]. Coated pipelines for gas or liquid transportation are notable examples
of this kind of structure. The resulting currents and voltages can lead to several kinds of
unwanted effect. Workers coming into contact with the pipeline are subjected to shock
hazards [3]; the connected cathodic protection systems and the pipeline itself can be
damaged through accelerated aging and corrosion [4,5], as well as through perforations of
its coating layer [6,7]. Pipelines can also be harmed by other sources of interference; for
example, in recent years a number of works have been devoted to the effects produced
by high-voltage direct current (HVDC) systems [8,9], as well as traction systems [10]
and geomagnetic events [11]. Electrical stress on metallic pipelines may be caused by
three coupling mechanisms, i.e., capacitive, inductive, and conductive coupling [12]. In
this work, we focus on the most common coupling mechanism, i.e., inductive coupling.
Overall, researchers have studied this topic for several decades, and many modeling
efforts have been made throughout the years. Much of the initial efforts in this field
originated from circuital or transmission line approaches based on Carson’s formulae
for mutual impedance [13–16]. These methods are also generally based on performing a

Appl. Sci. 2023, 13, 6268. https://doi.org/10.3390/app13106268 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13106268
https://doi.org/10.3390/app13106268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0990-8053
https://orcid.org/0000-0003-1973-0612
https://orcid.org/0000-0003-0399-8681
https://orcid.org/0000-0003-4391-1667
https://orcid.org/0000-0001-5896-6615
https://doi.org/10.3390/app13106268
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13106268?type=check_update&version=2

Appl. Sci. 2023, 13, 6268 2 of 21

discretization of the considered corridor into sets of coupled smaller sections, described by
lumped parameters [17]; such circuital approaches are computationally efficient, making
them suitable for fast evaluations or parametric studies. In addition, the formulas for the
approximate evaluation of mutual impedance have been extended over time to include the
physical effects of soils constituted by multiple layers with different electrical resistivity
values [18]. Nevertheless, over the years—thanks to the ever increasing availability of
computing power—researchers have started to study the problem of pipeline integrity
with field-theory methodologies [19,20]; these techniques are based on directly obtaining
an approximated solution to Maxwell’s equations for the electromagnetic field and allow
accurate analysis of complex geometries and arbitrary material properties. In this way,
gradually, models using the boundary element method (BEM) [21] or the finite element
method (FEM) [22–24]—often in conjunction with circuit theory—have also been developed.
An account of both recent and historic numerical contributions to inductive coupling
modeling can be found in [25].

Several commercial codes dedicated to electromagnetic interference calculations also
exist, featuring comprehensive modeling capabilities (also regarding problems related
to grounding systems). These are often based on a combination of circuit theory and
field methodologies, and allow the user to perform a variety of different analyses. Ex-
amples of such code programs include the well-established Elsyca [26], CDEGS [27], and
XGSLAB [28].

The existing research literature on FEM models for AC interference calculations in-
cludes several works dedicated to harmonic analysis [20,22,29]. In this work, we describe
an initial effort towards the development of a comprehensive FEM-based framework that
can also deal with transient interference problems, which—to the best of the authors’
knowledge—are currently more commonly assessed with transmission-line based ap-
proaches [30]. In addition, we also note that the validated research codes are generally
closed-source and not available to other scientists and users in general.

For this reason, we introduce FLARE—Finite eLement Analysis foR Electromagnetics.
FLARE is an open-source finite element code developed by the authors (FLARE is accessible
at https://github.com/apopoli/FLARE (accessed on 30 March 2023)) that can be used to
perform computational studies in several different areas of electromagnetics, including
pipeline integrity assessment. This includes the assessment of electrical disturbances due to
the inductive coupling between HVAC power lines and buried metallic pipelines. FLARE
provides several solvers for problems involving static electric and magnetic fields, and
DC and time-harmonic AC currents. The main novelties of this work are the vectorized
implementation of two solvers for quasi-magnetostatic transient problems, the subsequent
comparison and numerical validation of the two approaches, and the benchmarking of three
inverse-Laplace routines included in FLARE. The approach based on the inverse-Laplace
technique was introduced by the authors in [31]. A similar technique was also recently
employed to study quasi-electrostatic problems in [32] and has been applied to other
problems in the past, such as unsteady heat flow calculations [33]. The work in [31] was
focused on the theoretical development of the method, and the developed code was based
on a serial Fortran 90 inversion routine by D’Amore et al. [34]. In this work, we integrate
the approach into the FLARE framework, providing a fully parallelized (shared memory)
and more flexible MATLAB® implementation of the routines. We also add two additional
(parallel) inversion routines, based on the work of Abate et al. [35]; as will be shown in
a dedicated section of this work, these techniques are somewhat complementary to that
by D’Amore and colleagues, from an accuracy and computational efficiency perspective.
With respect to the work in [31], here we want to provide a numerical validation of
the inverse-Laplace solution for a transient problem. To do that, we also implement a
quasi-magnetostatic solver based on a time-marching procedure, which can operate with
either fixed or variable time step lengths; we directly validate the time-marching solution
against the solution yielded by the AC/DC module of COMSOL Multiphysics® on the

https://github.com/apopoli/FLARE

Appl. Sci. 2023, 13, 6268 3 of 21

same problem. COMSOL Multiphysics® is also used to validate the complex domain
time-harmonic solver in FLARE.

A concise description of the main features of the code is provided in Section 2, with em-
phasis on the vectorization process of the most time-critical operations. Then, in Section 3,
we define a typical corridor geometry involving an HVAC line and a buried pipeline; we
study the configuration with the time-harmonic solver in FLARE, comparing the solution
to the one yielded by the AC/DC module of COMSOL Multiphysics®; we then use the
quasi-magnetostatic time-marching solver to simulate a lightning event involving one of
the phase conductors of a power line and repeat the numerical validation process using
COMSOL Multiphysics®. We then show that the temporal evolution of the currents can
also be obtained via the proposed inverse-Laplace routine, with the same level of accuracy.
We finally perform a comparison of the accuracy and computational efficiency for the three
numerical inversion routines implemented in FLARE.

2. Numerical Model

FLARE is a finite element code developed and implemented by the authors in
MATLAB® [36]. Currently, FLARE includes several solvers for static and quasi-static
problems over 2D planar domains. The domain discretization is performed by means of
linear triangular elements. Future updates will include the option to address axysimmetric
domains. Here follows a list of the available physical formulations.

2.1. Formulations
2.1.1. Static

Static electric and magnetic problems take the form of a Poisson equation:

∇ · (k∇φ) = χ. (1)

For an electrostatic problem φ = ϕ, k = εr, and χ = − ρ
ε0

; ϕ is the scalar electric
potential, ε0 and εr are the dielectric constant of vacuum and the relative dielectric constant;
ρ is the electric charge density. For a DC conduction problem—where the conduction
current density vector field~J is solenoidal—one has again φ = ϕ, and k = −σ, obtaining
−∇ · (σ∇ϕ) = 0, where σ is the electrical conductivity of the given medium. In this case
one obtains the x and y components of the current density from~J = −σ∇ϕ.

The exact same formulation is retained for planar magnetostatic problems, where the
current density and the magnetic vector potential A (MVP) have a preferential direction,
e.g., z. In this case, referring to (1), φ = −Az, k = 1/µr and χ = µ0 Jz, where Az is the z
(out of the page) component of the MVP field ~A; µ0 and µr are the magnetic permeability
of vacuum and the relative magnetic permeability of the given medium, respectively; Jz is
the z component of the current density.

2.1.2. Sinusoidal Steady-State (Time Harmonic)

For time-harmonic problems, the reported quasi-stationary unsteady formulation is
simply transformed into a stationary complex problem in the frequency domain. This
is performed by transforming the variables of the problem (whose time dependence is
described by sinusoidal functions) into phasors, so that—for the given angular velocity
ω—Az(x, y, t) → Az(x, y); ∂

∂t → jω; We use bold notation to indicate phasors from here
onward. In this way, the MVP formulation is written as

−∇ ·
(

1
µr
∇Az

)
+ jωσµ0Az = µ0(−σ∇ϕ), (2)

Given the source current density phasor −σ∇ϕ = J0,z, the problem is reduced to
finding the real and imaginary part of Az, from which all the other physical quantities of
interest can be derived. The finite element discretization of the former equation is provided
in [37].

Appl. Sci. 2023, 13, 6268 4 of 21

2.1.3. Time-Domain

Quasi-stationary time-domain magnetic problems are solved in FLARE with a MVP
formulation under the quasi-magnetostatic approximation (∂~D/∂t = 0, ∂~B/∂t 6= 0):

−∇ ·
(

1
µr
∇Az

)
+ σµ0

∂Az

∂t
= µ0(−σ∇ϕ). (3)

Note that the previous expression—which is the time-domain version of (2)—reduces
to (1) when ∂/∂t = 0. The discretized problem is

[K][Az] + [S]
[

dAz

dt

]
= [T], (4)

where [Az],
[

dAz
dt

]
and [T] are arrays containing the nodal values of the MVP, its derivative,

and the right-hand side of (3), respectively. [K] and [S] are assembled from the respective
local matrices. Details on the employed vectorized assembly routine are provided in
Section 2.2.

As anticipated, two different strategies can be adopted by the user to obtain the
time-domain solution.

Time-Stepping Method

The first strategy is to use a time-marching strategy, based on the well-known Crank–
Nicolson implicit method. The idea is to discretize the time-derivative in (4) by means of a
centered finite difference scheme, as opposed to the forward or backward finite difference
that would be employed for an explicit or implicit Euler scheme, respectively. In this way,
one has for the given node i:

d
dt

(
A(k+1/2)

z,i

)
≈

A(k+1)
z,i − A(k)

z,i

∆t
, (5)

where
A(k+1/2)

z,i ≈ 1
2

(
A(k+1)

z,i + A(k)
z,i

)
(6)

Substituting (5) and (6) in (4), one finds:

1
2
[K]
(
[Az]

(k+1) + [Az]
(k)
)
+

1
∆t

[S]
(
[Az]

(k+1) − [Az]
(k)
)
= [T](k+1/2). (7)

Then, factoring out the terms at time instants (k + 1) and (k) one obtains the final
expression:

[M1][Az]
(k+1) = [T](k+1/2) + [M2][Az]

(k), (8)

where

[M1] =

[
1
2
[K] +

1
∆t

[S]
]

; [M2] =

[
1

∆t
[S]− 1

2
[K]
]

(9)

The Crank–Nicolson scheme is unconditionally stable and second-order accurate in
time [38].

The code can be run using either constant or variable time step lengths. When a
constant time step is selected the code uses the decompose MATLAB® function on the
matrix [M1] in (8). decompose performs an automatic selection between several matrix
decomposition algorithms, based on the properties of the provided matrix. We refer the
reader to the MATLAB® guide for further details on the adopted procedure [39]. While
the decomposition procedure can be time-intensive for matrices with large numbers of
non-zero entries, we found it to be quite efficient for the sizes considered in this work. For
example, decompose took ≈0.41 s for the sparse matrix that will be considered in Section 3,
having rank ≈7× 104 and ≈5× 105 non-zero entries. In any case, the decomposition of the

Appl. Sci. 2023, 13, 6268 5 of 21

matrix is performed only once per simulation, and used at each step of the time-loop to
compute [Az]

(k+1) without repeating the decomposition phase of the (direct) linear system
solving procedure. This, at least for the use-cases explored by the authors in this work,
allows for an execution time reduction of approximately one order of magnitude when
using decompose. Conversely, when a variable time step is selected, the ∆t in the left-
hand side of the time-discrete version of (8) changes at each iteration. Hence, decompose
cannot be used in this case. Nevertheless, using an adaptive time step can be extremely
advantageous for exponentially varying sources. The time step used to obtain the solution
at the next time instant (k + 1) is obtained from the one chosen at the previous instant (k),
based on the maximum local relative variation of the MVP:

∆t(k+1) =
∆t(k)

δ/δrel + δabs
, (10)

where δrel and δabs are selected by the user to set the sensitivity of the adaptivity to temporal
variations of the solution. The variable δ provides an indication of the maximum relative
change of the solution in the computational domain:

δ = max

[
|[Az](k) − [Az](k−1)|

0.5|[Az](k) + [Az](k−1)|+ ε

]
. (11)

The constant quantity ε � δabs is an arbitrary small quantity needed to avoid a
zero-division in the above expression.

Inverse-Laplace Transform Method

As anticipated, FLARE integrates a MATLAB translation of the Fortran 90 routine for
the numerical inverse-Laplace transform developed by D’Amore and colleagues [34,40].
This allows one to compute the time-evolution of one of the quantities yielded by the FEM
solver, using solutions computed in the complex domain. This formulation is closely related
to the quasi-stationary formulation, substituting the purely imaginary jω with the complex
variable s. Details of this approach can be found in [31] and are briefly summarized below.

The Laplace transform L{ f (t)} of a generic function of time f (t), t ≥ 0 is [41]:

F(s) =
∫ ∞

0
e−st f (t) dt, (12)

The analytical inversion of the Laplace transform can be obtained via the Bromwich
(or Riemann) inversion theorem:

f (t) =
1

2πi

∫ γ+i∞

γ−i∞
estF(s) ds, (13)

where γ—the real part of s—is such that the contour of integration is to the right of any
singularities of F(s) greater or equal to the abscissa of convergence σ0.

Unfortunately, the analytical evaluation of (13) is only straightforward for a limited
number of cases. For this reason, great research efforts have been dedicated to the develop-
ment of numerical inversion algorithms. Notably, at the present stage, it is not possible to
define the best strategy for all possible cases, and the performance of different inversion al-
gorithms depends on the particular application [42]. Due to this, we provide three different
inversion techniques in FLARE. These are compared for the case considered in this work in
Section 3.6.

2.2. Vectorized Right-Hand Side Assembly Routine

Transient solvers based on time-stepping algorithms require a more careful implemen-
tation with respect to stationary solvers, since many operations must be performed multiple
times; typically, once every time step. The postprocessing of the computed variables may

Appl. Sci. 2023, 13, 6268 6 of 21

also be critical for both the execution time and required memory, especially when dealing
with meshes with many nodes or time steps. Aside from the solution of the sparse linear
system arising from the finite element discretization of the physical formulation, one of
the most time-consuming operations of a FEM solver is the assembly of the global matrix
and the right-hand side from the element matrices. Modern interpreted languages such
as Python or MATLAB® usually provide wrappers for optimized C, C++, or FORTRAN
routines for the solution of linear systems; naive assembly techniques are instead based
on for loops, which notoriously exhibit low computational efficiencies in interpreted lan-
guages [43]. For this reason, assembly operations often constitute the main performance
bottleneck in MATLAB® finite element codes.

In order to make the assembly procedure efficient, the idea introduced in [44] is
exploited in FLARE. The terms of all the local element matrices (i.e., the local contributions
of each element to the global solution) are computed with a vectorized procedure instead of
a for-based procedure. Since the local element matrices are 3× 3 matrices, the contributions
must be stored into a 9× nel array, where nel is the total number of elements of the given
mesh. Two auxiliary arrays with the same size are also used to provide a mapping between
the local and global views. The arrays store the row and column indices of the global
matrix corresponding to each element of the local values. In this way, the entries of the local
contribution array are assembled into the global matrix with a single call to the sparse
MATLAB® Matlab function. A comprehensive performance comparison of vectorized
assembly procedures in different languages can be found in the work of Cuvelier and
colleagues [45].

By preassembling the two matrices [K] and [S] in (9), the square sparse matrix [M1]
in (8) can be obtained at each time step by summing [K] and [S] after calculating the
element-wise products by 1/2 and 1/∆t, respectively. The same technique can be adopted
for [M2] multiplying the solution array at the previous time instant. Unfortunately, the
array [T](k+1/2) must be reassembled at each time step with a time-varying J0,z source term.

In order to avoid this operation, we define an auxiliary matrix [Kt] with size np × nel ,
where np is the number of points (vertices) of the mesh. The aim of [Kt] is to allow the array
[T](k+1/2) to be computed as a matrix–vector product after computing the source term at
the considered time instant. The array [Q] of size nel × 1 contains the quantity that each
element contributes to each of the three nodes representing its vertices. [Q] is defined by
the (weighted) element-wise product between the column-arrays

[
J(k+1/2)
0,z

]
and [Aa] :

[Q] =
1
3

µ0

[
J(k+1/2)
0,z

]
� [Aa], (14)

where
[

J(k+1/2)
0,z

]
and [Aa] store the element current densities evaluated at the time instant

(k + 1/2) and the element areas, respectively. Let us consider the simple two-element and
four-node mesh in Figure 1. Given the represented element and node numbering, the
connectivity matrix can be written as

[C] =
[

1 2 4
2 3 4

]
. (15)

The entries of the auxiliary matrix [Kt] are either zeros or ones. The nonzero elements
of the ith column of [Kt] correspond to the ith row of the connectivity matrix [C]. In this
way, for the considered example, one has

Appl. Sci. 2023, 13, 6268 7 of 21

[
T(k+1/2)

]
= [Kt][Q] =


1 0
1 1
0 1
1 1

[Q1
Q2

]
=

1
3

µ0


J(k+1/2)
z0,1 Aa1

J(k+1/2)
z0,1 Aa1 + J(k+1/2)

z0,2 Aa2

J(k+1/2)
z0,2 Aa2

J(k+1/2)
z0,1 Aa1 + J(k+1/2)

z0,2 Aa2

. (16)

Figure 1. Example of a triangular mesh with two elements and four nodes.

The assembly procedure of [Kt] is performed using the sparse function.

%% Assembly of K_t auxiliary matrix
% concatenated rows of the connectivity matrix C
ii = reshape(C',[], 1);
% n_el: number of mesh elements
jj = repelem (1:n_el ,3); % 1 1 1 2 2 2 3 3 3 ...
% n_p: number of mesh points
K_t = sparse(ii ,jj ,1,n_p ,n_el); % assemble ones in a n_p X

n_el matrix with rows and column indices given by ii and jj
arrays

2.3. Software Structure

This section provides a description of the structure and variable handling of FLARE.
The code is designed for flexibility, while keeping a consistent organization of the settings,
regardless of the solver chosen by the user. Let us consider one of the simplest possible
problems, computing the electric potential on a uniformly charged unit disk. The basic
structure of a simulation is provided in Figure 2. One starts by generating the computational
mesh used to perform the calculation. This can be done by either loading a file that has
been previously generated by Gmsh or by calling (from MATLAB®) the Python Gmsh APIs.
In the first case, if the mesh from a .geo file called, e.g., . unit_circle .geo has been exported
in .m format, the information can be loaded via a single command, e.g.,

unit_circle; % import mesh file
ndom = num_regions(msh); % count number of regions (domains)

Using the Python Gmsh APIs allows dynamically providing instructions to Gmsh from
FLARE , and it is advised when the mesh must be updated during the simulations, such as
when geometry optimizations are performed. In both cases, a msh MATLAB® structure file
is generated, containing the information on the computational mesh. This is one of the two
inputs to the fesolve function used to obtain the solution.

The next phase (settings) involves filling several fields of the structure opts, which
will be passed to the solver. Here is an example of the considered electrostatic problem on
the unit disk:

opts.tag_boundary = 1; % set domain boundary on edges marked
with tag=1 in msh

[opts.materials] = set_materials('mesh_unit_circle ',ndom); %
define material properties

Appl. Sci. 2023, 13, 6268 8 of 21

opts.ProblemKind = 'Electrostatic '; % [Electrostatic][
Magnetostatic][QMagnetostaticSin][MagTimeDependent] % set
the kind of problem to be solved

opts.source = 1; % unit charge density , uniformly distributed

The set_materials function requires a string containing the test case name—for ex-
ample ’mesh_unit_circle’—and returns a string array named materials, containing the
material for each region of the domain:

function [material] = set_materials(flag ,ndom)
switch flag
case ('mesh_unit_circle ')
material (1) = 'air';
...

The properties of the material ’air’ are stored in a separate function called MatLib:

function [Mprop] = MatLib(MatKind)
% prop (1) = material relative permittivity [Adim]
% prop (2) = material relative permeability [Adim]
% prop (3) = material electric conductivity [S/m]
switch MatKind
case "air"
Mprop = [1, 1, 0];
...

While the source term in the above code snippet has been set to 1, FLARE easily allows
for more sophisticated source terms that can vary over time and depend on the given mesh
region. One may indeed write a standalone MATLAB® function in a separate file and pass
a function handle to FLARE. Figure 2 shows an example of this method for a source term
representing a lightning current.

Figure 2. Structure of a typical FLARE simulation.

Regardless of the selected solver, one always calls the same function to obtain the
solution, which is essentially a driver making a series of subcalls depending on the
selected options:

[out] = fesolve(msh ,opts); % setup and compute solution

When a stationary solver is called, out file structure has only two fields, named field
and scal. These store information about the field variables, such as the MVP Az or the
current density Jz, or scalar variables, such as the current of each region (surface integral of
Jz). When a transient solver is selected, the two former fields only store the information
computed at the latest time instant, and out is populated with more fields. The field tm,

Appl. Sci. 2023, 13, 6268 9 of 21

which stands for time measurement, stores the cumulative computation time spent during
several key processes, such as the matrix assembly or the linear system solution. Variables
saved over time are stored in a dedicated field called sv.

Finally, the user has two options regarding visualization. First, MATLAB® includes
an extensive suite of plotting tools, including functions dedicated to unstructured meshes,
such as the trisurf function:

x = msh.POS(:,1); y = msh.POS(:,2); % get mesh coordinates
trisurf(msh.TRIANGLES (: ,1:3),x,y,out.field.phi ,out.field.phi)

Nevertheless, the native MATLAB® routines might not be fully adequate for transient
problems over large domains. For this case, we integrated a binary export tool in .vtk
format, which can be read by the popular open-source visualization tool ParaView.

3. Results and Discussion

In the following sections, we consider a typical corridor configuration, where a metallic
pipe is buried within the soil under an HVAC transmission line. In particular, we consider a
single section of the corridor in a 2D planar domain. The choice of a 2D approach allows for
a direct comparison between the solvers in FLARE and the ones implemented in COMSOL
Multiphysics® [46], which we use as a benchmark for FLARE. However, this simplifying
assumption corresponds to the assumption that each considered conductor has an ideal
return path. We refer the reader to the more in-depth discussion of this limitation of 2D
approaches provided in [37,47], and we save the implementation in FLARE of the numerical
techniques described herein for future works.

We simulated the considered configuration, focusing on the current induced along
the pipeline for two different operating conditions of the transmission line, i.e., sinusoidal
and transient. These two physical scenarios required different numerical approaches
implemented in FLARE (see Section 2). In each case, the results yielded by FLARE were
validated against COMSOL Multiphysics®, a well-established commercial software that
has already been used to analyze electromagnetic interference on pipelines in [48].

3.1. Corridor Geometry

The transmission line geometry used in this work consists of a single-circuit line and
two overhead ground wires (OGWs). This configuration—typical of 500 kV AC systems
used in the U.S.—was taken from the work of Yao and colleagues in [49]. The line and the
metallic pipeline buried in the soil are shown in Figure 3. As one can see, the electrical line
and the pipeline are embedded into two semicircular regions with radius 5 km. The MVP
Az is assumed to be null at the outer edge of the domain (Dirichlet boundary condition).
The transmission line conductor’s sizes, not specified in [49], were taken from [50], where a
similar configuration was considered. The radii of the phase conductors and the OGWs
are 15.3 mm and 5.6 mm. The pipeline has a diameter of 1 m and a thickness of 1.5 cm.
Regarding the electric properties of the materials, the three phase conductors are made of
aluminum (σphase = 3.5× 107 S/m), while the OGWs and the pipeline are made of steel
(σOGW,pipe = 5.5× 106 S/m). The electrical conductivity of the soil is σsoil = 1× 10−2 S/m.

The domain in Figure 3 was discretized with the open-source Gmsh 4.11.1 soft-
ware [51], which allows one to easily embed structured regions in a non-structured Delau-
nay triangulation. This is particularly useful for capturing the current density distribution
in highly conductive (or magnetically permeable) regions subjected to the skin effect, es-
pecially at frequencies typical of transient phenomena. The mesh has 70,350 nodes and
140,568 triangles. The characteristic size of the elements ranges from ≈250 m at the outer
edge to ≈1× 10−6 m at the surface of metallic conductors (e.g., the buried pipeline). At the
soil surface a coarser mesh size can be used, due to the soil electrical conductivity being
several orders of magnitude smaller than typical values for metallic conductors; yielding a
larger skin depth.

Appl. Sci. 2023, 13, 6268 10 of 21

Figure 3. Geometry of the considered right-of-ways (not to scale).

3.2. Time-Harmonic Analysis

The geometry described in Section 3.1 was first studied by means of a time-harmonic
analysis at 60 Hz, using the complex MVP described in Section 2.1.2. This allowed the
induced interference levels in normal operating conditions of the power line to be examined.
The described formulation allowed the value of J0 to be enforced for each element of the
domain. J0 represents the current density that one would find in a given element for
a stationary problem, i.e., neglecting the effects of Faraday’s law. For a problem with
frequency f 6= 0, the total current density is given by

J(t) = J0(t)− σ
∂Az(t)

∂t
, (17)

which for the time-harmonic formulation becomes:

J = J0 − jωσAz. (18)

To simulate a single section of a 250 A balanced three-phase system using a current-driven
approach, we set σ = 0 on the phase conductors and we enforce J0 = 250/Sphasee−ik2/3π,
where k = 1, . . . , 3 for phase conductors 1, 2, and 3, respectively. Sphase is the phase conduc-
tor cross-section. The same result can be obtained with a voltage-driven approach, using
the real electrical conductivity values for the three phase conductors and by subsequently
setting J0,z such that the total phase currents (determined by J0,z and −jωσAz) have the
desired value.

Since FLARE is coded in MATLAB®, the obtained finite element solution for a given
problem can be easily visualized using the trisurf function. Field lines can be also drawn
using the streamslice utility. The magnitude of the computed MVP near the three-phase
conductors and around the buried pipeline is plotted in Figure 4. The magnetic field lines
are also plotted at t = 1 ms. A distortion of the field lines path can be noticed at the OGWs
and pipeline location, caused by the local effects of the magnetic field produced by the
induced currents. One can also see that, at this frequency and for the considered value of
soil resistivity, the magnetic field screening effect exerted by the soil was low. This was
expected, since the soil penetration depth δ =

√
(π f σµ)−1 was on the order of 102 m for

the considered conditions.

Appl. Sci. 2023, 13, 6268 11 of 21

Figure 4. Magnitude of the MVP z- component Az(x, y) in T m−1 and magnetic field lines when
Iphase 1 = 250 A, t = 1× 10−3 s. The OGWs and the pipeline are not to scale.

In order to validate the time-harmonic solver, we compared the obtained solution
with that yielded by the well-established COMSOL Multiphysics® software. More details
of the simulation in COMSOL Multiphysics® are provided in Section 3.4. The results
are summarized in Table 1, where the magnitude and phase of the induced current are
compared for the considered conductors. The column marked with ∆r% shows the relative
percentage difference between the two codes for the given quantity. This quantity is
defined as

∆r% = |(IFLARE − ICOMSOL)/ICOMSOL · 100|. (19)

For the current magnitude and phase, the largest differences were below 1%.

Table 1. Time-harmonic case (60 Hz)—comparison between the currents computed with FLARE and
COMSOL Multiphysics®.

Region
Current Magnitude (A) Phase (deg)

FLARE COMSOL ∆r% 1 FLARE COMSOL ∆r% 1

OGW 1 12.2731 12.2730 0.0004 −140.8317 −140.9354 0.0736
OGW 2 10.2212 10.2205 0.0074 42.3653 42.2765 0.2100

pipe 10.4912 10.4877 0.0332 −10.7012 −10.7105 0.0864
Soil 8.1174 8.1091 0.1023 166.3202 166.3265 0.0038

1 Percentage difference, given by (19).

3.3. Lightning-Induced Phase Conductor Current

The aim of this section was to consider a transient problem of practical relevance,
from the perspective of both transmission line modeling and pipeline integrity. Yao and
colleagues used a finite-difference time domain methodology in [49] to simulate the effects
of a lightning strike on a 500 kV transmission line tower. The authors computed the
lightning-induced current on one of the phase conductors. We assumed that the same
current flows through phase 1 of the transmission line described in Section 3.1, and we
used two different numerical strategies to assess the transient response of the whole system

Appl. Sci. 2023, 13, 6268 12 of 21

under these conditions. We used a Heidler function [52] to represent the phase 1 current
from [49], i.e.,

iphase 1(t) = −
I0

η

(t/τ1)
n

1 + (t/τ1)
n exp

(
− t

τ2

)
, (20)

where I0 = 1× 104 A, τ1 = 1.25× 10−6 s, τ2 = 5.5× 10−5 s, η = 0.875, and n = 2.
We started by simulating the transient response of the system to iphase 1(t) with the

time-domain solver in FLARE and COMSOL Multiphysics® over 1 ms. Concerning FLARE,
the automatic time-stepping procedure described in Section 2.1.3 led to 158 time steps. The
time step lengths ranged from ∆t ≈ 1× 10−13 s at the beginning of the simulation when
iphase 1(t) increased rapidly to ∆t ≈ 1× 10−4 s in the latter stages of the iphase 1(t) decay.
The total execution time (wall-clock time) of the simulation, including the postprocessing,
was tWC ≈ 135 s on the CPU used for testing (AMD Ryzen 7 PRO 4750U). In comparison,
COMSOL Multiphysics® (which also uses an adaptive time-stepping technique) performed
the simulation with approximately half the time steps, requiring ≈45 s.

The time evolution of the currents computed with FLARE is shown in Figure 5 over
a limited portion of the simulation time. The gray continuous line represents iphase 1(t),
enforced on phase 1. The square markers on iphase 1(t) mark the time instants used for
the computation.

Figure 5. Transient behavior of the currents on a cross-section of the geometry of Figure 3, where
iphase 1 (gray continuous line) is given by (20). The square markers on iphase 1 mark the time steps
used by the automatic time-stepping algorithm.

All the obtained currents were positive, in contrast to iphase 1(t). While the pipeline
had a lower electrical conductivity with respect to the phase conductors and was
partially screened by the soil, its maximum induced current was larger than the one
in phase 3. This was due to a combination of its location in close proximity to the
transmission line and its surface, considerably larger than the one of either the phase
or overhead ground conductors.

In order to verify the accuracy of the solution obtained with FLARE, we compared a
subset of the currents shown in Figure 5 to the same quantities evaluated over time using
the COMSOL Multiphysics® software. We also highlight that the FLARE wall-clock time
was comparable or lower to that needed to perform the same simulation in COMSOL
Multiphysics® on the same machine.

The values of iphase 2(t), iphase 3(t), and ipipe(t) yielded by the two approaches are
shown in Figure 6. Differently from Figure 5, the currents have been plotted using a

Appl. Sci. 2023, 13, 6268 13 of 21

logarithmic scale for the temporal axis, to better appreciate the agreement of the two
approaches in the first part of the simulation, for small values of t. The markers indicating
the FLARE solutions are only shown for one value out of three, for the sake of clarity. The
agreement was fully satisfactory over the whole simulated time span. Focusing on the
maximum value of ipipe(t) at t ≈ 2× 10−5 s, the relative percentage difference between
the two solutions was 0.41 %. Similar values were obtained for all the other considered
conductors (including the OGWs and the soil, not shown in Figure 6).

Figure 6. Comparison between the time-stepping solutions obtained with FLARE and COMSOL
Multiphysics® for the same case of Figure 5 and the geometry of Figure 3.

3.4. COMSOL Simulation Settings

In order to validate the results given by FLARE, two different COMSOL Multiphysics®

simulations were conducted considering both the above-described three-phase balanced
system and lightning scenarios. Both simulations were performed using the AC/DC
module and, specifically, the magnetic field (mf) submodule. In order to perform a fair
comparison between FLARE and COMSOL Multiphysics®, we needed to employ the
same triangular mesh for the two sets of calculations. Hence, we generated the triangular
mesh using the Gmsh software, and then imported it into COMSOL Multiphysics® through
an intermediate conversion to .nas format. In this regard, we report that the originally
developed mesh led to some errors during the COMSOL Multiphysics® import process;
the errors (misinterpreted triangles) were located in the fine-structured regions used for
the pipeline. The errors disappeared once the local mesh size had been slightly relaxed.
This fact did not seem to affect the results of the simulations, due to the relatively low
frequency (and consequently the large penetration depth) used for both the time-harmonic
analysis and the lightning simulation. This difference in local mesh size could, however,
result in a meaningful alteration of the results for different physical situations involving
high frequencies, e.g., calculations of impulse responses (not performed in this work with
COMSOL Multiphysics®). Concerning the three-phase balanced system, a time-harmonic
simulation was conducted, considering a frequency of 60 Hz and imposing the complex
values of the three currents corresponding to the phase conductors. Each current had a
magnitude of 250 A and a phase of 0, −120, and −240 degrees respectively. Note that, as
stated previously and in order to avoid the influence of the self and mutually induced
currents, the electrical conductivity of each of the three phase conductors was considered
to be 0. Concerning the case of lightning-induced currents, a time-marching simulation
was carried out, based on a backward difference formula scheme with variable accuracy
order and adaptive ∆t. In this case, the time-dependent current given by (1) was imposed

Appl. Sci. 2023, 13, 6268 14 of 21

in phase conductor 1, which, for the reason stated above, has null conductivity. In order to
calculate the values of the currents induced in the other phase conductors, the conductivity
of the latter was considered to be 3.5× 107 S/m.

3.5. Numerical Validation of the Inverse-Laplace Approach

As anticipated, FLARE also allows one to study transient phenomena through an
inverse-Laplace approach. Specifically, a numerical inversion routine is used to call the
FEM solver for a series of values of the (complex) variables s in (12) and (13). A complex
MVP formulation similar to the one employed for time-harmonic problems is used to
perform the finite element analysis in this case. The purely complex factor jω used in the
time-harmonic solver is now substituted by s, that may have a nonzero real part.

The aim of this section is twofold. First, we want to show how this approach can
be applied to efficiently solve the same transient problem considered in the last section.
Second, we want to provide verification of the numerical accuracy granted by this inverse-
Laplace approach. Without losing any generality, we now focus solely on ipipe(t), for the
sake of brevity. The most obvious way to obtain ipipe(t) using the inverse-Laplace approach

would be to Laplace-transform the known current on phase 1, iphase 1(s) = L
{

iphase 1(t)
}

,
and subsequently use iphase 1(s) as the forcing term for the FEM solver in the s domain. In
this way, ipipe(s) is obtained, and one can use one of the provided algorithms to perform
the inverse transform L−1{ipipe(s)

}
= ipipe(t). Unfortunately, in this way, the calculation

must be repeated for every change in iphase 1(t).
Due to this, we instead opt for using the above described procedure to inverse-

transform the pipeline electrical response to the unit impulse (The unit step 1/s can also
be used alternatively, knowing that the unit impulse is just the first-derivative of the unit
step). In this case, the forcing term for the FEM solver is just L{δ} = 1 and the output
hpipe(t) of the inverse-Laplace routine is the time-domain pipeline current when the phase
conductor is subjected to a unit current impulse. Now the time response of the pipeline
to the generic current gphase 1(t) applied to phase conductor 1 can be obtained using the
convolution theorem:

ipipe(t) = hpipe(t) ∗ gphase 1(t) =
∫ t

0
hpipe(τ)gphase 1(t− τ) dτ. (21)

The short notation ∗ is used to identify the convolution integral between two generic
time-domain functions from here onward.

Three different numerical Laplace inversion algorithms are currently implemented
in FLARE. The adaptive approach by D’Amore and colleagues [34] is used to compute
the time-domain impulse response of the system, i.e., hpipe(t). We emphasize that hpipe(t)
(output of the inversion routine) is the pipeline current response when phase conductor
1 is excited by a unit current impulse. Then, by setting gphase 1(t) = iphase 1(t) with the
expression of (20), we can find the time-domain pipeline current as a simple convolution.

As anticipated, the computational advantage of this approach is that, once hpipe(t) has
been computed for the given geometry, one can easily find the pipeline response to any
given current on phase 1 by updating gphase 1(t). More details on the convolution routine
are provided in Section 3.6.

The default MATLAB® function w=conv(u,v) assumes that the two arrays u and v are
defined at the same time-instants, which must necessarily be regularly spaced. In other
words, the conv function is not particularly practical for working with variables known at
unevenly spaced time-instants, such as hpipe(t) (computing the impulse response over an
evenly spaced time grid would result in a prohibitive number of time steps, even with an
implicit time discretization such as the one used in this work). For this reason we provide
our own implementation of a convolution integral routine, iw=intconv(tiw,tu,u,tv,v).
The intconv function requires as input the array of the two signals to be combined, u and
v, together with their respective temporal indices tu and tv. The two input signals are

Appl. Sci. 2023, 13, 6268 15 of 21

interpolated internally and the convolution integral iw is then returned at times specified
with the array tiw.

In order to validate this proposed methodology, we compared the pipeline current
computed with this approach to the solution of the implicit time-stepping algorithm
discussed in the previous section. The current impulse response of the pipeline hpipe(t) was
computed over 250 instants, logarithmically spaced between 1× 10−11 s and 10 s. Figure 7
shows the time-stepping results (black continuous line) compared to a subset of the values
obtained using the convolution integral. The agreement between the two approaches was
satisfactory over the whole time interval covered by the simulation. Focusing on the region
with the largest discrepancy between the two approaches, highlighted in Figure 7, the
pipeline current values yielded by the two approaches were 811.899 A (convolution) and
811.203 A (time domain). An even closer agreement could be obtained by employing a
finer time grid for the pipeline impulse response calculation with the numerical inverse-
Laplace approach.

Figure 7. Comparison between the pipeline current computed with the implicit time-marching
algorithm (time domain) and inverse-Laplace approaches (convolution) in FLARE. We denote the
results of the inverse-Laplace as convolution, since the pipeline current is obtained by convolving the
inverse-Laplace transform of the impulse response of the system and the lightning-induced current
on phase 1.

We now want to briefly comment on the efficiency of the two approaches used in
this work for transient problems, i.e., time-marching and the discussed inverse-Laplace
technique. For the specific transient problem considered in this work, the time-marching
analysis in FLARE (with a variable time step) required computation times between one and
two minutes (depending on the initial time step length and sensitivity of the adaptive time
step control). Comparing this performance to the ones of the inverse-Laplace approach
is not trivial and is strongly dependent on the specific use case. The picture also changes
depending on how the inverse-Laplace approach is used, i.e., if (1) the considered variable
is directly anti-transformed or if (2) the inverse-Laplace approach is used to compute an
impulse response of the system, to be later convoluted with a given signal. The number
of function evaluations in the Laplace domain (i.e., solutions of a stationary problem for
a single value of s) required to anti-transform the solution at a given time t may change
considerably (depending on the source terms and the specific value of t) when using the
adaptive procedure by D’Amore et al. Therefore, while 10 or 20 computations might be
sufficient for a given t = τ1, up to 100 or 200 evaluations might be required for t = τ2 � τ1.
Still, as we will see in a later section, a totally different situation is obtained when using

Appl. Sci. 2023, 13, 6268 16 of 21

the Talbot and Euler algorithms. In any case, one of the advantages of the inverse-Laplace
approach is that the problem can be massively parallelized—as we implemented in FLARE—
given that the results at different time instants are independent. As a rule of thumb, if the
inverse-Laplace is directly used without computing an impulse response (approach (1)),
we can say that the time-marching approach is generally more efficient if used to observe
the behavior of a quantity over large time-spans using a correspondingly large number
of sampling points. In this case, the inverse-Laplace approach can still be competitive if
the solution is just needed for a few key instants that can be computed in parallel. The
situation changes if—as we implemented in this work—the above-described approach
(2) is used. For the configuration in this work, obtaining a detailed impulse response
(250 samples) took ≈1 h of wall-clock time. This relatively long operation only has to
be carried out once for a given geometry, and the response to any given signal can be
obtained through a convolution integral, requiring ≈10–100 ms. A final consideration
about accuracy: truncation (and round-off) errors propagate over time during a time-
marching simulation, and the truncation error magnitude depends on the time step length.
This is not the case when using the inverse-Laplace approach, in that the solution at each
instant is computed independently.

3.6. Comparison between Different Numerical Inversion Routines

As previously stated, FLARE includes three different algorithms for the numerical
inversion of the Laplace-transformed problem. The first algorithm is made available by
wrapping a MATLAB® function developed by D’Amore and colleagues [40]. This algorithm
is based on a Fourier-series expansion of the function f (t) to be transformed [34]. This
expansion is then discretized using a trapezoidal rule with step size π/T to obtain an
approximation of f (t):

f̃ (t) =
exp(γt)

T
Re

[
F(γ)

2
+

N

∑
k=1

F
(

γ +
ikπ

T

)
exp

(
ikπt

T

)]
, (22)

One of the main strengths of this algorithm is that it allows one to specify the minimum
accuracy of the inverse transformation. In other words, the approximated values of f (t)
are bound to a user-defined relative tolerance:

TOL ≥
∣∣∣∣ f (t)− f̃ (t)

f̃ (t)

∣∣∣∣ (23)

We add two additional numerical inverse Laplace routines, implementing the Fourier
expansion with Euler summation and Talbot algorithms. The MATLAB® implementations
of the former two follow the framework introduced in [35], where an approximation of
L−1{s} = f (t), i.e., f̃ (t), is expressed as a linear combination of values of F(s):

f̃ (t) =
1
t

n

∑
k=0

ωkF
(αk

t

)
. (24)

The complex quantities αk and ωk are known as nodes and weights, respectively.
Notably, these only depend on n, i.e., the number of evaluations of F(s) used to perform the
inverse transform. This feature makes algorithms based on (24) very efficient for situations
where the inverse transformation must be computed for multiple instants, such as the
problems considered in this work.

Following the framework of (24), the Euler algorithm is formulated as

f̃ (t) =
10M/3

t

2M

∑
k=0

ηk Re
[

F
(

βk
t

)]
, (25)

Appl. Sci. 2023, 13, 6268 17 of 21

while the Talbot algorithm is given by:

f̃ (t) =
2
5t

M−1

∑
k=0

Re
[

γkF
(

δk
t

)]
. (26)

We refer the reader to [35] for further details on the two expressions above.
Theoretically, f̃ (t) becomes more accurate the greater the value of n, thanks to a lower

truncation error. In practice, the weights in (25) and (26) increase in magnitude with n,
while oscillating in sign. This leads to round-off errors [53] for a constant system precision.
In summary, the accuracy of the obtained solution only increases with greater values of n
up to a certain optimum value, beyond which the ill-conditioning of the problem combines
with numerical error to increase the total error [54].

Since FLARE is currently limited to double-precision calculations, we did not include
the Gaver–Stehfest algorithm—also considered in [35]—since it requires a higher precision
with respect to the Euler and Talbot algorithms. Both routines produce approximately 0.6M
digits of accuracy for f̃ (t) with respect to the true solution f (t), meaning that:∣∣∣∣ f (t)− f̃ (t)

f̃ (t)

∣∣∣∣ ≈ 10−0.60M (27)

In other words, if the f̃ (t) must be accurate to the 6th digit with respect to the real
solution f (t), M = 10 must be used when performing the inverse-transform.

The positive integer M appearing in the above expression is related to the number
of function evaluations n; specifically, n = 2M + 1 for the Euler algorithm and n = M for
the Talbot one. Both algorithms require a system precision ≈M, meaning that values of M
above 16 are not recommended for double precision.

We compared the results yielded by the three algorithms described so far for a simple
test case. Considering the same geometry as for the previous section, we computed the
pipeline current ipipe(t) when phase 1 of the transmission line was subject to a unity
impulse voltage. The employed settings were the same as employed for the previously
discussed case featuring the response to a current impulse on the same conductor, the only
difference being σphase 1 6= 0 for the present simulation. We selected three time instants for
the comparison, corresponding to an early stage of the response (τ1 = 2.63665× 10−9 s),
when the pipeline current was close to its maximum absolute value (τ2 = 4.54878× 10−5 s)
and at a latter stage of the response (τ3 = 0.194748 s).

The results of the comparison are reported in Table 2. We took the results yielded
by the algorithm proposed by D’Amore et al., and verified in the former sections, as the
reference for this comparison. The pipeline current values computed with the above-
described implementations of the Talbot and Euler techniques were collected for several
different values of the parameter M. Instead of directly reporting the computed currents,
we directly computed the percentage difference with respect to the reference current values,
meaning that, e.g., using the Talbot algorithm with M = 4 we had

∣∣∣ iD’Amore−iTalbot
iD’Amore

∣∣∣× 100 =

1.60× 10−2. For both algorithms the obtained accuracy was low or very low for values of M
close to the upper or lower investigated limit. For M = 4, the round-off error was negligible,
but from (27) only ≈2 digits of accuracy could be expected theoretically. The result was
thus dominated by the truncation error. The large errors for values of M larger than the
machine precision (≈16) were instead due to round-off errors for the reasons discussed
above and—in greater detail—in [53]. Not surprisingly, the most accurate results were
obtained for both algorithms for M = 8 and M = 16. We note, however, that the Talbot
algorithm seemed to consistently perform better than the Euler algorithm over the observed
results. This was also true for the number of required function evaluations n, where the
Talbot strategy required n− 1 less evaluations for the given value of M. Overall, for M = 8
and M = 16 the two techniques yield results in close or very close agreement with the

Appl. Sci. 2023, 13, 6268 18 of 21

reference values, for a considerably lower number of function evaluations compared to the
technique by D’Amore et al.

Table 2. Percentage error of the Talbot and Euler inverse-Laplace algorithms with respect to the
pipeline current computed with the algorithm by D’Amore et al. for three time instants. M is the
integer parameter used to control the Talbot and Euler algorithms. It relates to the number of function
evaluations n and, approximately, to the required machine precision ≈M and achieved accuracy
through (27). The number of function evaluations required by the algorithm of D’Amore et al. is
nτ1 = 31, nτ2 = 235, nτ3 = 1333.

Algorithm Settings Time (s)

τ1 = 2.64× 10−9 τ2 = 4.55× 10−5 τ3 = 0.19
pipeline current (A)

D’Amore et al. Relative tolerance 1.00× 10−5 −9.419 87× 102 −7.274 06× 104 3.076 32× 103

M n % Error with respect to D’Amore et al.

Talbot

4 4 1.60× 10−2 3.87× 10−2 1.23× 101

8 8 1.45× 10−5 3.75× 10−6 7.59× 10−3

16 16 4.18× 10−11 1.10× 10−8 1.69× 10−4

32 32 3.33× 10−12 1.29× 10−7 2.50× 10−3

64 64 1.06× 10−6 1.77× 10−2 3.26× 102

Euler

4 9 6.05× 10−1 2.67× 10−1 1.26
8 17 1.27× 10−3 6.54× 10−4 5.12× 10−3

16 33 5.64× 10−9 2.89× 10−8 4.21× 10−4

32 65 9.50× 10−7 5.89× 10−4 1.15× 102

64 129 3.93× 102 5.76× 107 7.57× 1011

4. Conclusions

In this work, we introduced FLARE, an open-source MATLAB® code developed by
the authors for the finite element analysis of electromagnetic interference on earth-return
conductors due to the presence of high-voltage transmission lines. We considered a single
section of a corridor with a buried steel pipeline underneath a typical 500 kV transmission
line and computed the induced current on the pipeline under both sinusoidal steady-state
and transient operating conditions of the HVAC line. We described an efficient vectorized
implementation of a stationary complex solver and a transient solver with automatic
time-stepping in FLARE and verified both of the obtained solutions by implementing
the same problem in COMSOL Multiphysics®, using the AC/DC Module. The results
yielded by FLARE and COMSOL Multiphysics® were compared in two different cases,
i.e., a time-harmonic and a transient simulation. For the 60 Hz time-harmonic problem,
the maximum percentage difference between the current magnitudes yielded by the two
codes was ≈0.1% (pipeline). The maximum percentage phase difference was ≈0.21%
(OGW 2). Considering the transient problem, we compared the percentage difference
between the two maximum values of pipeline current, which was about≈0.41%. Regarding
the computation time, FLARE was faster by a factor of ≈1.4 for the considered time-
harmonic problem, where the linear system stemming from the finite element discretization
was only solved once. Conversely, COMSOL Multiphysics® was faster by a factor of
≈2 in the transient problem (note that a higher-order backward difference formula is
employed by the COMSOL Multiphysics® time-marching solver, limiting the number
of time steps employed). Subsequently, we discussed an alternative technique for the
analysis of transient problems, based on the Laplace transform. This entails solving
the problem in the complex domain for multiple values of the complex variable s and
performing a numerical inverse-Laplace transformation to obtain the time-domain solution.
We demonstrated this approach by anti-transforming the pipeline response to a current
impulse applied to one of the transmission line phase conductors. The transient response of

Appl. Sci. 2023, 13, 6268 19 of 21

the pipeline for any given phase current can be then obtained through a simple convolution
integral, with obvious performance advantages over time-marching methods. We compared
the pipeline current obtained through time-marching with the one obtained from the
described inverse-Laplace approach, obtaining a full agreement. Finally, we compared the
accuracy and computational efficiency of the three different inverse-Laplace algorithms
implemented in FLARE, providing general recommendations for their use in the context
of double-precision environments. In future works, FLARE will be further developed by
adding the possibility of using the inverse-Laplace approach when dealing with multiple
sections of a corridor. This will allow performing quasi-3D simulations, which can take
into account imperfect earthings of the conductors and, more generally, currents that do
not flow in the direction perpendicular to the given section.

Author Contributions: Conceptualization, A.P. and A.C.; Methodology, A.P. and A.C.; Software,
A.P.; Validation, A.P. and G.P.; Formal analysis, A.P. and A.C.; Investigation, A.P.; Data curation, A.P.;
Writing—original draft, A.P. and G.P.; Writing—review & editing, A.P., F.R. and L.S.; Supervision,
A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lucca, G. AC interference from a faulty power line on nearby buried pipelines: Influence of the surface layer soil. IET Sci. Meas.

Technol. 2020, 14, 225–232. [CrossRef]
2. Zhang, Y.; Weng, W.G. Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external

interference. Reliab. Eng. Syst. Saf. 2020, 203, 107089. [CrossRef]
3. Cetin, O.; Duzkaya, H.; Taplamacioglu, M.C. Analysis of Transmission Line Electromagnetic Interference on Touch and Step

Voltages on Buried Gas Pipeline under Different Shielding and Resistivity Conditions. In Proceedings of the 2021 13th International
Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–4. [CrossRef]

4. Brenna, A.; Beretta, S.; Ormellese, M. AC Corrosion of Carbon Steel under Cathodic Protection Condition: Assessment, Criteria
and Mechanism. A Review. Materials 2020, 13, 2158. [CrossRef]

5. Al-Gabalawy, M.; Mostafa, M.A.; Hamza, A.S. Implementation of different intelligent controllers for mitigating the AC corrosion
of metallic pipelines considering all HVOHTLs operation conditions. ISA Trans. 2021, 117, 251–273. [CrossRef]

6. Muresan, A.; Papadopoulos, T.A.; Czumbil, L.; Chrysochos, A.I.; Farkas, T.; Chioran, D. Numerical Modeling Assessment
of Electromagnetic Interference Between Power Lines and Metallic Pipelines: A Case Study. In Proceedings of the 2021 9th
International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 16–17 June 2021; pp. 1–6. [CrossRef]

7. Luo, Y.; Lin, N.; Zhou, S.; Li, S.; Wang, H. Effects of electromagnetic interference and crevice on corrosion of natural gas pipelines.
IOP Conf. Ser. Earth Environ. Sci. 2021, 675, 012061. [CrossRef]

8. Liu, H.; Li, Q.; Li, H.; Xue, Z.; Han, M.; Liu, L. Characteristics and effects of electromagnetic interference from UHVDC and
geomagnetic storms on buried pipelines. Int. J. Electr. Power Energy Syst. 2021, 125, 106494. [CrossRef]

9. Charalambous, C.A.; Nikolaidis, A.I. Complete Method to Assess the DC Corrosion Impact on Pipeline Systems During the
Planning and Approval Stages of HVDC Systems With Earth Current Return. IEEE Access 2022, 10, 127550–127562. [CrossRef]

10. Li, Y.; Liu, L.; Ya, S.; Long, Y.; Li, K.; Cao, X. Research on the Protection Principle and Influencing Factors of Zinc Strip on Buried
Pipelines around AC Subway. In Proceedings of the 2022 IEEE International Conference on High Voltage Engineering and
Applications (ICHVE), Chongqing, China, 25–29 September 2022; pp. 1–4. [CrossRef]

11. Ma, C.; Liu, C. Influence of Pipeline Insulation Leakage Points on the Distribution of Geomagnetically Induced Current and
Pipe-Soil Potential. IEEE Access 2019, 7, 147470–147480. [CrossRef]

12. CIGRE. Guide on the Influence of High Voltage AC Power Systems on Metallic Pipelines; Technical Report; Cigré Working Group 36.02:
Paris, France, 1995.

13. Taflove, A.; Dabkowski, J. Prediction Method for Buried Pipeline Voltages Due to 60 Hz AC Inductive Coupling Part I—Analysis.
IEEE Trans. Power Appar. Syst. 1979, PAS-98, 780–787. [CrossRef]

14. Dabkowski, J.; Taflove, A. Prediction Method for Buried Pipeline Voltage Due to 60 Hz AC Inductive Coupling Part II—Field test
Verification. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 788–794. [CrossRef]

15. Machczynski, W.; Budnik, K.; Szymenderski, J. Assessment of DC traction stray currents effects on nearby pipelines. COMPEL
Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 1468–1477. [CrossRef]

http://doi.org/10.1049/iet-smt.2019.0133
http://dx.doi.org/10.1016/j.ress.2020.107089
http://dx.doi.org/10.1109/ECAI52376.2021.9515113
http://dx.doi.org/10.3390/ma13092158
http://dx.doi.org/10.1016/j.isatra.2021.02.003
http://dx.doi.org/10.1109/MPS52805.2021.9492630
http://dx.doi.org/10.1088/1755-1315/675/1/012061
http://dx.doi.org/10.1016/j.ijepes.2020.106494
http://dx.doi.org/10.1109/ACCESS.2022.3226940
http://dx.doi.org/10.1109/ICHVE53725.2022.9961696
http://dx.doi.org/10.1109/ACCESS.2019.2946224
http://dx.doi.org/10.1109/TPAS.1979.319290
http://dx.doi.org/10.1109/TPAS.1979.319291
http://dx.doi.org/10.1108/COMPEL-12-2015-0477

Appl. Sci. 2023, 13, 6268 20 of 21

16. Cristofolini, A.; Popoli, A.; Sandrolini, L. A comparison between Carson’s formulae and a 2D FEM approach for the evaluation of
AC interference caused by overhead power lines on buried metallic pipelines. Prog. Electromagn. Res. 2017, 79, 39–48. [CrossRef]

17. Lucca, G. Influence of steel non-linearity in assessing 50–60 HZ interference on pipelines. Prog. Electromagn. Res. M 2018, 74,
1–10. [CrossRef]

18. Ametani, A.; Yoneda, T.; Baba, Y.; Nagaoka, N. An Investigation of Earth-Return Impedance Between Overhead and Underground
Conductors and Its Approximation. IEEE Trans. Electromagn. Compat. 2009, 51, 860–867. [CrossRef]

19. Dawalibi, F.P.; Southey, R.D. Analysis of electrical interference from power lines to gas pipelines. I. Computation methods. IEEE
Trans. Power Deliv. 1989, 4, 1840–1846. [CrossRef]

20. Christoforidis, G.C.; Labridis, D.P.; Dokopoulos, P.S. A hybrid method for calculating the inductive interference caused by faulted
power lines to nearby buried pipelines. IEEE Trans. Power Deliv. 2005, 20, 1465–1473. [CrossRef]

21. Schoonjans, B.; Deconinck, J. Calculation of HVAC inductive coupling using a generalized BEM for Helmholtz equations in
unbounded regions. Int. J. Electr. Power Energy Syst. 2017, 84, 242–251. [CrossRef]

22. Micu, D.D.; Christoforidis, G.C.; Czumbil, L. AC interference on pipelines due to double circuit power lines: A detailed study.
Electr. Power Syst. Res. 2013, 103, 1–8. [CrossRef]

23. Cristofolini, A.; Popoli, A.; Sandrolini, L. Numerical Modelling of Interference from AC Power Lines on Buried Metallic Pipelines
in Presence of Mitigation Wires. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical
Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 12–15
June 2018; pp. 1–6. [CrossRef]

24. Popoli, A.; Sandrolini, L.; Cristofolini, A. Finite Element Analysis of Mitigation Measures for AC Interference on Buried Pipelines.
In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial
and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–5. [CrossRef]

25. Popović, L.M. 7—Inductive influence of high-voltage and extra-high voltage lines on surrounding metal installations. In
Relevant Characteristics of Power Lines Passing through Urban Areas; Popović, L.M., Ed.; Academic Press: Cambridge, MA, USA,
2022; pp. 151–189. [CrossRef]

26. Haynes, G.J.; Manning, T.; Baete, C.; Barton, L. Variances in pipeline AC interference computational modeling. In Proceedings of
the Corrosion Conference and Expo 2019, Nashville, TN, USA, 24–28 March 2019.

27. Southey, R.D.; Dawalibi, F.P.; Vukonich, W. Recent advances in the mitigation of AC voltages occurring in pipelines located close
to electric transmission lines. IEEE Trans. Power Deliv. 1994, 9, 1090–1097. [CrossRef]

28. Andolfato, R.; Cuccarollo, D.; Fara, I. Electromagnetic Interferences between Power Systems and Pipelines. Field vs. Circuit Theory Based
Models; NACE International: Milano, Italy, 2021.

29. Christoforidis, G.C.; Labridis, D.P.; Dokopoulos, P.S. Inductive interference on pipelines buried in multilayer soil due to magnetic
fields from nearby faulted power lines. IEEE Trans. Electromagn. Compat. 2005, 47, 254–262. [CrossRef]

30. Martins-Britto, A.G.; Moraes, C.M.; Lopes, F.V. Transient electromagnetic interferences between a power line and a pipeline due
to a lightning discharge: An EMTP-based approach. Electr. Power Syst. Res. 2021, 197, 107321. [CrossRef]

31. Cristofolini, A.; Popoli, A.; Sandrolini, L.; Pierotti, G.; Simonazzi, M. Laplace transform for finite element analysis of electromag-
netic interferences in underground metallic structures. Appl. Sci. 2022, 12, 872. [CrossRef]

32. Wen, T.; Cui, X.; Li, X.; Liu, S.; Zhao, Z. A finite element method for the transient electric field by using indirect Laplace transform
with high accuracy. CSEE J. Power Energy Syst. 2022, 1–11. [CrossRef]

33. Chen, H.T.; Chen, C.K. Hybrid Laplace transform/finite-element method for two-dimensional transient heat conduction.
J. Thermophys. Heat Transf. 1988, 2, 31–36. [CrossRef]

34. D’Amore, L.; Laccetti, G.; Murli, A. Algorithm 796: A Fortran software package for the numerical inversion of the Laplace
transform based on a Fourier series method. ACM Trans. Math. Softw. 1999, 25, 306–315. [CrossRef]

35. Abate, J.; Whitt, W. A Unified Framework for Numerically Inverting Laplace Transforms. INFORMS J. Comput. 2006, 18,
408–421. [CrossRef]

36. MATLAB. R2022a; The MathWorks Inc.: Natick, MA, USA, 2022.
37. Popoli, A.; Cristofolini, A.; Sandrolini, L.; Abe, B.T.; Jimoh, A. Assessment of AC interference caused by transmission lines on

buried metallic pipelines using FEM. In Proceedings of the 2017 International Applied Computational Electromagnetics Society
Symposium-Italy (ACES), Firenze, Italy, 26–30 March 2017; pp. 1–2. [CrossRef]

38. Mazumder, S. Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods; Academic Press:
Cambridge, MA, USA, 2015.

39. MATLAB Inc. mldivide MATLAB Function; MATLAB Inc.: Natick, MA, USA, USA, 2023.
40. D’Amore, L.; Laccetti, G.; Murli, A. An implementation of a Fourier series method for the numerical inversion of the Laplace

transform. ACM Trans. Math. Softw. (TOMS) 1999, 25, 279–305. [CrossRef]
41. Cohen, A. Numerical Methods for Laplace Transform Inversion; Numerical Methods and Algorithms, Springer: Boston, MA, USA,

2007; Volume 5. [CrossRef]
42. de Hoog, F.R.; Knight, J.H.; Stokes, A.N. An Improved Method for Numerical Inversion of Laplace Transforms. SIAM J. Sci. Stat.

Comput. 1982, 3, 357–366. [CrossRef]
43. Chen, L. Programming of Finite Element Methods in MATLAB. arXiv 2018, arXiv:1804.05156. https://doi.org/10.48550/arXiv.1804.05156.

http://dx.doi.org/10.2528/PIERC17080501
http://dx.doi.org/10.2528/PIERM18071811
http://dx.doi.org/10.1109/TEMC.2009.2019953
http://dx.doi.org/10.1109/61.32680
http://dx.doi.org/10.1109/TPWRD.2004.839186
http://dx.doi.org/10.1016/j.ijepes.2016.06.003
http://dx.doi.org/10.1016/j.epsr.2013.04.008
http://dx.doi.org/10.1109/EEEIC.2018.8493677
http://dx.doi.org/10.1109/EEEIC.2019.8783843
http://dx.doi.org/10.1016/B978-0-323-91136-8.00008-6
http://dx.doi.org/10.1109/61.296294
http://dx.doi.org/10.1109/TEMC.2005.847399
http://dx.doi.org/10.1016/j.epsr.2021.107321
http://dx.doi.org/10.3390/app12020872
http://dx.doi.org/10.17775/CSEEJPES.2021.07590
http://dx.doi.org/10.2514/3.58
http://dx.doi.org/10.1145/326147.326149
http://dx.doi.org/10.1287/ijoc.1050.0137
http://dx.doi.org/10.23919/ROPACES.2017.7916012
http://dx.doi.org/10.1145/326147.326148
http://dx.doi.org/10.1007/978-0-387-68855-8
http://dx.doi.org/10.1137/0903022
https://doi.org/10.48550/arXiv.1804.05156

Appl. Sci. 2023, 13, 6268 21 of 21

44. Rahman, T.; Valdman, J. Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements. Appl. Math. Comput. 2013,
219, 7151–7158. [CrossRef]

45. Cuvelier, F.; Japhet, C.; Scarella, G. An efficient way to assemble finite element matrices in vector languages. BIT Numer. Math.
2016, 56, 833–864. [CrossRef]

46. COMSOL Multiphysics, 6.1; COMSOL AB: Stockholm, Sweden, 2022.
47. Popoli, A.; Sandrolini, L.; Cristofolini, A. A quasi-3D approach for the assessment of induced AC interference on buried metallic

pipelines. Int. J. Electr. Power Energy Syst. 2019, 106, 538–545. [CrossRef]
48. Wang, X.; Wang, Y.; Sun, T.; Yang, X.; Yang, L.; Qi, Y. Study of transmission line AC interference with steel-buried pipelines under

lightning strikes. Electr. Power Syst. Res. 2023, 218, 109226. [CrossRef]
49. Yao, C.; Wu, H.; Mi, Y.; Ma, Y.; Shen, Y.; Wang, L. Finite difference time domain simulation of lightning transient electromagnetic

fields on transmission lines. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1239–1246. [CrossRef]
50. Qais, M.; Khaled, U. Evaluation of V–t characteristics caused by lightning strokes at different locations along transmission lines.

J. King Saud Univ. Eng. Sci. 2018, 30, 150–160. [CrossRef]
51. Geuzaine, C.; Remacle, J.F. Gmsh: A three-dimensional finite element mesh generator with built-in pre-and post-processing

facilities. In Proceedings of the Second Workshop on Grid Generation for Numerical Computations, Tetrahedron II, Le Chesnay,
France, 17–19 October 2007.

52. Piantini, A. (Ed.) Lightning Interaction with Power Systems. Volume 2: Applications; Number 172 in IET Energy Engineering Series;
The Institution of Engineering and Technology: London, UK, 2020.

53. Abate, J.; Valkó, P.P. Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 2004, 60, 979–993. [CrossRef]
54. Davies, B. Integral Transforms and Their Applications, 3rd ed.; Number 41 in Texts in Applied Mathematics; Springer: New York,

NY, USA, 2002.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.amc.2011.08.043
http://dx.doi.org/10.1007/s10543-015-0587-4
http://dx.doi.org/10.1016/j.ijepes.2018.10.033
http://dx.doi.org/10.1016/j.epsr.2023.109226
http://dx.doi.org/10.1109/TDEI.2013.6571440
http://dx.doi.org/10.1016/j.jksues.2016.02.003
http://dx.doi.org/10.1002/nme.995

	Introduction
	Numerical Model
	Formulations
	Static
	Sinusoidal Steady-State (Time Harmonic)
	Time-Domain

	Vectorized Right-Hand Side Assembly Routine
	Software Structure

	Results and Discussion
	Corridor Geometry
	Time-Harmonic Analysis
	Lightning-Induced Phase Conductor Current
	COMSOL Simulation Settings
	Numerical Validation of the Inverse-Laplace Approach
	Comparison between Different Numerical Inversion Routines

	Conclusions
	References

