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Abstract: This study aims to provide an effective method to study the behavior of a steel–concrete
composite deck. First, the structural characteristics of the composite deck and the challenges arising
in the computational analysis of the structure using general software are described. Then, an LPGE
element that combines the plate element and the girder element into one element to conveniently
construct the model with high computation efficiency is proposed. Based on the principle of multi-
variate field function, the constraint matrix for the plate and girder and the stiffness matrix for the
LPGE are derived. The LPGE method is used to study the behavior of the composite deck through
the computation of a steel truss arch bridge. The computation results are compared with the results
obtained in ANSYS and the test results to verify the correctness and effectiveness of the LPGE method.
The results of the paper offer references for the analysis of steel–concrete composite decks.

Keywords: steel–concrete composite deck; multivariate field function; layered plate girder element;
stiffness matrix; constraint matrix

1. Introduction

The steel truss bridge has a large span and is lightweight with a short construction
period. It is usually one of the preferred choices in the design of long-span bridges [1–3].
The deck is an important component in the structural design of long-span steel truss
bridges for high-speed railways. It ensures the safety and comfort of traffic, as well
as the reduction in the noise from steel bridges. The steel–concrete composite deck is
composed of a concrete ballast slab and orthotropic steel deck. The orthotropic steel deck
is connected with the upper flanges of longitudinal girders, transverse girders, and lower
chord members. Composite action is developed by the transfer of horizontal shear forces
between longitudinal and transverse stiffeners arranged under the steel deck and the
concrete ballast slab above the deck slab via headed shear studs. The typical deck structure
is shown in Figure 1. This type of deck ensures structural integrity and reduces self-weight,
and minimizes the stresses of transverse girders caused by transverse bending [4–10]. Thus,
steel–concrete composite decks are applied widely in high-speed railway steel truss bridges,
such as Japan’s Shinkansen, Germany’s Wasserstadtbrücke, Denmark’s Oresund Bridge,
and China’s Sanan River Bridge.

Global deformation, and even self-bending deformation, occurs in a steel truss deck
with the expansion and contraction of the main truss under the action of deck loads. In
large-span steel truss bridges, the effect of shear deformation cannot be ignored since
the longitudinal and transverse girders are generally designed to be at a great height to
withstand larger stresses [11–13]. Thus, the stress of deck systems is more complex. The
simulation of the deck system is a difficult task when using general software to analyze
and calculate the deck structure of a ballasted composite bridge [14–19]. Generally, the
simulations of the deck and the longitudinal and transverse girders are performed separately
in most cases. In other words, the deck plate is divided into plate elements, while the
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longitudinal and transverse girders are divided into beam elements [20,21]. The nodes of
beam elements and nodes of plate elements in the area where the longitudinal and transverse
girders are connected with the deck are coupled to achieve the composite action [22,23]. As
is known, the beam elements have six degrees of freedom (ux, uy, uz, θx, θy, θz), and the
plate elements have five degrees of freedom (ux, uy, uz, θx, θy). However, their displacement
patterns are different [24,25], so a traditional approach often does not ensure deformation
coordination between the beams and plates at the junction. In addition, this approach also
complicates modeling, since there are a large number of nodes and elements involved,
prompting high requirements for computer hardware with time-consuming computation.
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A large number of studies have been carried out by domestic and international scholars
to respond to this problem. In the literature [5], the deck of a steel truss bridge is discretized
into finite transverse stripped segmental elements using a trigonometric series as the out-
of-plane displacement. This method considered the effect of local buckling of the deck
plate, but failed to accurately present the stress distribution of the deck plate. A ribbed
plate element with every node having five degrees of freedom was proposed [26]. The
plate shared the same displacement field as stiffeners, whose displacements were expressed
by a shape function of the plate element. The formulation for the large deformation of
eccentric stiffeners and models for the plate girder element were also given. The von
Kármán deformation equation is introduced in the equation of motion for the girders and
plate element model considering the impact of transversal shear deformation. Although
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the element is very desirable for the analysis and computation of stiffeners with large
deformation, it is still a C1-type non-coordinating element, whose energy function contains
the second-order derivative of w.

Previously, three types of non-linear plate girder elements were proposed in the
literature to study the behavior of steel truss composite bridges and their deformation
characteristics under two scenarios with combinations of either longitudinal girders or
transverse girders with a concrete steel deck [27]: 1© plate girder elements that consider the
full composite action of the plates and girders (including double-girder and single-girder
plate girder elements); 2© plate girder elements with a single girder that only consider the
same vertical deflection of the plate and the girder; and 3© a transition zone for plate girder
elements (including double-girder and single-girder elements). The displacement pattern
of the girders is established according to the deformation coordination between the plates
and the girders. In other words, the displacement pattern of the plates and the girders
is established using the nodal displacements and rotation angles of the four nodes of the
rectangular plate as the independent degrees of freedom in the plate girder elements. The
displacement degrees of freedom are the same as those of the conventional four-noded
rectangular plate element. The stiffness matrix of the plate girder elements is constituted by
a conventional four-noded rectangular plate element and a conventional two-noded beam
element matrix. This type of displacement pattern demands tiresome corrections to be
made to ensure the deformation coordination between the plates and the girders without
considering the effects of shear deformation of the girder.

Most of this research focused on one type of concrete material for decks, and is
therefore not applicable for a combination of concrete and steel materials used in decks. In
this context, a layered plate girder element (hereafter referred to as an LPGE) combining
longitudinal and transverse girders, a concrete plate, and a steel plate in one element is
proposed considering different building materials used in decks by layering to study the
behavior of a steel truss composite bridge.

To achieve the composite action of the plates and the girders, the displacement pattern
of the girder is established following the deformation coordination between the plates
and girders, namely, the displacement of the four rectangular plate nodes is used as the
independent degrees of freedom of the LPGE to establish the displacement pattern for the
plates and the girders [28,29]. The stiffness matrix of the element is composed of the stiffness
matrices of the plates and girders. Unlike the conventional plate elements, the LPGE
adopts independent interpolation of displacements and rotation angles to displacement
patterns [30]. In this way, the deformation between the plates and between the plates
and girders in the elements and at the boundaries appears to be continuous, avoiding the
tedious job caused by corrections to the displacement pattern. The derived element stiffness
matrix is conveniently expressed and programming is easily compiled. The LPGE combines
the plate element and the girder element into one element to conveniently construct the
model with high computation efficiency. The LPGE is employed to compute the behavior of
steel truss composite bridges. The computation results are compared with those obtained
by ANSYS and test results to verify the correctness and effectiveness of the method.

2. Layered Plate Element with Independent Interpolation of Displacements and
Rotation Angles
2.1. Degree of Freedom and Displacement Pattern of Element

Besides vertical bending deformations, decks experience deformations along the
bridge direction and in the cross-bridge direction; thus, simulation is conducted using the
available plate elements. The local coordinate system xoy is positioned at the bottom plate
to facilitate the establishment of the deformation coordination conditions. Nodes 1, 2, 3,
and 4 are respectively located at the four corner points of the bottom plate, rather than at
the four corner points of the middle surface, as shown in Figure 2.
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Figure 2. Layered plate element.

In a local coordinate system, a layered plate with an independent interpolation of
displacements and rotation angles has five degrees of freedom, excluding θz (the rotation
angle around the z-axis), while the girder elements in the LPGE have six degrees of freedom,
including θz. When the stiffness matrix of each element in the local coordinate system is
converted to the global coordinate system, θz still needs to be involved so as to derive the
uniform stiffness matrix for the plates and girder elements. Each nodal displacement of
the layered plate element has six degrees of freedom, i.e., displacements u, v, and w and
rotation angles θx, θy, and θz, where θz is the virtual degree of freedom and physically
meaningless, i.e.,

δ =
[
δ1 δ2 δ3 δ4

]T (1)

in which, δi =
[
ui vi wi θxi θyi θzi

]T, i = 1–4.
Let ζ = x/a, η = y/b, meaning the in-plane coordinates for the underside of the layered

plate are described in terms of dimensionless form. As mentioned above, the plate adopts
a four-noded rectangular plate element with six degrees of freedom at each node, i.e., three
line displacements and three angular displacements. The line and angular displacements
are interpolated independently. Like the plain strain element, the interpolation functions
of the element adopt a Lagrange polynomial to calculate. Then, using a combination of
Mindlin plate element and plane stress element displacement patterns, the displacement at
the bottom surface can be expressed as:

f =



u(ζ, η)
v(ζ, η)
w(ζ, η)
θx(ζ, η)
θy(ζ, η)
θz(ζ, η)


=



4
∑

i=1
Niui

4
∑

i=1
Nivi

4
∑

i=1
Niwi

4
∑

i=1
Niθxi

4
∑

i=1
Niθyi

4
∑

i=1
Niθzi



(2)

in which Ni is the shape function. It is simplified as: Ni = (1 + ζiζ) (1 + ηiη)/4.
As the displacements and rotation angles are interpolated independently, the displace-

ments and rotation angles within this element are continuous, and so are the displacements
and rotation angles of the adjacent elements. Thus, the layered plate element is a C0-type
coordinating element.
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2.2. Stiffness Matrix for Layered Plate Element

The displacement at any point of the plate is controlled by the in-plane displacement,
out-of-plane displacement, and the angular displacement of the bottom surface of the plate,
expressed as:

u(ζ, η, z) = u0(ζ, η)− zθx(ζ, η)
v(ζ, η, z) = v0(ζ, η)− zθy(ζ, η)

w(ζ, η, z) = w0(ζ, η)
θx(ζ, η, z) = θx(ζ, η)
θy(ζ, η, z) = θy(ζ, η)

 (3)

Therefore, the strain field of any point on the plate is:

ε = ε0 + zκ (4)

in which ε0 and κ are the strain field on the bottom plate and field curvature for the plate,
respectively. They are given as:

ε0 =
[
εx0 εy0 γxy0

]T
=
[

∂u0
∂x

∂v0
∂y

∂u0
∂y + ∂v0

∂x

]T
(5)

When the displacement and rotation angle are interpolated independently, the field
curvature of the plate should be expressed as:

κ =
[
κx κy κxy

]T
=
[
− ∂θx

∂x − ∂θy
∂y − ∂θx

∂y −
∂θy
∂x

]T
(6)

Substituting Equation (3) into Equations (5) and (6) gives:

ε = Bδ (7)

where
B =

[
B1 B2 B3 B4

]
(8)

Bi =
[
Bi

(m) Bi
(b)
]

(9)

B(m)
i =

1
4ab

bζi(1 + ηiη) 0
0 aηi(1 + ζiζ)

aηi(1 + ζiζ) bζi(1 + ηiη)

 (10)

B(b)
i =

−z
4ab

0 bζi(1 + ηiη) 0 0
0 0 aηi(1 + ζiζ) 0
0 aηi(1 + ζiζ) bζi(1 + ηiη) 0

 (11)

in which B, Bi
(m), and Bi

(b) are the strain matrix, film strain matrix, and bending strain
matrix for the plate, respectively. Since the independent nodes are located at the bottom
surface instead of the middle surface of the steel plate, Bi

(m) and Bi
(b) are not strictly a film

strain matrix and bending strain matrix.
The bending shear strain is:

γ =

{
∂w
∂x − θx
∂w
∂y − θy

}
= Bsδ (12)

Bs = [Bs
1 Bs

2 Bs
3 Bs

4] (13)

where

Bs
i =

1
4ab

[
0 0 bζi(1 + ηiη) −ab(1 + ζiζ)(1 + ηiη) 0 0
0 0 aηi(1 + ζiζ) 0 −ab(1 + ζiζ)(1 + ηiη) 0

]
(14)
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in which Bs is the bending shear strain matrix for the plate.
When considering shear deformation energy, the total potential energy of the plate is

obtained as:

Π∗ = Π +
Gt
2k

x

Ω

(
∂w
∂x
− θx

)2
dxdy +

Gt
2k

x

Ω

(
∂w
∂y
− θy

)2
dxdy (15)

in which Π is the total potential energy of the plate based on the classical small deflection
theory, G is the shear modulus of the plate, t is the thickness of the plate, and k is an
introduced correction coefficient when the actual non-uniform distribution of shear stress
along the thickness direction is considered. According to the principle of shear strain
energy, k = 6/5 is taken.

The stiffness matrix of a layered plate element with displacements and angles of
rotation interpolating independently is obtained following the principle of minimum
potential energy as:

KP = Kc + Ks (16)

where

Kc =
∫ −ts

−(ts+tc)

∫ 1

−1

∫ 1

−1
abBTDcBdζdηdz +

Gctc

2k

x

Ω

ab(Bs)
T

Bsdζdη (17)

Ks =
∫ 0

−ts

∫ 1

−1

∫ 1

−1
abBTDsBdζdηdz +

Gsts

2k

x

Ω

ab(Bs)
T

Bsdζdη (18)

in which the subscript “c” and “s” represent the concrete plate and the steel plate, re-
spectively. B and Bs are shown in Equations (8) and (13), respectively. D is the elastic
constitutive matrix for the plate.

Similarly, the stiffness matrix of the beam element is obtained as follows:

KLx =
∫

ALx

∫ 1

−1
aBT

LxDLxBLxdζdALx +
GLx ALxa

2k1Lx

∫ 1

−1

(
Bs1

Lx

)T
Bs1

Lxdζ +
GLx ALxa

2k2Lx

∫ 1

−1

(
Bs2

Lx

)T
Bs2

Lxdζ (19)

KLy =
∫

ALy

∫ 1

−1
bBT

LyDLyBLydζdALy +
GLy ALyb

2k1Ly

∫ 1

−1

(
Bs1

Ly

)T
Bs1

Lydη +
GLy ALyb

2k2Ly

∫ 1

−1

(
Bs2

Ly

)T
Bs2

Lydη (20)

in which the subscript “Lx” represents the girder parallel to the x-axis, while the subscript
“Ly” represents the girder parallel to the y-axis.

KLx and KLy are the element stiffness matrix, which is expressed as the nodal displace-
ment at the centroid of the girder end. The combined effect of the girder and the plate is
not taken into account.

3. LPGE Composite Action

A concrete bridge ballast deck consists of a number of longitudinal and transverse
girders under a steel deck and a concrete ballast slab installed above the deck to develop
composite action via headed shear studs. An LPGE composed of longitudinal and trans-
verse girders, concrete plate, and steel plate is proposed to investigate the mechanical
behavior of a concrete composite bridge with ballast deck, as shown in Figure 3. The top
plate is a concrete plate and the bottom plate is a steel plate. Two steel girders are arranged
below the bottom plate. The local coordinate system xoy surface is set at the bottom surface
of the steel plate; the nodes 1, 2, 3, and 4 are located at the four corner points of the bottom
surface. “·”denotes the position of the nodes.
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Figure 3. LPGE chart.

The nodal degrees of freedom of the LPGE are the same as those of the layered plate
in Section 2.1 (i.e., three line displacements and three angular displacements). The plate
element used in the LPGE is constructed using the same displacement pattern as the layered
plate in Section 2.1, that is, using Lagrangian polynomials.

3.1. Girder Element Constraint Matrix

In the girder element parallel to the x-axis, every node has six degrees of freedom as:

δLxi = [uLxi vLxi wLxi θLxxi θLxyi θLxzi]
T (21)

in which the superscript “Lx” represents the girder parallel to the x-axis.
However, in the LPGE, the degree of freedom θzi related to the girder element θLxzi is

the virtual degree of freedom. To create the deformation coordination conditions between
the plate element and the girder element parallel to the x-axis, θLxzi can be obtained through
the rotation along the tangent of the boundary within the bottom surface of the plate, which
is given as:

θLxz = −
∂u
∂y

(22)

It is assumed that the displacements and deformations of the steel deck and girder at
the interface satisfy the following conditions:

(1) The normal line at the base on the steel plate crossing the junction point of the
girder and plate before deformation is in a straight line, and the straight line remains
unchanged after deformation;

(2) Before deformation, the deck including the cross-sectional area of the boundary and
the section of the girder element passing through the point (including this normal
line) is defined in a plane. It remains in the same plane after deformation.

It is noted that the displacements of the girder nodes and the steel plate nodes exhibit
the following relationship according to the deformation coordination conditions for steel
plates and girder elements above:

ut
Lx = ub|η=0 vt

Lx = vb|η=0 wt
Lx = wb|η=0

θLxx = θx|η=0 θLxy = θy|η=0 θLxz = θz|η=0 = − ∂u
∂y |η=0

(23)

in which the superscript “t” represents the top of the girder, while the superscript “b”
represents the bottom of the steel plate.
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Based on the above hypothesis, the displacements of the girder nodes can be expressed as:

δLx =

[
0 LLx1 LLx2 0

LLx1 0 0 LLx2

]
δ1
δ2
δ3
δ4

 = LLxδ (24)

in which

LLx1 =



1
2 0 0 − hLxc

2 0 0
0 1

2 0 0 − hLxc
2 0

0 0 1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

− 1
2b 0 0 0 0 0


(25)

LLx2 =



1
2 0 0 − hLxc

2 0 0
0 1

2 0 0 − hLxc
2 0

0 0 1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

1
2b 0 0 0 0 0


(26)

in which LLx denotes the constraint matrix for the girder parallel to the x-axis and the
layered plate, and hLxc denotes the distance from the girder centroid to the girder top.

Similarly, the constraint matrix for the girder parallel to the y-axis and the layered
plate is obtained as follows:

LLy =

[
0 0 LLy1 LLy2

LLy2 LLy1 0 0

]
(27)

in which the superscript “Ly” represents the girder parallel to the y-axis.
While considering the composite action of the girder and the plate, the girder element

stiffness matrix is converted as follows:

K∗Lx = LT
LxKLxLLx (28)

K∗Ly = LT
LyKLyLLy (29)

3.2. LPGE Stiffness Matrix

The stiffness matrix for the layered plate element and girder element are derived
respectively in the previous section. The stiffness matrix of the LPGE under the combined
action of the plate and girder is derived by using the above obtained matrices.

The element stiffness matrix of the LPGE in the local coordinate system can be obtained
by superimposing the stiffness of the layered plate and girder element considering the
combined action of the plate and girders:

KPL = KP + K∗Lx + K∗Ly (30)

It is necessary to employ different types of LPGE to simulate certain areas of the deck
system, such as the connection zone of the lower chord member of the side joist and the
transverse girder, the connection zone between the lower chord of the side truss and the
girder, and the position of the plate where there is only one girder, as shown in Figure 4.
When computing the stiffness matrix of those elements, some adjustments are required to
be made accordingly in the ζ or η integration interval in the girder element.
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Figure 4. Other types of LPGE.

4. Engineering Application

A model test is performed to study the behavior of the steel–concrete composite decks.
The correctness of the LPGE method is proven. An arch model for a three-truss bridge
with six panels is constructed according to the scale ratio 1:6 of the real bridge structure,
as shown in Figure 5. The length of the joint is 2 m, the height of the truss 2.77 m, and
the rise–span ratio 1/4.8. The deck adopts the concrete bridge ballast deck. The whole
steel deck adopts a multi-girder system with one main transverse girder and three small
transverse girders arranged in every panel along the bridge direction. The main transverse
girder is connected to the main truss at the main truss node, and the small transverse
girder is welded to the lower chord element of the main truss. In the cross direction of the
steel deck, two inverted T-shaped longitudinal girders are welded under every track. The
concrete ballast trough is arranged above the steel deck with a thickness of 100 mm. In the
test, the jack loading method is used.

In this method, the load is imposed on the deck and joints separately so as to accurately
simulate the stress state of the real bridge under the action of dead load and live load (see
Figure 5d).

The LPGE is introduced into the general software after improvements to analyze and
compute the test model. The computation results, the results obtained by ANSYS in the
plate beam model, and the measured result for the model test are compared as shown
in Figures 6–13. The deck is simulated by the ANSYS general plate element, while the
longitudinal and transverse girders and the stiffeners of the deck are simulated by the beam
element, and the main trusses are simulated by the beam element (hereinafter referred to
as the ANSYS plate beam model). The number of longitudinal and transverse girders is
shown in Figure 5c.

As seen from Figures 6–9, the difference in the stress between point 1 and point 2 on
the transverse girders is not significant. It indicates that the load caused by the bending
moment outside the transverse girder surface is less prominent. This is attributed to the fact
that the composite deck connects the upper flange of the longitudinal girders, transverse
girders, and lower chord members, reducing the transverse deformation of the transverse
girders and improving the stress of the transverse girders. Thus, the expansion of the
longitudinal girders that are arranged to reduce the lateral deformation of the transverse
girders is avoided, and the driving conditions on high-speed roads are greatly improved.
It is seen from Figures 10–13 that the difference in the stress of the longitudinal girders
between the panels is not prominent and the stress is distributed relatively uniformly.
The concrete ballast slab bears a greater tensile stress above the transverse girders, where
broken seams in the concrete ballast slab are arranged to improve the concrete stress.

For the ANSYS method, modeling for the plate element and the beam element needs
to be conducted separately. The coupling displacement between the plate elements and
the beam elements is used to simulate their combined action. The modeling process is
complex with low computation efficiency. Moreover, the deformation coordination between
the plate elements and the beam elements cannot be guaranteed since the displacement
patterns of the plate elements and the beam elements are different, and the accuracy
of the computation is low. From the above results, it is observed that the computation
results produced using the ANSYS method are larger than those obtained using the LPGE
method. This is attributed to the uncoordinated deformation between the plate elements
and beam elements in the ANSYS model. The LPGE method combines the plate element
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and the girder element into one element to conveniently construct the model with high
efficiency. The displacement pattern of the LPGE adopts the independent interpolation
of the displacement and rotation angle. It ensures the deformation coordination between
the plate and the girder on the interface. LPGE is a C0-type coordinating element. The
computation results produced are highly accurate. It is indicated that the computation
results produced using the LPGE method are in good agreement with the measured results.
LPGE is proven to be an effective method with the results obtained being more accurate.
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Figure 6. Normal stress of transverse girder 2 at point 1 along the cross-bridge direction.
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Figure 7. Normal stress of transverse girder 2 at point 2 along the cross-bridge direction.

Figure 8. Normal stress of transverse girder 4 at point 1 along the cross-bridge direction.

Figure 9. Normal stress of transverse girder 4 at point 2 along the cross-bridge direction.
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Figure 10. Normal stress of longitudinal girder 4 along the bridge direction.

Figure 11. Normal stress of longitudinal girder 8 along the bridge direction.

Figure 12. Normal stress of the top surface of the concrete slab above longitudinal girder 1 along the
bridge direction.
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Figure 13. Normal stress of the top surface of the center line of the side concrete slab along the
bridge direction.

5. Conclusions

In this paper, an LPGE is proposed in constructing a finite element model for a steel–
concrete composite deck. The plate girder constraint matrix and element stiffness matrix are
derived. The LPGE method is applied for the analysis and computation of the composite
deck. The results obtained by ANSYS are compared with test results to verify its correctness
and effectiveness. The conclusions of this study are as follows:

(1) The LPGE combines multi-layer plates made of different materials with longitudi-
nal and transverse girders in one element. In this way, the model is conveniently
constructed with fewer elements involved, and computation is very efficient. It is par-
ticularly desirable to apply the approach to a steel–concrete composite deck structure
made of one or more different building materials.

(2) Compared with the ANSYS plate beam model, LPGE, as a C0-type coordinating
element, ensures the deformation coordination between plates, and between plates
and girders at the interface while considering the shear deformation. It provides
highly accurate computation results.

(3) The computation results produced by the LPGE are in good agreement with those of
the ANSYS plate beam model and model test. The LPGE is proven to be an effective
method, with the results obtained being more accurate.
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