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Abstract: To enhance ship detection accuracy in the presence of complex scenes and significant
variations in object scales, this study introduces three enhancements to ReDet, resulting in a more
powerful ship detection model called rotation-equivariant bidirectional feature fusion detector (Re-
BiDet). Firstly, the feature pyramid network (FPN) structure in ReDet is substituted with a rotation-
equivariant bidirectional feature fusion feature pyramid network (ReBiFPN) to effectively capture and
enrich multiscale feature information. Secondly, K-means clustering is utilized to group the aspect
ratios of ground truth boxes in the dataset and adjust the anchor size settings accordingly. Lastly, the
difficult positive reinforcement learning (DPRL) sampler is employed instead of the random sampler
to address the scale imbalance issue between objects and backgrounds in the dataset, enabling the
model to prioritize challenging positive examples. Through numerous experiments conducted on the
HRSC2016 and DOTA remote sensing image datasets, the effectiveness of the proposed improvements
in handling complex environments and small object detection tasks is validated. The ReBiDet model
demonstrates state-of-the-art performance in remote sensing object detection tasks. Compared to the
ReDet model and other advanced models, our ReBiDet achieves mAP improvements of 3.20, 0.42,
and 1.16 on HRSC2016, DOTA-v1.0, and DOTA-v1.5, respectively, with only a slight increase of 0.82
million computational parameters.

Keywords: artificial intelligence; deep learning; remote sensing images; ship detection; bi-directional
feature fusion; feature pyramid network; anchor size; K-means; sampler

1. Introduction

With the advancement of space remote sensing technology, the observation capability
of optical remote sensing satellites has significantly improved, leading to an increase in
the spatial resolution of remote sensing images. Currently, the spatial resolution can reach
0.3 m per pixel [1], providing high-quality data for various scientific research applications.
Computer vision technology plays a crucial role in extracting information from these
images for tasks such as geological mapping, terrain measurement, and land cover change
detection [2]. Object detection and recognition in remote sensing images are particularly
important, especially in identifying ships, which hold strategic value in both economic and
military domains. The accurate detection and recognition of ships in port areas and key
waterways are vital for civilian and military purposes. However, the presence of complex
backgrounds and variations in object scales in remote sensing images [3] pose significant
challenges to achieving satisfactory ship detection accuracy.

1.1. Difficulties in Optical Remote Sensing Image Object Detection

Remote sensing images exhibit complexity, covering a wide range with large image
scales. While they provide valuable visual features for detection models, they also introduce
complex and irrelevant background information that hinders accurate detection. Firstly,
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background interference arises from similar objects in the scene, leading to potential
misjudgment. For example, small islands with similar colors and thin buildings on land
can be mistakenly identified as ships. Secondly, self-interference occurs due to the diverse
textures, similar colors, and wake features of ships, affecting the final recognition results.
Thirdly, the random orientation of ships in remote sensing images poses another difficulty.
Unlike natural scene images captured from a horizontal perspective, satellite images
are taken from a bird’s-eye view, resulting in ships appearing at any position with any
orientation, making detection challenging.

Furthermore, vehicles, boats, helicopters, airplanes, and large structures such as
stadiums appear much smaller in remote sensing images compared to natural scene images
captured from a horizontal viewpoint. Consequently, existing visual models often struggle
to achieve accurate detection for these objects. For instance, in the optical remote sensing
image dataset DOTA [4], small objects, such as cars, occupy approximately 30 × 50 pixels,
large trucks occupy around 35 × 90 pixels, and the smallest yacht of interest is merely
about 35 × 60 pixels in size.

1.2. The Significant Advantages of Deep Learning Techniques

Traditional ship detection methods [5–8] based on artificial feature modeling rely on
manually designed algorithms to extract shallow features. These algorithms often focus
on specific scenes and exhibit limited generalization abilities. They still face challenges
in terms of accuracy, computational efficiency, and robustness in complex environments,
making them less applicable [9–11].

In recent years, significant progress has been made in the field of object detection
in natural images, largely attributed to the rapid development of deep learning technol-
ogy [12]. The introduction of deep learning models has greatly improved the accuracy
of object localization and recognition in images. Convolutional neural networks (CNNs)
have emerged as powerful tools for feature extraction, enabling automatic learning and
extraction of features from images. The renowned Faster R-CNN model [13] has become a
representative model in natural image object detection, opening possibilities for applying
deep learning-based object detection models to remote sensing images.

1.3. Related Works

After years of research, several mature methods have been developed for ship detec-
tion. Early studies predominantly focused on ship detection methods based on artificial fea-
ture modeling. However, since 2012, deep learning-based detection methods have emerged
as a transformative force in the field of ship detection. Recent years have witnessed the
proposal of numerous methods for ship detection in remote sensing images. Leveraging the
powerful feature expression capabilities of convolutional neural networks (CNNs), these
deep learning-based object detection methods can extract higher-level semantic features of
ships, delivering significantly improved performance in complex remote sensing scenarios
compared to traditional approaches. Nevertheless, most of these methods originated from
object detection models designed for natural images captured from horizontal viewpoints
and are limited in their ability to detect objects with arbitrary orientations. Given that
ships possess relatively large aspect ratios and can exhibit random orientations in images,
employing horizontal detection boxes would result in significant background information
being included in the detection boxes. This issue becomes particularly pronounced when
detecting densely distributed ships in a harbor, where interference from neighboring objects
leads to poor detection performance.

To address these challenges, researchers have proposed models suitable for detecting
objects with arbitrary orientations. For instance, the rotational R-CNN (R2CNN) model [14],
initially developed for scene text detection, has shown excellent performance in detecting
slanted text and has been adapted for ship detection. Liu et al. [15] enhanced this approach
by introducing a rotation region of interest (RoI) pooling layer and a rotation bounding box
regression module based on R2CNN. This improvement enables accurate feature extraction
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and localization, resulting in highly efficient and accurate ship detection. The rotated
region proposal network (RRPN) [16] was designed as an enhancement of R2CNN to
improve the quality of candidate regions generated by the region proposal network (RPN).
RRPN generates 54 rotating anchor boxes with 3 scales, 3 aspect ratios, and 6 directions
at each point in the feature map. Yang et al. [17] incorporated the dense feature pyramid
network (FPN) based on RRPN to integrate low-level positional information and high-level
semantic information, effectively detecting densely distributed ships using prow direction
prediction. They also reduced redundant detection areas using rotational non-maximum
suppression (NMS) to obtain more accurate object positions. Liu et al. [16] proposed
the one-stage model CHPDet, which utilizes an orientation-invariant model to extract
features. It selects the peak value of the feature map as the center point and then regresses
the offset, size, and head point on the corresponding feature map of each center point,
achieving impressive results in terms of speed and accuracy. Ding et al. [18] introduced a
module called RoI Transformer based on the Faster R-CNN [13]. This module predicts a
rough rotating RoI in the first stage based on the horizontal RoI generated by RPN. In the
second stage, RoI Align [19] extracts the feature map of the RoI and refines the prediction
result of the first stage to obtain a more accurate rotating RoI. Compared to RRPN, RoI
Transformer significantly reduces the number of rotating anchors, leading to improvements
in computational efficiency and detection accuracy. Oriented R-CNN [20], building upon
the Faster R-CNN, introduced the midpoint offset representation and expanded the output
parameters of the RPN regression branch from four to six to achieve skewed candidate
boxes, resulting in substantial improvements in detection accuracy and computational
efficiency.

Most object detection models are based on traditional CNNs, which possess transla-
tional equivariance but lack rotational equivariance. To enhance the adaptability of CNNs
to rotational changes, numerous rotation-based object detection models have made signif-
icant efforts in data augmentation, rotation anchor boxes, or generating rotation RoIs to
enhance the feature extraction of rotational objects in remote sensing images. Although
these models have achieved some performance improvements, the issue of CNNs lacking
rotational equivariance remains unaddressed.

To tackle this problem, ReDet [21] introduces the concept of E(2)-Equivariant Steerable
CNNs [22] (E2-CNNs) into object detection by building upon the RoI Transformer [23].
ReDet adopts the e2cnn extension [22] for PyTorch [24] and employs it to reconfigure the
architecture of ResNet-50 [25], renaming it ReResNet50. Additionally, the RiRoI Align
module is redesigned to align channels and spatial dimensions, enabling the extraction of
rotation-invariant features and further enhancing detection accuracy.

1.4. Goal of the Research

Although the methods mentioned above demonstrated good performance in ship
detection, they still encounter several challenges. This study primarily focuses on two key
issues:

(1) High-resolution optical remote sensing images contain rich pixel information
of ships and other objects, but they also introduce a considerable amount of irrelevant,
redundant, and potentially interfering noise. In specific scenarios, such as variations in
lighting conditions and the limitations of satellite-borne sensors, the color contrast between
ships and the background in some images may be low, leading to visual similarity to the
human eye. Moreover, in harbor images, the shape of the dock can resemble that of large
ships moored nearby. These factors contribute to the potential confusion of ships with
complex backgrounds by detection models, resulting in missed detections and false alarms.

(2) Ships are typically sparsely and unevenly distributed in optical remote sensing
images. Inappropriate sampling strategies may lead to the insufficient learning of ship
features by the detection model. For example, the random sampling strategy commonly
employed by many models, including ReDet, may exclude certain potential high-quality
positive samples from the training process.
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The ReDet model fails to address the aforementioned challenges. The upsampling
operation in its FPN module may lead to the loss of crucial information, resulting in
incomplete feature fusion and ultimately affecting the accuracy of the detection results.
Additionally, the random sampler used in the RPN stage may lead to a small number
of certain classes or samples due to class imbalance or sample imbalance, impacting the
effectiveness of model training.

The objective of this study is to propose a solution based on ReDet to tackle the
aforementioned problems, specifically focusing on ship object detection in remote sensing
images. We introduce the ReBiDet model, which encompasses the following contributions:
Firstly, we design a feature pyramid module called ReBiFPN based on rotational equiv-
ariance theory. ReBiFPN ensures balanced output levels and replaces the FPN module in
the ReDet model. By integrating high-resolution features from higher layers with detailed
information from lower layers, it enhances the detection performance of ships at multiple
scales. Secondly, we propose the positive reinforcement learning sampler and an anchor
optimization module based on K-means clustering. These components are utilized to
balance the difficulty and proportion of positive samples during the training process, as
well as optimizing the sizes and aspect ratios of anchors, further enhancing the model’s
detection performance. Thirdly, we validate and compare the generalization performance
of ReBiDet by selecting images from different optical remote sensing datasets. Finally, fol-
lowing the practices of other researchers in the field of optical remote sensing image object
detection, we conduct experiments on the HRSC2016 and DOTA datasets to demonstrate
the effectiveness of the proposed modules and the performance advantages of ReBiDet.

2. The Proposed Method

This section presents the architecture of ReBiDet. Figure 1 illustrates the five modules
of ReBiDet: the feature extraction module ReResNet [21], the feature pyramid construction
module ReBiFPN, the bounding box generation module RPN, the RoIAlign module for
extracting feature maps of horizontal bounding boxes and performing preliminary classifi-
cation and rotation bounding box generation, and the RiRoIAlign [21] module for extracting
feature maps of rotation bounding boxes and performing classification refinement and
rotation bounding box parameter refinement.
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Figure 1. Architecture of rotation-equivariant bidirectional feature fusion detector (ReBiDet).
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ReBiDet is an improved version of ReDet that specifically addresses the characteristics
of optical remote sensing images. The objective is to tackle the challenge of detecting ships
in complex scenes with scale differences and enhance the detection accuracy of ships in
remote sensing images using specialized modules. Three changes were made to the original
ReDet architecture. Firstly, we introduced ReBiFPN, constructed based on e2cnn [22], to
enable the network to capture multi-scale feature information from both bottom–up and
top–down paths, facilitating more comprehensive fusion of low-level positional information
and high-level semantic information. Secondly, we utilized the K-means [26] algorithm
to cluster the aspect ratios of ground truth boxes in the dataset and adjusted the size of
the anchor boxes generated by the anchor generator accordingly. Finally, in the RoIAlign
stage, we employed the difficult positive reinforcement learning (DPRL) sampler to address
class imbalance in the dataset and make the model more sensitive to challenging positive
samples. Experimental results demonstrate the effectiveness of these improvements in
enhancing the detection performance of small objects in optical remote sensing images.

2.1. Rotation-Equivariant Networks

Convolutional neural networks (CNNs) typically employ fixed-size, two-dimensional
convolution kernels to extract features from images. During convolution, these kernels
apply the same weights to every position in the image, thereby allowing the detection
of the same feature, even if the image is horizontally or vertically shifted. This property
is known as translation invariance. However, when an image undergoes a rotation, the
pixel arrangement of all objects in the image changes, causing the features that can be
extracted by the CNN to also change and potentially become distorted. This lack of rotation
equivariance in CNNs poses challenges in accurately recognizing rotated objects.

The absence of rotation equivariance implies that as an object in the input image
changes its orientation, the features extracted by the CNN also change, adversely affecting
the accuracy of the rotated object detection. This effect is particularly pronounced for
elongated objects, such as buses and ships.

Traditional CNNs are designed based on the assumption of translation invariance in in-
put data. However, for objects with rotational symmetry, the extracted features may change,
resulting in the loss of important information and poor training outcomes. E2-CNNs
provide a solution to this problem. Their core is rooted in group theory and convolution
operations, enabling them to extract features from an image in multiple directions simulta-
neously, thereby ensuring rotation equivariance throughout the convolution process. This
property ensures that objects yield the same feature output regardless of their orientation
or angle. Since rotation involves a continuous operation that entails substantial floating-
point computation and information storage, it is impractical and inefficient to include the
entire 2D rotation group in the computation. Thus, optimization becomes necessary in this
context.

The backbone network employed in our model, ReResNet [21], is constructed based
on E2-CNNs. Specifically, the 2D rotation group is discretized initially, establishing a
discretized 2D rotation group with eight discrete parameters, representing eight rotation
angles. This discretization significantly reduces computational complexity and memory
resource consumption. Subsequently, each convolutional kernel extracts features based on
this discretized 2D rotation group, resulting in feature maps (K, N, H, W) as depicted in
Figure 2, where K denotes the number of convolutional kernels, N represents the number
of directions (eight), and H and W denote the height and width of the feature maps,
respectively.

2.2. Rotation-Equivariant Bidirectional FPN

In the feature extraction network, lower-level features contain more detailed and
positional information but have lower resolution. On the other hand, higher-level features
have higher resolution and more semantic information but lack detail. In ReDet’s ReFPN
module, inspired by the traditional FPN [27], a top–down feature fusion approach is
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adopted as shown in Figure 3. However, the traditional FPN has a relatively simple feature
fusion method, performing simple feature upsampling from high to low levels. To provide
a more intuitive understanding, we simplify the convolution layer and upsampling layer,
representing them with Equation (1):

Pi =
lmax

∑
n=i

Cn(i = 2, 3, 4, 5), (1)

here, Cn denotes the feature map extracted by the backbone network, Pi represents the
feature map output by the FPN module, and imax is the total number of layers inputted into
FPN from the backbone network. The output Pi fuses only the feature maps from layer i
to imax, ignoring the importance of feature maps below layer i and not fully utilizing the
feature information from different levels, which may lead to information loss. Typically,
top-level feature maps with large strides are used to detect large objects, while bottom-level
feature maps with small strides are used to detect small objects [28]. However, in the case of
P3, if only the features of C5, C4, and C3 from top to bottom are fused, the importance of C2,
dedicated to detecting small objects, is ignored. Additionally, both P5 and P6 are extracted
from the C5 layer inputted into the backbone network, but P6 only uses 1× 1 convolution
downsampling with stride 2, which may result in the loss of significant feature information.
In summary, the FPN design in the ReDet model suffers from unbalanced feature fusion,
which may affect the detection performance of small objects in the overall model.

K

H
W

N

(a)

K

H
W

(b)

Figure 2. Difference between the feature maps extracted by ReResNet and ResNet networks. (a) Fea-
ture maps extracted by the ReResNet network, denoted as (K, N, H, W), where N is an additional
dimension compared to traditional ResNet feature maps shown in (b). Here, N = 8 indicates that
discrete rotation group convolution can extract feature maps at 8 different rotation angles.

To address these issues, we introduce the rotation-equivariant bidirectional feature
fusion feature pyramid network module, named ReBiFPN, based on the idea of PaNet [29].
Figure 4 illustrates the ReBiFPN module. ReBiFPN balances the output levels by integrating
the feature maps of each resolution. It combines the high-resolution of the high-level
features with the high-detail information of the low-level features, enhancing the network’s
ability to extract and integrate multi-scale features through bidirectional path feature fusion.
This approach captures richer multi-scale features and improves the detection performance
of small objects. For simplicity, we represent the core idea of ReBiFPN with Equation (2):

Pi =
lmax

∑
n=lmin

Cn(i = 2, 3, 4, 5), (2)

where Cn represents the nth feature map extracted by ReResNet, Pi denotes the feature map
output by the ReBiFPN module, lmax is the total number of layers inputted into ReBiFPN
from ReResNet, and lmin is the number of the lowest layer inputted into ReBiFPN from
ReResNet. Each level of the output Pi balances the features fused from {C2, C3, C4, C5}.
The P6 layer is excluded from the feature fusion because experimental results indicate that
downsampling directly from the C5 layer to obtain P6 improves the detection accuracy
slightly compared to downsampling from the P5 layer. This improvement may be due to
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the weakening of object features after multiple convolution operations. A 3× 3 convolution
is added before all the final output feature maps {P2, P3, P4, P5} to reduce the aliasing effect
of upsampling.
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Figure 3. Traditional feature pyramid network (FPN) structure schematic.
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Figure 4. Structure diagram of rotation-equivariant bidirectional feature fusion feature pyramid
network (ReBiFPN), where all convolution and interpolation operations are based on E(2)-equivariant
steerable CNNs [22] (E2-CNNs).

Our proposed ReBiFPN achieves the following objectives:
(1) Multi-scale information fusion: By leveraging the structure of the feature pyramid,

we extract features at different scales. The fusion of features from various scales enhances
the network’s receptive field, enabling it to detect ships of different scales. This capability
allows the network to better adapt to variations in ship size and shape, thereby improving
the robustness of ship detection.

(2) Bi-directional feature propagation: The use of a bi-directional feature propagation
mechanism facilitates the exchange and interaction of information between different levels
of the feature pyramid. This bidirectional propagation enables high-level semantic infor-
mation to propagate to lower levels, enriching the semantic representation of lower-level
features and enhancing their expressive capacity. Simultaneously, lower-level features can
also propagate to higher levels, providing more accurate positional information, which
aids in precise target localization.

(3) Multi-level feature fusion: We adopt a multi-level feature fusion strategy that pro-
gressively merges features from different layers. This approach allows the network to fuse
semantic and positional information at different levels, resulting in more comprehensive
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and accurate feature representations. Through multi-level feature fusion, the finer details
and contextual information of ships can be better captured, thereby improving the accuracy
of ship detection.

From a theoretical standpoint, our proposed ReBiFPN demonstrates superior adapt-
ability to scale variations compared to FPN. It effectively extracts richer semantic informa-
tion and accurately localizes targets, ultimately leading to improved precision in object
detection. Subsequent experiments provide further validation of these findings.

2.3. Anchor Improvement

ReBiDet is a two-stage object detection model that follows an anchor-based approach,
where anchors are predefined boxes placed at various positions in an image [13]. The
selection of anchor sizes and aspect ratios should be based on the distribution of object
annotation boxes in the dataset, which can be considered as prior knowledge [30]. Improper
anchor settings can hinder the network from effectively learning features of certain objects
or result in the misidentification of adjacent objects. Therefore, it is crucial to carefully con-
sider the size and shape distribution of objects in the training dataset and experiment with
different numbers and ratios of anchors to find the most suitable settings for improving the
network’s detection performance. To accomplish this, we employ the K-means algorithm
to group the aspect ratios of ship bounding boxes in the HRSC2016 dataset into multiple
clusters and determine anchor sizes based on the average aspect ratio of each cluster.

The K-means algorithm, presented in Algorithm 1, is an unsupervised learning tech-
nique. It starts by taking a set of aspect ratio data from the HRSC2016 dataset, randomly
selecting K (set to 5 in our case) initial cluster centers. Each data point is then assigned to
the nearest cluster center, and the cluster centers are iteratively recalculated and adjusted
until they converge or reach a preset number of iterations. The objective is to maximize
similarity within each cluster while minimizing similarity between clusters.

Algorithm 1 K-means used to cluster the aspect ratios of ground truth boxes.

Input: Set of bounding box aspect ratios R = r1, r2, . . . , rn, number of clusters K
Output: Set of K cluster centers m1, m2, . . . , mK and cluster labels for each bounding box

aspect
1: Randomly initialize K centroids m1, m2, . . . , mK from R
2: repeat
3: for i = 1 to n do
4: Assign ri to the nearest centroid mj, j in [1, K]

5: for j = 1 to K do
6: Recompute mj as the mean of all ri assigned to centroid mj

7: until convergence or maximum number of iterations is reached
8: return Set of K cluster centers m1, m2, . . . , mK and cluster labels for each bounding box

aspect

Figure 5 illustrates the aspect ratio data of bounding boxes in the HRSC2016 dataset,
grouped into five categories. The deep blue dots represent the cluster centroids of each
aspect ratio group, which are {3.9, 5.8, 6.2, 6.3, 7.3}. Although these centroids span from
3.9 to 7.3, they are concentrated around 6. This suggests that the aspect ratios of objects
in the HRSC2016 dataset tend to cluster around the value of 6. After conducting multiple
experiments, aspect ratios of 7.3 and above did not yield satisfactory results in practical
detection. Analysis indicates that such aspect ratios are too large. Although they appear in
the clustering results, many ground truth boxes in the dataset are not strictly horizontal
or vertical, but rather arbitrary. Large aspect ratios result in low intersection over union
(IoU) values between anchor boxes and ground truth boxes, thus failing to enhance the
model’s performance and introducing numerous negative samples that adversely impact
performance. Consequently, we set the ratios of the RPN anchor generator as {1/6, 1/4,
1/2, 1, 2, 4, 6}.
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(a) (b)

Figure 5. Aspect ratio distribution and K-means clustering results of labeled boxes in the HRSC2016
dataset. (a) Scatter plot of the distribution of the length and width values of all labeled boxes.
(b) Histogram of the aspect ratio distribution of all labeled boxes.

2.4. Difficult Positive Reinforcement Learning Sampler

The RPN module generates anchor boxes of varying sizes and aspect ratios on the
feature map. It assigns positive and negative samples to these anchors based on the IoU
threshold with the ground truth boxes. Specifically, an anchor box with an IoU greater
than 0.7 is labeled as a positive sample, while an IoU less than 0.3 results in a negative
sample. Any anchors falling between these thresholds are ignored. However, training
the model with all candidate boxes becomes impractical due to their large number. To
expedite the training process, ReDet adopts a random sampler that randomly selects a
small subset of candidate boxes for training [21]. Nevertheless, the random sampler has
notable drawbacks. The ratio of positive to negative samples is often imbalanced, and the
random sampling strategy may excessively emphasize easy samples, impeding the model’s
ability to learn from challenging samples such as small objects and overlapping objects.
This not only affects the learning efficiency but also hampers the final detection accuracy.

Inspired by the concept of online hard example mining (OHEM) sampler [31], we
propose selecting the candidate boxes with the highest loss for positive and negative
samples during training to address the aforementioned issues with the random sampler.
However, in practice, the distribution of negative samples is exceptionally complex, as
depicted in Figure 6. During the sample selection stage in remote sensing ship detection,
some anchor boxes may contain ship features but fall below the preset IoU threshold,
while others may contain ships that were not annotated by the dataset’s original author.
Despite these cases being classified as negative samples with high classification loss, they
actually contain object features and belong to the category of hard samples. Prioritizing
such negative samples with high classification loss during training could significantly affect
the detection accuracy as confirmed by our experiments. As it is not possible to entirely
avoid incorrect answers, we focus on learning the correct answers presents a more viable
solution. Furthermore, since the number of negative samples typically exceeds the number
of positive samples, randomly sampling negative samples may have a higher likelihood of
selecting samples that only contain background and lack ship instances. Based on these
observations, we propose the difficult positive reinforcement learning (DPRL) sampler to
address this problem. The DPRL sampler concentrates on learning challenging positive
samples to enhance the model’s performance, while continuing to employ the traditional
random sampling approach for negative samples.
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Figure 6. Illustration of the intersection over union (IoU) between anchor boxes and ground truth
boxes. The green box represents the ground truth box, while the yellow box represents the anchor
box generated by the model with a 1:6 ratio.

Algorithm 2 outlines the calculation process of the DPRL sampler, which can be sum-
marized as follows. For each batch of training samples Dbatchsize, the forward propagation
is initially performed to generate a set of candidate boxes using RPN, followed by loss
calculation. The DPRL sampler maintains positive and negative samples in Lpos and Lneg,
respectively. The samples in Lpos are then sorted in descending order based on the loss
value, and the top posexpected samples are selected. Simultaneously, negexpected negative
samples are randomly chosen from Lneg. These selected samples are combined with Lpos to
form a new sample set L, which is used for backward propagation and updating the neural
network parameters. This method intelligently selects the most challenging positive sam-
ples for training, thereby mitigating the issue of neglecting difficult samples and effectively
enhancing the training efficiency of the neural network.

Algorithm 2 Difficult positive reinforcement learning (DPRL) sampler.

Input: image set Dbatchsize, samples expected numexpected, positive sample ratio posratio
Output: The collection of selected samples L

1: posexpected = numexpected × posratio
2: negexpected = numexpected × (1− posratio)
3: Clear dpos and dneg
4: for j in range[len(Dminibatch)] do
5: RPN generate a set of positive samples minipos
6: RPN generate a set of negative samples minineg
7: dpos = dpos + minipos
8: dneg = dneg + minineg

9: if dpos 6 posexpected then
10: Lpos = dpos
11: else
12: calculate the loss value for each sample in dpos
13: sort all elements in dpos in descending order of their classification loss value
14: extract the top posexpected samples, and form a new positive sample set Lpos

15: if dpos 6 negexpected then
16: Lneg = dneg
17: else
18: randomly shuffle the order of each sample in dneg
19: extract negexpected samples, and form a new negative sample set Lneg

20: merge Lpos and Lneg into L
21: return L
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3. Experimental Results
3.1. Datasets

HRSC2016 [32] was released by Northwestern Polytechnic University in 2016 and is a
unique dataset focusing on ship detection in remote sensing images. It consists of a total
of 1680 images captured from 6 renowned ports available on Google Earth. Among these
images, 619 do not contain any ships and serve as background images. The image sizes
range from 300× 300 to 1500× 900. The dataset is divided into training, validation, and test
sets, with 436, 181, and 444 images, respectively. The annotation format for ship bounding
boxes is oriented bounding boxes (OBB) rather than horizontal bounding boxes (HBB), and
a total of 2976 ships are annotated. HRSC2016 has become one of the most widely used
benchmark datasets in remote sensing detection. The dataset presents several challenges
for ship detection: (1) The majority of ships are docked closely together, exhibiting a dense
arrangement of ships side by side. (2) Some ships are integrated with long piers or located
in shipyards or ship repair yards, where the similarity between the ships and the nearby
textures is high, making their features less distinguishable. (3) Certain land buildings bear
resemblance to luxury yachts, leading to potential misclassification. (4) The scale of ships
varies greatly, and an image may contain an aircraft carrier as well as a very small civilian
ship simultaneously. The dataset provides annotations for ship classification at three
levels; however, due to their low frequency, detecting and classifying ship subcategories
is challenging. Therefore, our RePaDet model focuses only on training and inferring the
first-level ship category, following the approach of most researchers.

DOTA [4,33], publicly released by Wuhan University in November 2017, has be-
come the most commonly used public dataset for object detection in remote sensing.
DOTA-v1.0 [4] consists of 2806 images obtained from various platforms, including Google
Earth, JL-1, and GF-2 satellites. The dataset contains a total of 188,282 annotated objects
belonging to 15 different categories, as represented by the abbreviations in the tables pre-
sented later: airplane (PL), baseball diamond (BD), bridge (BR), ground track field (GTF),
small vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC),
storage tank (ST), soccer-ball field (SBF), roundabout (RA), harbor (HA), swimming pool
(SP), and helicopter (HC). Unlike HRSC2016, the annotation boxes in DOTA-v1.0 are quadri-
laterals defined by four points {x1, y1; x2, y2; x3, y3; x4, y4}. DOTA-v1.5 [33], an extension
of DOTA-v1.0, increases the number of bounding boxes to 402,089. It includes additional
annotations for small objects (around 10 pixels or less) that were missed in DOTA-v1.0
and introduces a new category, container crane (CC), making it a more challenging dataset.
In addition to the challenges faced by the HRSC2016 dataset, DOTA presents additional
difficulties, including (1) a wide range of image pixel sizes, from 800× 800 to 4000× 4000,
making it challenging to train on GPUs such as GTX 3090ti, and (2) small object sizes,
with 98% of the objects in the dataset being smaller than 300 pixels, and 57% smaller
than 50 pixels [4], resulting in significant scale differences between tiny and large objects,
thereby complicating detection. It is worth noting that the DOTA dataset does not release
annotations for the test set; instead, researchers are required to upload their detection
results for evaluation, which limits comprehensive analysis of experimental results.

3.2. Setup

The experimental setup employed a workstation equipped with an AMD Threadripper
PRO 5995WX processor, 2 NVIDIA GTX3090Ti graphics cards, and 128 GB of memory.
The workstation ran on the Ubuntu20.04 operating system and was installed with various
software, including CUDA 11.8, Python 3.8, PyTorch 1.11.0 [24], and torchvision 0.12.0. The
MMRotate 0.3.2 [34] framework was used for the entire experimental process and result
generation. Both the hardware and software versions were relatively new and exhibited
strong compatibility, allowing for easy replication in various environments.

During training, data augmentation techniques, such as horizontal and vertical flips,
were applied, with a batch size of 2. The entire network was optimized using the stochastic
gradient descent algorithm, with a momentum of 0.9 and a weight decay of 0.0001. The IoU
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threshold for positive samples in the RPN was set to 0.7. The horizontal NMS threshold
was set to 0.7, and the oriented NMS threshold was set to 0.1.

For the HRSC2016 dataset, the longer side of the images was adjusted to 1280 pixels,
while maintaining the aspect ratio. If the shorter side was larger than 1280 pixels, it was
reduced to 1280 pixels as well. During training, the blank regions were filled with black,
and the model was trained for 12 epochs. The initial learning rate was set to 0.01, which
was divided by 10 at epoch 9 and epoch 11.

For the DOTA dataset, the original images were cropped to a size of 1024× 1024, with
a stride of 824 pixels, resulting in overlapping patches by 200 pixels. RePaDet was trained
for 12 epochs with an initial learning rate of 0.01, which was also divided by 10 at epoch
9 and 11. Figure 7 illustrates the loss curve of our model during training on the DOTA
dataset, with 3200 iterations per epoch. A significant decrease in loss was observed at the
8th epoch (25,600 iterations). To ensure a fair comparison with other models, multi-scale
training was conducted by randomly cropping and rotating the dataset at three scales {0.5,
1.0, 1.5} for both training and testing.

0 5000 10,000 15,000 20,000 25,000 30,000 35,000
iter

0.6

0.8

1.0

1.2

1.4

1.6
loss

Figure 7. Train loss curve of ReBiDet on DOTA.

3.3. Results and Analysis
3.3.1. Analysis Based on HRSC2016 Dataset

Firstly, we conducted ablation experiments on the HRSC2016 dataset to evaluate the
aforementioned modules. The average precision (AP) was used as the main evaluation
metric, calculated using the 11-interpolated precision method proposed in VOC2007 [35].
AP50 represents the AP value at an IoU threshold of 0.5. As shown in Equation (3),

AP50 =
1

11 ∑
r∈{0,0.1,...,1}

max
r̃:r̃>r

p(r̃), (3)

where r is the recall rate and p(r̃) is the precision at recall rate r̃. AP75 represents the AP
value at an IoU threshold of 0.75. Its calculation formula is the same as that of AP50, except
that the IoU threshold is changed to 0.75. AP50 and AP75 are commonly used to evaluate
model performance [36]. The mean average precision (mAP) is the average AP calculated
at different IoU thresholds ranging from 50% to 95% with a step size of 5%. Its calculation
formula is given in Equation (4):

mAP =
1
| T | ∑

t∈T
APt (4)
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here, T represents the set of IoU thresholds, and APt is the average precision at IoU
threshold t. This calculation method was initially used in the COCO detection challenge
(bounding box) and is now commonly used in object detection evaluation [36].

Table 1 presents the performance of each module in ReDet. ReDet represents the
experimental results reported by the authors, while ReDet* represents our best performance
achieved in the MMRotate framework [34] for comparison. The three added modules
showed varying degrees of improvement compared to the baseline. Although AP50
showed a small improvement and even a 0.1% drop after the DPRL module was added,
mAP significantly improved. This suggests that the accuracy of the detection results
under high IoU thresholds is greatly improved. Our ReBiDet model achieved a 1.27%
improvement in mAP compared to the baseline, demonstrating the effectiveness of our
proposed method.

Table 1. The ablation study results on the HRSC2016 dataset. Noted that mean average precision
(mAP) refers to the average precision over all possible IoU thresholds. AP50 refers to the average
precision at an IoU threshold of 0.5, and AP75 refers to the average precision at an IoU threshold
of 0.75.

Method ReBiFPN DPRL
Sampler

Anchor Im-
provement mAP AP50 AP75

ReDet - - - 70.41 1 90.46 1 89.46 1

ReDet *

- - - 72.34 2 90.30 2 88.50 2

X - - 72.80 90.40 89.20
- X - 72.86 90.20 89.10
- - X 72.41 90.40 89.10

ReBiDet (ours) X X X 73.61 90.50 89.80
* Represents the detection results achieved by reproducing this model on the experimental platform we built.
1 The detection results published by the original paper authors. 2 The best result we obtained by reproducing
ReDet. However, there are some differences from the results of the original authors, which cannot be ignored.

We further analyzed the detection results of the ReBiDet model on the HRSC2016
dataset and generated a confusion matrix as shown in Figure 8. The test set contained
1228 annotated ground truth boxes. Our model correctly detected 1178 ships, missed
50 ships, and misclassified 106 background images as ships. We were surprised by the
misclassification of the background images, but upon visualizing the results, we discovered
that incomplete annotations in the HRSC2016 dataset might be the main reason for this.
The original author did not fully annotate all objects that should have been labeled as ships
in this dataset. Incomplete annotations in the test set can negatively impact model perfor-
mance during testing. Figure 9 illustrates that the model detected some ships that were not
fully labeled during testing. However, due to the incomplete annotation information, the
validation program could not accurately determine if these ships were correctly detected,
leading to their misclassification as false positives and a decrease in the model’s mAP.

Considering these findings, we thoroughly examined the HRSC2016 test set and
manually re-annotated a portion of the missing targets, adding 80 new target annotations to
the existing 1228 annotations. We then re-evaluated the detection performance of ReBiDet
on the newly annotated test set. To ensure fairness, all compared models were baseline
models from the MMRotate framework, replicated by the authors based on the original
papers and the HRSC2016 dataset. Among them, S2A-Net-TO [18] was the best model
obtained after adjusting the hyperparameters by us. The final experimental results are
presented in Table 2. On the new test set, ReBiDet showed slight improvements in mAP,
AP50, and AP75. In terms of target detection statistics, at an IoU threshold of 0.5, ReBiDet
correctly detected 1256 targets, missed 52 targets, and misdetected 29 targets. Its precision,
recall, and accuracy were significantly better than those of ReDet and other detection
models.
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Figure 8. Confusion matrix of the detection results of the ReBiDet model on the HRSC2016 dataset.
The numbers in the figure refer to the number of targets.

(a) (b)

Figure 9. Comparison between the ground truth label and detection result of an image in the test
set of HRSC2016. (a) Image annotated with the ground truth label. (b) Our detection result on the
same image.

Table 2. Comparison of detection results on the re-annotated HRSC2016 test set. All models compared
are baseline models from the MMRotate framework.

Method mAP AP50 AP75 TP FN FP TN Precision Recall Accuracy

RetinaNet-O [37] 52.51 86.80 59.20 997 311 67 0 93.70 76.22 72.51
RetinaNet-O [37] + KLD [38] 55.43 88.70 62.00 1054 254 36 0 96.70 80.58 78.42
S2A-Net [18] 55.31 89.80 58.90 1185 123 118 0 90.94 90.60 83.10
S2A-Net-TO [18] 61.00 90.20 71.10 1185 123 63 0 94.95 90.60 86.43
ReDet [21] 72.46 90.70 89.70 1243 65 44 0 96.58 95.03 91.94
ReBiDet (ours) 73.66 90.80 90.00 1256 52 29 0 97.74 96.02 93.94

Note. The model configurations and parameters of RetinaNet OBB (RetinaNet-O) [37], RetinaNet-O [37]+
KLD [38], S2A-Net [18], and ReDet [21] were all trained by the MMRotate team based on HRSC2016. We did not
make any modifications to them. S2A-Net-TO is a model that we optimized based on the MMRotate framework.

In terms of Precision, ReBiDet outperformed S2A-Net by 6.8% at an IoU threshold of
0.5, but the difference in AP50 was only 1%. This can be attributed to the lower precision of
ReBiDet at certain recall rates, affecting its overall AP50. Compared to RetinaNet + KLD,
ReBiDet had only a 1.04% higher precision, but its precision at certain recall rates was much
higher, resulting in a 2.1% higher AP50 than RetinaNet+KLD. This demonstrates that AP
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and precision are not directly related [36]. AP is a more comprehensive indicator, as it
considers multiple factors and evaluates the model’s performance under different condi-
tions [36]. Compared to the baseline model ReDet, ReBiDet consistently outperformed in
AP50, AP75, and mAP, indicating its superior detection accuracy under high IoU threshold
conditions. This further validates the superiority of our proposed ReBiDet model.

3.3.2. Analysis Based on DOTA-v1.0

Earlier, we noted that the authors of DOTA-v1.0 did not provide ground truth annota-
tion files for the test set. Instead, participants were required to submit their test results to a
designated server, receiving mAP and AP values for each class as feedback. However, these
metrics were insufficient for a comprehensive performance analysis. In our experiments,
we trained ReBiDet and ReDet models on the training set and evaluated them on the
validation set, which was not used for training. The MMRotate framework was employed
for training and evaluation. The ReDet model’s learning rate was set to 0.01, consistent
with ReBiDet. Other settings for ReDet remained at their default values. To facilitate a
more intuitive comparison of detection performance, we generated confusion matrices for
both models. Due to the large number of objects per class in the test set, we normalized the
confusion matrix rows to present the correct and false recognition rates as percentages. The
diagonal line in the matrix represents the proportion of true positive (TP) detections, while
the rightmost column represents the number of false negative (FN) detections. Other areas
denote false positive (FP) detections. Figure 10 illustrates that ReBiDet achieved a 92% TP
rate for the ship class, surpassing ReDet by 1%, while also exhibiting a 7% FN rate, 1%
lower than ReDet. For other classes, ReBiDet demonstrated either higher or equivalent TP
numbers compared to ReDet, along with generally significantly lower FN numbers. This
further confirms the effectiveness of our proposed modules.

(a) (b)

Figure 10. Normalized confusion matrix on the DOTA dataset. (a) The detection results of ReDet
reproduced by us. (b) The detection results of ReBiDet. The unit of the numbers in the figure is
percentage (%), representing the percentage of ground truth label targets.

Figure 11 compares the ground truth labels of some validation set images with the
detection results of the ReBiDet model trained solely on the training set. The images
demonstrate the superior ability of ReBiDet to detect objects not annotated in the original
dataset. Figure 11a,b showcase the strong performance of ReBiDet in detecting densely
packed vessels, while Figure 11c,d exemplify its recognition capability for vessels in motion.
Figure 11e,f,k,l demonstrate the effectiveness of ReBiDet in detecting small objects with in-
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distinct features. Furthermore, Figure 11g–j demonstrate the robust detection performance
of ReBiDet, even in complex scenes with cloud and mist interference.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11. Comparison between the ground truth label and detection result of images in the validation
set of DOTA-v1.0. (a,c,e,g,i,k) are image annotated with the ground truth label. (b,d,f,h,j,l) are our
detection result on the same image.

Additionally, when comparing ReBiDet with other models on a single RTX4090 com-
puting platform, ReBiDet exhibited a slightly higher computational parameter count while
achieving superior performance. Table 3 presents the comparison of ReBiDet with other
models in terms of computational parameters, inference speed, and other dimensions.
Within the MMRotate framework, ReBiDet had 32.56 million computational parameters,
merely 0.92 M more than the 31.64 M of ReDet. This less than 1 M increase resulted in
an additional 2.5 ms per image during model inference, corresponding to a decrease of
1.4 img/s in FPS. Thus, ReBiDet incurred a small computational cost, while significantly
improving detection accuracy. The table reveals that computational parameters and in-
ference speed are not completely correlated, with models having similar parameters but
different inference speeds, and vice versa. Specifically, although ReBiDet had a relatively
small parameter count, its inference speed was not fast enough. This may be attributed to
the backbone network ReResNet50 and ReBiFPN, which are constructed based on E2CNN.
These networks utilize rotation-equivariant convolutional layers, involving additional
operations, such as rotation, interpolation, and grouping, which can reduce the calculation
speed. Additionally, unlike traditional ResNet employing PyTorch’s built-in convolutional
layers, ReResNet50 and ReBiFPN require calling the e2cnn library for rotation-equivariant
network calculations, potentially affecting the computational efficiency.

Table 3. Comparison of ReBiDet with other models on computational parameters and inference speed.

Method Backbone SH mAP Params FPS TPI (ms)

RoI Transformer * [23] ResNet-101 83.59 1 69.56 1 74.12 30.00 33.30
R3Det [39] ResNet-152 78.21 1 73.74 1 76.54 20.40 49.10
S2 A-Net [18] ResNet-50 87.25 1 74.12 1 87.25 32.10 31.20
Oriented R-CNN [20] ResNet-50 88.20 1 75.87 1 41.14 39.30 25.40
Oriented R-CNN [20] ResNet-101 87.52 1 76.28 1 60.13 32.00 31.30
ReDet [21] ReResNet-50 88.04 1 76.25 1 31.64 24.70 40.50
ReBiDet ReResNet-50 88.41 76.50 32.56 23.30 43.00

* indicates multi-scale training and testing. 1 The detection results published by the original paper authors. Note.
SH refers to the AP of the ship category. Params refers to the computational parameter quantity of the model, in
million units. FPS refers to the number of images detected per second by the model during inference. TPI is an
abbreviation for times per image.
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It is important to note that ReBiDet also exhibits excellent generalization performance.
Figure 12 presents the detection results when applying the ReBiDet model trained on the
DOTA dataset to image from the HRSC2016 dataset. The ReBiDet trained on the DOTA
dataset outperformed the one trained on HRSC2016, showing improved alignment between
the labeled detection boxes and the actual targets. ReBiDet detected more ships, including
three additional small-sized vessels. This improvement can be attributed to the HRSC2016
training dataset’s incomplete annotation, which hinders model training completeness and
leads to subpar detection performance. Additionally, the ReBiDet model underwent specific
optimizations for ship detection tasks, particularly enhancing feature extraction capabilities
through the ReBiFPN module. These improvements contribute to better generalization
performance following thorough training.

(a) (b)

Figure 12. Illustration of the generalization ability of the ReBiDet model trained on the DOTA
dataset, using an original image from the HRSC2016 test set. Subfigure (a) displays the detection
results obtained by the ReBiDet model trained on the HRSC2016 dataset. Subfigure (b) illustrates the
detection results achieved by the ReBiDet model trained on the DOTA dataset.

To further assess the models’ generalization capability, we selected an image from the
FAIR1M [40] dataset. To ensure fairness, all compared models were baseline models from
the MMRotate framework, reconstructed by the authors based on the original papers and
the DOTA dataset. Figure 13 reveals that only ReBiDet and RoI Transformer [23] detected
the small vessel on the left side of the image. However, RoI Transformer mistakenly
identified three land objects as ships. Although R3Det [39] detected more ships, most of
the annotated detection boxes had confidence scores below 0.5. S2 A-Net [18] exhibited a
similar situation, with confidence scores around 0.5 for the detected large ships, indicating
uncertainty in the results and potentially affecting the AP metric. Oriented R-CNN [20]
falsely detected a land object, and ReDet [21] failed to detect an adequate number of ships.
For this particular image, ReBiDet demonstrated superior generalization capability.

(a) (b) (c)

Figure 13. Cont.
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(d) (e) (f)

Figure 13. Comparison of the generalization capability of ReBiDet and other five models trained on
the DOTA dataset, using an original image from the FAIR1M [40] dataset. Subfigures (a–c) depict the
detection results of RoI Transformer [23], R3Det [39], and S2A-Net [18], respectively, while subfigures
(d–f) represent the detection results of Oriented R-CNN [20], ReDet [21], and ReBiDet, respectively.
With the exception of ReBiDet, all other models were replicated by the authors of the MMRotate
framework based on the original papers and the DOTA dataset.

3.3.3. Results

This section primarily presents the performance test results of ReBiDet. We follow
the practices commonly employed by researchers in the field of optical remote sensing
image object detection. We compare the ReBiDet model with state-of-the-art models
reported in recent years on two benchmark datasets, namely HRSC2016 and DOTA, to
evaluate and compare its performance. The selected models are from reputable journals
and conferences, and we directly quote their performance metrics without modification.
The backbone networks used by these models are denoted as R50, R101, R152, H-104, and
DLA34, representing ResNet-50, ResNet-101, ResNet-152, 104-layer hourglass network,
and 34-layer deep layer aggregation network, respectively.

Detailed comparison results for the HRSC2016, DOTA-v1.0, and DOTA-v1.5 datasets
are reported in Tables 4–6. On the HRSC2016 dataset, ReBiDet outperforms all existing mod-
els, demonstrating outstanding performance compared to the state-of-the-art approaches.
In the single-scale detection task on DOTA-v1.0, ReBiDet surpasses all compared methods
with a mAP of 76.50%, which is 0.22 higher than the baseline model. In most fine-grained
categories, ReBiDet ranks within the top three, except for the ship category, where it
achieves the highest AP. In the multi-scale detection task, ReBiDet exhibits various degrees
of improvement compared to the single-scale detection results across all categories. ReBiDet
also demonstrates improvement in the PL, BD, GTF, SV, SH, TC, ST, SBF, and HA categories
compared to the baseline model, with first-place rankings in GTF, TC, ST, SBF, and HA
categories. On the DOTA-v1.5 dataset, ReBiDet showcases superior performance compared
to the baseline method. This advantage can be attributed to the presence of numerous small
objects, approximately 10 pixels or smaller, in DOTA-v1.5, which ReBiDet excels at learning
and detecting. Furthermore, even when compared to RTMDet (a research collaboration
among Shanghai AI Laboratory, Nanyang Technological University, Tianjin University,
Shanghai Jiaotong University, and Northeastern University) [41], ReBiDet exhibits certain
advantages in terms of performance and computational parameters. These results indicates
the significant capability of ReBiDet in detecting large and elongated objects with ship
features. Notably, despite utilizing a 50-layer backbone network, our model outperforms
all compared methods with backbone networks of 101 layers or more. Figure 14 presents
some results for the DOTA dataset.



Appl. Sci. 2023, 13, 7080 19 of 25

Table 4. Comparison results on the HRSC2016 dataset.

Method Backbone mAP AP50 AP75

RRPN [16] R50-FPN - 79.08 -
R2PN [42] R50-FPN - 79.60 -
RRD [43] VGG-16 - 84.30 -
RoI Transformer [23] R101-FPN - 86.20 -
Gliding Vertex [44] R101-FPN - 88.20 -
R3Det [39] R101-FPN - 89.26 -
CSL [45] R152-FPN - 89.62 -
S2A-Net [18] ResNet50 - 89.75 -
ReDet [21] ReR50-ReFPN 70.41 90.46 89.46
ReBiDet (Ours) ReR50-ReBiFPN 73.61 90.50 89.80

Table 5. Comparisons with state-of-the-art methods on DOTA-v1.0 OBB task.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

single-scale:
FR-O [4] R101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13
ICN [46] R101-FPN 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16
CADNet [47] R101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
DRN [48] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70
CenterMap [49] R50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
SCRDet [50] R101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
R3Det [39] R152-FPN 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74
S2 A-Net [18] R50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
Oriented R-CNN [20] R50-FPN 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
ReDet [21] ReR50-ReFPN 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25
Oriented R-CNN [20] R101-FPN 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

ReBiDet (Ours) ReR50-ReBiFPN 89.36 83.77 53.04 71.55 79.01 83.56 88.41 90.89 87.31 86.00 65.45 61.79 76.73 70.30 60.36 76.50

multi-scale:
RoI Transformer * [23] R101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
O2-Dnet * [51] H104 89.30 83.30 50.10 72.10 71.10 75.60 78.70 90.90 79.90 82.90 60.20 60.00 64.60 68.90 65.70 72.80
DRN * [48] H104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
Gliding Vertex * [44] R101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
BBAVectors * [52] R101 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36
CenterMap * [49] R101-FPN 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03
CSL * [45] R152-FPN 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
SCRDet++ * [53] R152-FPN 88.68 85.22 54.70 73.71 71.92 84.14 79.39 90.82 87.04 86.02 67.90 60.86 74.52 70.76 72.66 76.56
S2A-Net * [18] R50-FPN 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42
ReDet * [21] ReR50-ReFPN 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

ReBiDet * (Ours) ReR50-ReBiFPN 89.39 85.19 60.44 82.17 79.48 85.74 88.54 90.90 88.62 87.85 72.24 66.32 79.32 78.06 73.52 80.52

* indicates multi-scale training and testing. Note. For the convenience of reading and comparison, we bolded and
marked the red, yellow and green numbers in the column as the 1st, 2nd, and 3rd largest values in that column,
respectively.

Table 6. Comparisons with state-of-the-art methods on DOTA-v1.5 OBB task.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

single-scale:
RetinaNet-O [37] 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
FR-O [4] 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00
Mask R-CNN [19] 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC [54] 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40
CMR [54] 77.77 74.62 51.09 63.44 51.64 72.90 79.99 90.35 74.90 67.58 49.54 72.85 64.19 64.88 55.87 3.02 63.41
DAFNe [55] - - - - - - - - - - - - - - - - 64.76
FR-O [4] + RT [23] 71.92 76.07 51.87 69.24 52.05 75.18 80.72 90.53 78.58 68.26 49.18 71.74 67.51 65.53 62.16 9.99 65.03
ReDet [21] 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86

ReBiDet (Ours) 80.54 82.90 53.62 74.55 52.55 79.65 87.53 90.84 84.57 72.93 65.02 73.05 75.87 65.56 65.18 7.32 69.48

multi-scale:
DAFNe * [55] - - - - - - - - - - - - - - - - 71.99
OWSR * [56] - - - - - - - - - - - - - - - - 74.90
RTMDet-R-tiny [41] 88.14 83.09 51.80 77.54 65.99 82.22 89.81 90.88 80.54 81.34 64.64 71.51 77.13 76.32 72.11 46.67 74.98
RTMDet-R-s [41] 88.14 85.82 52.90 82.09 65.58 81.83 89.78 90.82 83.31 82.47 68.51 70.93 78.00 75.77 73.09 47.32 76.02
RTMDet-R-m [41] 89.07 86.71 52.57 82.47 66.13 82.55 89.77 90.88 84.39 83.34 69.51 73.03 77.82 75.98 80.21 42.00 76.65
ReDet * [21] 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80

ReBiDet * (Ours) 86.23 85.89 61.99 82.41 67.86 83.94 89.78 90.88 86.37 83.70 72.12 77.58 78.38 73.24 75.01 52.05 77.96
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* indicates multi-scale training and testing. Note. The results of RetinaNet OBB (RetinaNet-O) [37], Faster

R-CNN OBB (FR-O) [4], Mask R-CNN [19] and Hybrid Task Cascade (HTC) [54] are re-implemented [33] version

for DOTA, and used by some scholars [21,41]. For the convenience of reading and comparison, we bolded and

marked the red, yellow and green numbers in the column as the 1st, 2nd, and 3rd largest values in that column,

respectively.

Figure 14. Examples of detection results on the DOTA dataset using ReBiDet.

4. Discussion

The experimental results validate the effectiveness of our proposed ReBiDet model
in ship detection tasks, indicating the efficacy of our designed methods and modules.
ReBiFPN efficiently performs cross-fusion between deep features, which possess large
receptive fields and strong semantic representation ability, and shallow features that lack
spatial geometric feature details and have low resolution. This approach exhibits significant
performance advantages compared to traditional feature pyramid networks. Each layer
acquires more comprehensive and rich feature information, thereby facilitating downstream
task execution and considerably improving the model’s detection ability. The anchor
improvement method aggregates features from annotated boxes in the dataset, adjusting the
parameters of the anchor generator accordingly, thereby enhancing the model’s detection
capability for specific objects. The DPRL sampler module enables the model to focus on
learning difficult positive samples, while avoiding the interference of false difficult negative
samples. In summary, these three proposed methods or modules hold value in improving
the ship detection capability in optical remote sensing images.

Nevertheless, it is important to acknowledge that any method or research inherently
possesses certain limitations. Our research primarily falls within the qualitative category,
and there is still ample room for exploration in the quantitative aspects, which represents
our future direction. The ReBiFPN module, inspired by PANet [29], indeed yielded positive
results. The EfficientDet research [57] demonstrates that stacking multiple bi-directional
feature fusion paths further enhances the detection accuracy on the COCO dataset [58].
Moreover, the detection accuracy varies with the number of stacked layers. Hence, in
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our field of optical remote sensing detection, it is crucial to investigate whether a similar
effect exists, which will be the focus of our forthcoming quantitative research. Regarding
the anchor improvement method, we have only roughly aggregated the features of ships
in the existing dataset and adjusted the parameters of the anchor generator, achieving a
qualitative effect. To put it figuratively, this can be likened to “casting a wide net to catch
more fish” (a common idiom). Additionally, the quantitative research lies in how to set
the anchor generator reasonably and accurately to strike a balance between accuracy and
computational complexity. After introducing the OHEM sampler module, we observed
a decrease in detection accuracy instead of an increase. Through repeated experiments
and in-depth analysis, we proposed the DPRL sampler module to enhance the learning of
difficult positive samples, thereby beneficially improving the model’s detection accuracy.
As for low-loss positive samples, it raises the question of whether it is the correct choice
to abandon direct learning. In terms of negative samples, ships that are only partially
anchored and interference from land structures, roads, and vegetation are considered
difficult negative samples. Although random sampling is a feasible approach, it remains
uncertain whether more reasonable methods exist to address these challenges. We firmly
believe that such methods do indeed exist.

For ship detection in optical remote sensing images, our research is still in its early
stages, with quantitative research serving as the focal point of our future work. Concerning
the issue of inaccurate detection accuracy evaluation due to incomplete object annotations
in HRSC2016, we intend to manually re-annotate all ship targets in the HRSC2016 dataset
in our next study. This will enable us to conduct a comprehensive comparison of various
evaluation indicators based on the model’s performance in existing detection models,
ultimately leading to breakthroughs in improving detection performance. Furthermore, as
illustrated in Figure 15, ReBiDet encounters an issue of inaccurate detection box positioning
when detecting elongated objects such as ships. This issue primarily stems from inadequate
training of the detection box during the alignment regression stage. We plan to explore
potential solutions to this problem, including, but not limited to, modifying the loss function
and the bounding box alignment regression module.

Figure 15. Illustration of inaccurate detection box positioning by ReBiDet.
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5. Conclusions

This study is dedicated to addressing the ship detection problem in optical remote
sensing images. The proposed ReBiDet, an enhanced version of ReDet, incorporates three
improvements: ReBiFPN, DPRL sampler, and anchor improvement. These enhancements
respectively bolster the network’s ability to capture multi-scale features, learn difficult
positive samples, and adapt to ship target aspect ratios. As a result, ReBiDet provides an
effective and practically valuable solution for ship detection. The experimental results
on HRSC2016 and DOTA datasets underscore the model’s exceptional performance. Fu-
ture research can concentrate on enhancing the model’s performance by exploring more
advanced network structures, loss functions, and optimization methods. Additionally,
researchers can delve into additional optimization schemes for ship detection in remote
sensing images to enhance accuracy and robustness. Moreover, it would be intriguing to
explore the model’s generalization capability on other datasets, such as FAIR1M [40].

Author Contributions: Methodology, Z.Y.; Software, Z.Y.; Supervision, Z.L. and Y.X.; Writing—Original
Draft, Z.Y. and S.L.; Writing—Review and Editing, Z.Y., C.L. and Z.L.;Visualization, F.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The HRSC2016 dataset used in this study was publicly released by
Northwestern Polytechnical University in 2016 and includes complete sets of training, validation,
and testing images and annotation files. It can be downloaded at the following address: https:
//aistudio.baidu.com/aistudio/datasetdetail/54106 (accessed on 11 June 2023). The DOTA dataset
was publicly released by Wuhan University in November 2017 and includes complete sets of training,
validation, and testing images, as well as annotation files for the training and validation sets. It can
be downloaded at this address: https://captain-whu.github.io/DOTA/dataset.html (accessed on 11
June 2023). Since the downloaded package does not include annotation files for the testing set, users
need to submit their model’s inference results to the Wuhan University official Evaluation Server to
obtain the accuracy of the inference results, at this address: https://captain-whu.github.io/DOTA/
evaluation.html (accessed on 11 June 2023). Finally, we published some of the raw experiment results
for this study at https://github.com/YanZeGit/ReBiDet (accessed on 11 June 2023). After this article
is published, our code and other related materials will also be released at this address.

Acknowledgments: This work was supported by the Institute of Systems Engineering, Academy of
Military Sciences, and We would like to express our gratitude to Yongqiang Xie and Zhongbo Li, for
their support and guidance throughout the project. Their contributions have been invaluable to the
success of this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ReBiDet Rotation-equivariant Bidirectional Feature Fusion Detector
CNN Convolutional Neural Networks
R2CNN Rotational R-CNN
E2-CNNs E(2)-Equivariant Steerable CNNs
RoI Region of Interest
RRPN Rotated Region Proposal Network
RPN Region Proposal Network
NMS Non-Maximum Suppression
IoU Intersection over Union
FPN feature pyramid network
ReFPN Rotation-equivariant Feature Pyramid Network
ReBiFPN Rotation-equivariant Bidirectional Feature Fusion Feature Pyramid Network
OHEM Online Hard Example Mining
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DPRL Difficult Positive Reinforcement Learning
mAP mean Average Precision
OBB Oriented Bounding Boxes
TP True Positive
FN False Negative
FP False Positive
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