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Abstract: Images with sensitive content require encryption for storage and transmission. Symmetric
schemes can cipher them, while an asymmetric cryptosystem can distribute the secret key safely.
For this reason, we propose a dynamic hybrid cryptosystem, which ciphers images and transfers its
private keys. It has a symmetric algorithm that applies the Lorenz equations for generating different
boxes and permutations in every encryption process and round. Since the secret key concatenates
two private numbers, an asymmetric algorithm is included for its key distribution. The proposal
uses the Diffie–Hellman protocol with ElGamal for obtaining a seed and building 128 strings. Then,
the SHA-512 is applied in each of them a number of times associated with the secret key value in
its blockchain representation. The resultant strings are concatenated to conform to the public key.
Finally, the tests indicate that the cryptosystem resists differential, linear, algebraic, and brute-force
attacks. Its cipher quality is high according to the entropy, correlation, DFT, NPCR, UACI, AC, texture
analysis, and goodness of fit test. Additionally, occlusion, additive, multiplicative, and the proposed
χ2 noise attacks are simulated on encrypted images. Finally, the sharpness loss is measured with the
Similarity Parameter and improved with a filter 5 × 5.

Keywords: Lorenz equations; ElGamal system; chaos; Hash SHA functions; dynamic S-box; dynamic
permutation

1. Introduction

Images are a representative source of information [1] in different fields. Some of them
require privacy and security because of their sensitive content, such as medical registers and
personal identification. In this sense, Cryptography provides symmetric and asymmetric
schemes for protecting data before storing and transmitting it. For this reason, many robust
cryptosystems have emerged to cipher images [2–6]. Furthermore, the study of hybrid
algorithms has increased since the benefits of including the strengths of symmetric and
asymmetric cryptosystems simultaneously. In this way, symmetric cryptosystems will have
a less drastic security impact in the age of quantum computers [7], while an asymmetric
scheme permits key distribution and digital signatures.

For these reasons, this research proposes a hybrid cryptosystem, which generates
a seed with the Diffie–Hellman protocol based on ElGammal. This seed is sent to the re-
ceiver according to the Block-Chain technique as a string of SHA-512 strings. Subsequently,
a fourteen-round symmetric cryptosystem is built using the seed over the Lorenz equations
solution and a bijective function. The substitution boxes, permutations, and round keys are
dynamic. This means that they are all different in each encryption process and round. The
authors call this cryptosystem an Algorithm of Image Cipher using Lorenz equations and
the Diffie–Hellman protocol (AICLDH). It is compatible with 256 grayscale levels and color
images and the schedule keys bytes size is equal to the image pixel size.

On the other hand, related works with hybrid algorithms, which include symmetric
and asymmetric algorithms have been proposed. For instance, Elliptic Curve Cryptography

Appl. Sci. 2023, 13, 7168. https://doi.org/10.3390/app13127168 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13127168
https://doi.org/10.3390/app13127168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8557-9941
https://orcid.org/0000-0003-1312-5294
https://orcid.org/0000-0001-8810-9921
https://doi.org/10.3390/app13127168
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13127168?type=check_update&version=1


Appl. Sci. 2023, 13, 7168 2 of 22

(ECC) with Hill Cipher (HC), ECC with Advanced Encryption Standard (AES), and ElGamal
with Double Playfair Cipher [8]. Guodong et al. propose a hybrid cryptosystem applying
the RSA cryptosystem for the generation of a pair of public and private keys [9] that precede
the diffusion and confusion process. Its security depends on the RSA algorithm. Moreover,
the Diffie–Hellman protocol and SHA-256 function were used to cipher images. The first
128 bits verify confidentiality and the remaining 128 bits for authentication [10].

Some image encryption algorithms compute their security results based on similar
evaluations and parameters to this proposal, and part of the numerical results achieved in
this proposal is superior to them. For instance, Ye et al. reported a maximum entropy of
7.99930 [11], which indicates high-quality encryption, and this work achieved a superior
one equal to 7.99938. A comparative table is included in the discussion section.

The number of elements in the key space, and the cipher image resistance to noise
attacks, are other differences with other developments [12–15]. In this order of ideas, these
proposals have a number of elements in the key set less than ours because it is smaller
than the 21024 elements reached by AICLDH. In addition, they do not analyze the noise
attack on encrypted images, and the developments that include it do not quantify the loss
of sharpness [11,16] with any instrument. In contrast, this work proposes the SP parameter
to measure it.

All cipher quality evaluations examine at least two parameters: entropy and correla-
tion. Although compressed images with loss of information, such as JPEG, do not include
them. Just the correlation parameter is considered [17], and the entropy achieves a value
near 7.8 [18]. In contrast, the entropy of cipher images with the proposal is close to 7.999.
Due to the absence of encryption measures, the present work does not consider lossy
compressed images. Another argument is that the normativity of some countries does not
allow lossy compression for images. One example is Mexico [19]. In this case, the proposal
suggests and works over the possibility of storing images using BMP files or others without
loss of information.

Later, the security analysis is made when linear, differential, algebraic, and brute-
force attacks are applied [20]. To evaluate the resistance of AICLDH to the differential
attack, we employ the Number of Pixels Change Rate (NPCR), Unified Average Changing
Intensity (UACI), and Avalanche Criteria (AC) parameters. Furthermore, since the AICLDH
construction uses an ElGamal asymmetric cryptosystem, the discrete logarithm problem is
considered for its security analysis [21]. It tries to find the a value in equation β = αa mod p
when β, α y p values are known. In this sense, many algorithms have been developed, called
generic algorithms, to find the value a [22], as well as the Pohlig—Hellman attack [23]. In
Section 6, we analyzed the complexity of these algorithms.

For evaluation purposes, cipher images are damaged with the additive, multiplicative,
and occlusion noises [24] and one proposed using the χ2 distribution. As a result of these
attacks, a sharpness loss is produced over the images. This work proposes measuring it
with the Similarity Parameter (SP) for each color: red, green, and blue. The cipher quality
evaluation includes the encryption of totally black and totally white images, as well as
other works measuring it [25].

The distribution of this work begins with Section 1, which corresponds to the introduc-
tion and some related works. Section 2 provides a theoretical description of the materials
and methods applied in the proposal. Section 3 shows the building elements that conform
to the proposed cryptosystem as well as the quality test. Section 4 presents all the noise
attacks considered for a damage simulation to the encrypted images. In addition, it includes
the median filter 5 × 5 application to improve the image quality after the attack and its
measure with the SP parameter. The results are shown in Section 5, while their discussion
and analysis are presented in Section 6. Finally, Section 7 contains the conclusions and
future works.
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2. Materials and Methods

The theoretical tools required for the proposal are described below, starting with the
Lorenz equations.

2.1. Lorenz Equations

The Lorenz system of differential equations is shown in Equations (1)–(3) [26], where
σ, r, b ∈ R+.

dx
dt

= σ(−x + y) (1)

dy
dt

= rx− y− xy (2)

dz
dt

= −bx + xy (3)

If the Lorenz Equations (1)–(3) are equal to zero, the critical points are found. In
this case, the critical points are P1 = (0, 0, 0), P2 = (

√
b(r− 1),

√
b(r− 1), r − 1), and

P3 = (−
√

b(r− 1),−
√

b(r− 1), r− 1).
The Lorenz equations describe the convection phenomenon in the Earth’s atmosphere,

in this case, σ = 10 and b = 8
3 . Moreover, the solution to the Lorenz system of equations

follows the form ~X = ~ξeλt where ~ξ represent the eigenvectors, and λ the eigenvalues. On
the other hand, for the calculation of the solutions in the neighborhood of the point P2, we
start from X

′
= AX, where the matrices A, X, and X

′
are described in Equations (4)–(6).

A =

 10 10 0
r −1 −

√
8/3(r− 1)√

8/3(r− 1)
√

8/3(r− 1) −8/3

 (4)

X =

x
y
z

 (5)

X
′
=

x
′

y
′

z
′

 (6)

The eigenvalues come from the characteristic polynomial and are obtained from
Equation (7).

|A− λI| = 0 (7)

Equation (8) expresses the characteristic polynomial with r = 28.

3λ3 + 41λ2 − 50λ + 2160 = 0 (8)

From Equation (8), one real root and two complex ones are obtained; these are written
in Equations (9)–(11).

λ1 = −22.558424 (9)

λ2 = 4.445878 + 3.485904i (10)

λ3 = 4.445878− 3.485904i (11)

Regarding the eigenvectors, it is only necessary to generate two of them to obtain the
general solution. Equations (12) and (13) show the eigenvectors ~ξ1 and ~ξ2, respectively.

~ξ1 =

 9.163288
−11.507650

1

 (12)
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~ξ2 =

0.359510 + 0.116796i
0.478680 + 0.294040i

1 + 0i

 (13)

~u(t) =

0.3595 cos(3.4859)t− 0.1167 sin(3.4859)t
0.4786 cos(3.4859)t− 0.2940 sin(3.4859)t

cos(3.4859)t

edt (14)

~v(t) =

0.1167 cos(3.4859)t− 0.3595 sin(3.4859)t
0.2940 cos(3.4859)t− 0.4786 sin(3.4859)t

sin(3.4859)t

edt (15)

Note that d = 4.445878, and the solution ~ξ2e(d+3.485904i)t contains a real part and a com-
plex part. The real part is presented as ~u and the complex one as ~v× i, where ~u and ~v are
expressed in Equations (14) and (15). Furthermore, if we set ~w = ~ξ1e−22.5584t, the general
solution is then written in Equation (16).

~X(t) = e−22.5584tC1~ξ1 + C2~u(t) + C3~v(t)× i (16)

The function ϕz(t) is composed of the third coordinate of the vectors in Equation (16).
On the other hand, in this development, C1 = 0 and t0 = 1/(4.445878). The result is given
in Equation (17).

ϕy(t0) = (0.999924)C2e + (0.012315)C3e (17)

In addition, the units of the argument θ in sin θ and cos θ functions are degrees.

2.2. ElGamal System

AICLDH has a symmetric cryptosystem using the key share of the ElGamal system
and the Diffie–Hellman protocol [27] that works with prime numbers. This study suggests
building a prime p∗ in the following way: p∗ = 2k × p1 p2 + 1. Where p1 and p2 are
numbers of high primality with a bit size of 2512, and k = 1, 2, · · · . Finally, the proposed α
has to satisfy Equation (18) [28] for all the prime factors of p∗ − 1 and 0 < α < p∗ − 1.

αp∗−1/q 6= 1 mod p∗ (18)

where q are the prime factors of (p∗ − 1) different from 1. It is pointed out that the high
primality of p1, p2 is verified using the Miller-Rabin algorithm [29].

On another topic, both the sender A, and the receiver B, share the following value:
β = (βaB)

aA mod. p∗ = (βaA)
aB mod. p∗. Considering that βaB = αaB mod p∗ and

βaA = αaA mod p∗. The sender receives the value βaB from the receiver, and the receiver
obtains the integer βaA from the sender. For increasing security, the integers aA and aB can
change in each communication between the sender and the receiver. Although, they could
also remain fixed for a while. Furthermore, both integers satisfy the following condition:
0 < aA, aB < p∗ − 1.

In this work, we calculate the values βi = αi × β mod p∗ to send a pair of constants
using the Hash SHA-512 algorithm. In addition, the authors consider it convenient to
present an example with particular values. If we assume that p1 = 101, p2 = 103, it is
not difficult to verify that the prime we are looking for is p∗ = 2k × p1 p2 + 1 = 20,807,
when k = 1.

In this order of ideas, if we propose α = 17,742, it can be verified that αp∗−1/q 6= 1
mod p∗ when the primes q are equal to: 2 , 101, and 103. On the other hand, if we assume
that sender A and receiver B have the private keys aA = 600 and aB = 1500, it is easy
to check that the public keys of the sender and receiver are: bA = 11,147 and bB =16,143.
Therefore, β = 11,425 can be computed by the sender and the receiver. To finish this example,
β1 = (17,742)(11,425) mod 20,807 ≡ 556.
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2.3. The Hash SHA Function

In this research, we will use the Hash standard, particularly the SHA-512 algorithm [30].
In this sense, the SHA-512 algorithm results in a fixed-length string of 512 bits. Furthermore,
the input message can have a maximum of 2128 − 1 bits. Its implementation in the present
work is by means of the Java programming language to execute it on a PC. Although it
is not the unique option to work SHA functions, some proposals have developed a Hash
accelerator in an FPGA [31]. In the same way, it is pointed out that the SHA-512 algorithm
defines a function that is not one-to-one. The above means that, given a result, going in
the reverse direction is difficult. In this case, obtaining the message. In fact, this type of
problem is called “Preimage”. Furthermore, we can say that the SHA-512 algorithm defines
a one-path procedure [32]. This property is relevant since the results are public during
transmission. Regarding security, in a sample of 2256 messages, the probability of a collision
is at most 0.5 [33].

2.4. Entropy

In most image encryption works, a parameter that measures the encryption quality is
entropy [34]. It is calculated according to Equation (19) [35].

E(x) = −∑
xεX

Pr(x)log2Pr(x) (19)

One byte can represent the pixel of an image with 256 gray levels, and three bytes
a pixel of a color image, one for each basic color (red, green, and blue). On the other hand,
images with 256 levels with an entropy equal to 8 indicate a well-encrypted image. In
other words, this means that the insensitive color levels are uniformly distributed, and the
associated histogram is close to a uniform distribution.

Despite obtaining an entropy value equal to 8, the color distribution is not necessarily
random. It is possible to build a theoretical distribution with entropy equal to 8 and
not randomly. For this reason, the distribution randomness is measured using different
instruments and verified for each color. However, an entropy value close to 8 indicates an
acceptable degree of randomness [36].

2.5. Correlation Coefficient

The correlation coefficient is another classical parameter to measure encryption
quality [37,38], where a correlation close to zero indicates secure encryption. Its proce-
dure follows the next steps. Suppose we analyze the horizontal direction and the color
red; first, randomly, a pixel of the encrypted image is chosen. It has three basic colors,
and zr represents the red color. Subsequently, the adjacent pixel to it in the horizontal
direction is selected, and wr denotes its red component. Therefore, it is possible to calculate
the correlation between zr and wr for n pairs of pixels in the horizontal direction and
the red color with Equation (20). In addition, the means computing zr, wr are indicated
in Equations (21) and (22). The steps are applicable to compute the correlation in other
directions and colors.

rh;zr ,wr =
1
n (∑

n
i=1(zi,r − zr)(wi,r − wr))√

( 1
n ∑n

i=1(zi,r − zr)2( 1
n ∑n

i=1(wi,r − wr)2))
(20)

zr =
1
n

n

∑
i=1

zi,r (21)

wr =
1
n

n

∑
i=1

wi,r (22)
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2.6. Discrete Fourier Transform

Another instrument used in this research is the Discrete Fourier Transform (DFT),
which is a hypothesis test that measures the randomness in a bit string. The goal is to
analyze that there is no repeating pattern in the binary string [39]. Additionally, it is part
of the NIST 800-22 standard. Finally, the variables involved in the test are expressed in
Equations (23)–(25), which are written below.

N0 =
(0.95)× n

0.05
(23)

In Equation (23), n is the length of the string. Moreover, using this data, a bound l is
calculated according to Equation (24).

l =

√
Ln

1
0.05

(n) (24)

Additionally, the gj functions of the procedure are calculated according to Equation (25).
Where xk = {−1, 1}, i =

√
−1 and j = 1, 2, . . . , n

2 − 1, in our case the value n is always even.
Another key point in Equation (25) is that gj is a complex function. The variable N1 in
Equation (26) starts equal to zero. Subsequently, ‖gj‖ is determined. In case of a value less
than l, then one is added to N1. Otherwise, the N1 value is not modified.

gj =
n

∑
k=1

xke
2π(i)(k−1)j

n (25)

Once N1 has been calculated, it is possible to obtain d using Equation (26). From here,
the decision rule is: if the P-value, (defined in Equation (27)), is less than 0.01, then the
hypothesis that the string is random is rejected. Otherwise, it is accepted.

d =
N1 − N0√
n(0.95)(0.05)

4

(26)

P-value = erfc
| d |√

2
(27)

The erfc function is calculated according to Equation (28).

erfc
| d |√

2
= 2(1−Φ(| d |)) (28)

2.7. Parameters to Measure the Strength of AICLDH against the Differential Attack

The strength of AICLDH against differential attack is tested based on Number of
Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI), and Avalanche
Criterion (AC).

The NPCR parameter requires two images ciphered to compare their values in the
same position (i, j). A function D(i, j) measures the differences between the bytes of the
encrypted image number 1 and belongs to encrypted image 2. That is, given the position
(i, j), it is observed that bytes are different or equal. If they are identical, the function
D(i, j) takes the value 0. Otherwise, it takes the value 1. The NPCR parameter is defined in
Equation (29). The subscript indicates the analyzed color, and variables W, H are the width
and height of the encrypted images. Convenient values to avoid a differential attack are
around 99.6% [40].

The UACI measure also evaluates byte differences between the encrypted images 1
and 2 by means of Equation (30). Although, it considers the intensity levels of each color,
from 0 to 255. The desired value of UACI to resist the differential attack is 33.4% [41].
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NPCRc =
Σi,jD(i, j)c

W × H
× 100% (29)

UACIc =
1

W × H
[Σi,j
| C1,c − C2,c |

255
]× 100% (30)

Finally, the AC parameter is calculated according to Equation (31). T indicates the
number of bits from images 1, 2, and the subscript c is the color analyzed. This measure
evaluates the bitwise differences between encrypted images 1 and 2. In this sense, the func-
tion b(i, j), which appears in Equation (31), is described in Equation (32). The appropriate
value for this parameter is 50%.

ACc =
Σi,jb(i, j)c

T
× 100% (31)

b(i, j)c =

{
0 otherwise

1 if bits are diffent
(32)

2.8. Energy, Contrast, and Homogeneity

Other encryption quality measures based on texture analysis are energy, contrast, and
homogeneity. Equation (33) defines energy, where f (i, j) represents the energy value at the
point (i, j). It measures the degree of information disorder in an encrypted image based on
the bytes of each basic color. In this case, if the energy value is close to zero, it indicates
a high disorder level in the encrypted image. In other words, it means that the image is
well encrypted. In consequence, it is sought that the energy values are close to zero [42].

Energy = ∑
i,j

f (i, j)2 (33)

While Equation (34) calculates contrast. As in the previous indicator, the function f (i, j)
is the value that f takes on the point (i, j). It is important to say that contrast measures the
differences between neighboring points. Moreover, it is expected to have high values [43],
which indicates high-quality encryption.

Contrast = ∑
i,j
| i− j |2 f (i, j) (34)

Homogeneity is defined according to (35). A well-encrypted image should return
small values [44].

Homogeneity = ∑
i,j

f (i, j)
1+ | i− j | (35)

2.9. Goodness-of-Fit Test

Different from the previous tests, this gives a hypothesis test. The null one is that the
basic color data fits a uniform distribution. Since it is a statistical test, it demands a statistic
and a threshold. This research uses a statistic with a χ2 distribution and k− 1 degrees of
freedom. Equation (36) shows the instrument.

χ2 =
k

∑
i=1

(oi − exp)2

exp
(36)

According to the central limit theorem [45], the random variable χ2 can approximate
a normal distribution with a mean µ = 255 and variance σ = 22.58. Consequently, if
χ2 5 308, the null hypothesis is accepted; otherwise, it is rejected for a significance level
α = 0.01. It is important to realize that this test is absent in the NIST 800-22 standard for
measuring the randomness of each basic color using the corresponding bit string [39].
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2.10. The Median Filter

We will use the Median Filter as a complementary tool. Since the encrypted images
are damaged, there is a loss of sharpness in the decrypted images. For this reason, in
the present research, the median filter 5 × 5 is proposed to improve its sharpness. The
application of this instrument proceeds as follows: given a point (x1, x2) of the pixel map,
an adjustment is performed on the neighboring pixels of size (w, h). In summary, the
median filter 5 × 5 builds a mask of 25 pixels from a pixel (x1, x2). In such a way that the
point (x1, x2) is in the center, and the others are around it. Figure 1 illustrates it. In this
sense, the point (0, 0) represents (x1, x2).

(x1 − 2, x2 + 2)

(x1 − 2, x2 + 1)

(x1 − 2, x2)

(x1 − 2, x2 − 1)

(x1 − 2, x2 − 2)

(x1 − 1, x2 + 2)

(x1 − 1, x2 + 1)

(x1 − 1, x2)

(x1 − 1, x2 − 1)

(x1 − 1, x2 − 2)

(x1, x2 + 2)

(x1, x2 + 1)

(x1, x2)

(x1, x2 − 1)

(x1, x2 − 2)

(x1 + 1, x2 + 2)

(x1 + 1, x2 + 1)

(x1 + 1, x2)

(x1 + 1, x2 − 1)

(x1 + 1, x2 − 2)

(x1 + 2, x2 + 2)

(x1 + 2, x2 + 1)

(x1 + 2, x2)

(x1 + 2, x2 − 1)

(x1 + 2, x2 − 2)

Figure 1. A mask of size 5 × 5 for the median filter.

Afterward, values are ordered according to their intensities. Let us denote the medians
of each color as Mr,(x1,x2)

, Mg,(x1,x2)
and Mb,(x1,x2)

. The median per color is greater than
or equal to d 25

2 e − 1 and less than the other values. Subsequently, these nine values are
ordered according to their intensity. Then, the median is chosen as the value that meets
the following: it is greater than or equal to the first; in other words, 50%, and less than the
remaining points.

3. Building Elements

The section presents the algorithm for permutation generation and the Similarity
Parameter based on the UACI parameter, among other elements. For the stages that require
random numbers, a random number generator such as [46] can be used.

3.1. Algorithm for the Generation of Permutations

For a set Zm = {n ∈ N | 0 ≤ n ≤ m!− 1} any of its elements can be written in factorial
basis as in Equation (37), where the constant Dm−1 = 0.

n = D0(m− 1)! + D1(m− 2)! + . . . Dm−2(1)! + Dm−1(0)! (37)

The constants Di, shown in Equation (37), are unique according to Euclid’s division
algorithm [47] and satisfy Equation (38).

0 ≤ Di < (m− i) for 0 ≤ i ≤ (m− 2) (38)
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The development of a permutation algorithm is possible with this information. Us-
ing the constants, Di of Equation (37) can be scrambled with an array of m different
elements [48]. Further, this algorithm has a significant property defining a one-to-one func-
tion [48]. This is because two different integers n1 6= n2 produce two distinct permutations.

3.2. Similarity Parameter

The additive, multiplicative, occlusion, and proposed χ2 noises damage the encrypted
images. Subsequently, the difference between the damaged decrypted image and the
original one is quantified to know the impact of this. The parameter UACI is suggested by
authors in Equation (39). For a SPc range between 0% and 100%, the constant 2.994 appears.

SPc = |100−UACIc(2.994)|% (39)

SPc measures the similarity between two images. If the compared images are equal,
then UACI = 0, and SPc = 100%. Otherwise, if the original image is compared with its
well-encrypted image, then UACIc u 33.4, and SPc u 0%. Additionally, it is possible to
quantify how much the median 5 × 5 filter improves the sharpness of a damaged image.

3.3. Encryption Procedure

A high-level description of the encryption procedure is presented, and later the gener-
ated elements in the encryption: boxes, permutations, and schedule keys.

AICLDH has a fourteen-round symmetric cryptosystem [49]. Each round uses a
different box of type S− 8× 8 box [50], which is dynamic since it changes in each process.
Before starting the first round, a permutation with a number of elements equal to the image
size is executed. It is also dynamic and works over all the image pixels, altering the pixel
positions in the entire image. The schedule keys involved have a size equal to the image
size. It is important to note that boxes, permutation, and schedule keys change in each
image encryption, even if it is the same image but at a different time.

Below, the steps in every round of the encryption algorithm are described.

1. First, the permutation P is applied to the original image. Afterward, the xor operation
is applied over the permuted image and the first round key. Later, the resulting chain
is divided into blocks of one byte. Immediately, the substitution operation is carried
out with the first box. The substitution operation is carried out in the same way as in
AES [50].

2. From rounds 2 to 13, the xor operation is applied between the output of the previous
round and the corresponding schedule key. Subsequently, the substitution is operated
with the corresponding S− 8× 8 box.

3. In the last round, the xor operation is executed using the output string of round 13
and the schedule key 14. Then, this previous result is divided into blocks of one byte,
and the substitution operation is applied to the last box. Finally, a xor is performed
between the string resulting from the substitution operation and the schedule key 15.
This final result is the encrypted image.

Once the high-level description has been made, a detailed description of the elements
involved in the encryption process is explained. Before this, we will see the pre-processing
that must be performed.

3.4. Pre-Processing

1. The Sender (A) generates a random integer aA such that 1 < aA < p∗ − 1; considering
that p∗ u 21024. Consequently, the calculation βA = αaA mod p∗ is performed. Finally,
βA is sent to the receiver (B). Similarly, the receiver (B) randomly obtains an integer
aB with 1 < aB < p∗ − 1, then computes the value βB = αaB mod p∗ and transmits it
to the sender. From here, the sender has βB and performs the following calculation:
β = β

aA
B mod p∗. Note that the receiver can also generate the integer β. Consequently,
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both the sender and receiver have the same information. As can be seen, βA, βB are
public; although, β is private.

2. At this moment 128 strings βi = αi × β mod p∗ are built, with i = 1 · · · 128. Note that
each βi is taken as a 1024-bits message. While if a βi has a length less than 1024 bits,
then zeros are added to the left until the string reaches that magnitude.

3. The sender randomly generates two positive integers that satisfy 1 < C1, C2 < 2512

for sending them to the receiver. In addition, using the Block-Chain technique, two
512-bit binary strings are associated with each integer C1, C2. Afterward, they are
divided into blocks of 8 bits, resulting in 64 blocks of 8 bits for each integer. In fact,
the result of the joint of both strings is 128 strings of one byte. The number associated
with each block is bi for i = 1, 2, · · · , 64, and the range of bi is from 0 to 255.

4. This research proposes to apply the Hash SHA-512 function to the chain βi. If bi = 0,
the Hash-SHA algorithm is applied once to the chain βi. In contrast, if 0 < bi ≤ 255,
the Hash-SHA algorithm is executed bi + 1 times in a chained manner [51], starting
from the block βi. Therefore, as a result of this process, there are 128 strings of 512 bits,
and each of them is associated with an integer. It is important to say that the sender
publishes these strings. On the other hand, the receiver can replicate the procedure to
know the associated values with each block of the 512-bit strings. Consequently, the
receiver (B) knows the integers C1, C2.

3.5. Generation of the S− 8× 8 Boxes

Once the integers C1, C2 are known, the sender and receiver proceed as follows
to build the boxes since the boxes S − 8 × 8 are a permutation of 256 elements; that
is, from 0x00 to 0xff. In this sense, C2 from Equation (17) takes the constant value C1.
Subsequently, the operation (0.999924)C2e is carried out; considering that the constant
e = 2.7182 · · · [52]. Afterward, the string of bits that is to the right of the decimal point is
taken, and subsequently, we proceed as follows:

1. The bits from the decimal point to the right are divided into blocks of one byte that
simultaneously compose an integer. In this way, let us denote ci as the associated
integer with the i-th byte. For the first box i = {0, 1, · · · , 255}.

2. The constants Di, to build the first box, are obtained by the mean of Di = ci mod.
256− i. Where the Di corresponds to the constants of the algorithm developed in
Section 3.

3. Through the constants, Di, it is possible to generate a box S− 8× 8, considering that
a box is a permutation of 256 elements. While to obtain the second box, the bytes from
256 to 511 are taken. Following this method, 14 boxes can be built, one for each round.

3.6. Generation of the Permutation and Schedule Key

The permutation generation is the following:

1. The integer C3 of Equation (17) is replaced by the value C2. Then, it is operated
(0.012315)C3e; where, as before, the constant e = 2.7182 · · · . From this result, we will
only take the bits from the decimal point to the right.

2. The bit string after the decimal point is divided into 8-bit blocks, that is, in bytes. In
addition, the number of pixels of the image is l. We proceed as follows: building
a string with the first three bytes, that is, taking bytes number 0, 1, and 2. In this
way, let be c0, the associated integer to this string. Then, the calculation D0 = c0
mod. l is performed. For obtaining D1, a byte shift to the right is performed. Now,
bytes 1, 2, and 3 are selected to make a new string. As before, this 24-bit string has
another associated integer called c1. Subsequently, the calculation D1 = c1 mod l − 1
is performed. In general, to calculate Di, the procedure is to compute Di = ci mod.
l − i. It is important to remember that for obtaining ci, i-shifts of one byte are made to
the right of the decimal point.
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3. Once the Di has been calculated for i = 0, 1, · · · , l − 2, it is possible to use the algo-
rithm indicated in Section 3 to permute the l pixels of the image. Let us denote this
permutation as P.

On the other hand, the round keys procedure is the following:
The value of C3 in Equation (17) is replaced by C2. Then, the (0.012315)C3e operation

is computed; as before, the constant e = 2.7182 · · · . Henceforth from the product, the bits to
the right of the decimal point are taken. To generate the first key, a string of bits is selected
whose length is equal to the image bits size; in this case, for 512 × 512 pixels. The present
work proposes this chain as k1, the first round key. In this way, to generate the other round
keys, for example, the i-th round key, the process is similar. Apply i− 1 shifts of one byte
after the decimal point; from there to the right, a string takes the number of bytes equal to
the size of the image. Finally, the resulting string would be the key ki.

At this point, the authors consider it pertinent to show the hexadecimal values used in
this research: p1, p2, k, p∗, and α.

p1 = e13e0ceb0f0798be0a5d5f8ad448524b7c1fe933440f
6fa2923f440ce749a9290927d1a3eeb44abe41258be7cf2ef
17b715a2be5a6a542eb9ea6a7da039d4dab

p2 = 9dffc7e2f4ed8acf7dac5ad69c88b44e5a36f47a567
7eb29e7d71b1e656f652eb490a46360931402c050671245
bc5ca9c95dee3b14f3b4121d46b31c95a9ef29

k = 1734

Similarly, the prime p∗ and generator α are shown:

p∗ = 3ad9dcc2ec1c5e61c2449c2e8907bac8233b13fe221
41d9cf989ba34b0c387bf2058b247c3bc9fcaa3f3daaefa49
728b2d976a47b3769ca2101744cab23355e3a949c0f6262
bcde56dea2bbc969f03f2a558f871b0a7e05492761057ef6
70723a849dafec51c62187c5f1da8dc523382cbee124d12e
ebfe510ad1c1d41c675adc93

α = 326ff52fdb98aaf27594369b807e538921805f86e563
712c7616cb432ea6ae480e772dbc521782508af64e67573
17ab6818d598ed168c14ed2952c7db0042980b277b6949
fa475f53c8a7b2387344eb64b770909f4c2ec68e3f8eda66
05912f872566c02c0e06953b5b24e23c119d135068fa5c3
960fa59e55f7b1a04afd2450

The values aA, aB can be chosen randomly or fixed for a period in each communication
between the sender and the receiver.

3.7. Elements for Testing

The images used to evaluate the AICLDH cryptosystem are presented in Figure 2. In
addition, two images are examined: one completely in black and another in white. It is
pointed out that this research uses images of 512 × 512 pixels. However, it is possible to
work with images of different dimensions. For doing so, the size of the binary string would
only increase or decrease after the decimal point.
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(a) (b)

(c) (d)

Figure 2. Images used for testing AICLDH: (a) Peppers; (b) Donkey; (c) Lena; (d) Barbara.

In the case of the Lena image, it is widely tested in image encryption developments.
In addition, the results of the AES-CBC image encryption algorithms are compared with
AICLDH [53] when noise is applied to the encrypted figures. Later, it is shown that the
impact of noise on encrypted images is less drastic in the AICLDH algorithm than in
AES-CBC.

4. Applying Noise to Encrypted Images

This work applies four noises to the encrypted images: occlusion, additive, multiplica-
tive, and one proposed using the χ2 distribution. The goal is to test the resistance of the
AICLDH encryption algorithm to damage attacks on encrypted images. In this sense, the
noise produced by the random variable χ2 is described below.

4.1. The χ2 Noise

For the χ2 noise, Equation (36) is used and previously described in Section 2. This
random variable approximates a normal distribution with µ = 255 and standard deviation
σ = 22.58. The operation starts choosing n pixels randomly of the encrypted image in the
spatial domain. Each of them is associated with a frequency fc(x, y), where c indicates the
color, and (x, y) is the pixel position. The range of this variable is 0 ≤ fc(x, y) ≤ 255.

Later, a value zc(x, y) ∼ N(0, 1) is chosen randomly for each pixel and color. Then,
the variable f ′c(x, y) is calculated according to Equation (40). In the case of zc < −3, the
value of −3 is assigned to the variable. If zc > 3, it is given the value of 3. In such a way,
−3 ≤ zc(x, y) ≤ 3.

f ′c(x, y) = 255 + zc(x, y)22.58 (40)
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Afterward, the variable f ′c(x, y) is discretized using floor and ceiling functions. The
symbol b c is applied if the decimal part of f ′c(x, y) is less than or equal to 0.5. Then, the
integer part of f ′c(x, y) is taken, and the discrete value of the frequency, f ′dc(x, y), is obtained
according to Equation (41). When the decimal part is greater than 0.5, the second symbol
d e is applied. In this case, one unit is added to the integer part, and the discrete value of
the frequency is computed according to Equation (42).

f ′dc(x, y) = b255 + zc(x, y)22.58c mod 256 (41)

If a decimal fraction is greater than 0.5, then f ′dc(x, y) is calculated according to
Equation (42).

f ′dc(x, y) = d255 + zc(x, y)22.58e mod 256 (42)

In this paper, it is proposed to substitute the value of fc(x, y) for f ′dc(x, y) as the case
may be. Additionally, this type of noise mostly replaces values located at the level extremes.
In other words, values from the range 0–64 or 191–255.

4.2. The Occlusion Noise

The occlusion noise application in this paper is as follows: pixels of the encrypted
image are selected to form a concentric parallelogram. Subsequently, the frequencies from
pixels of this parallelogram region are replaced by the ones in the cherry color. In general,
it can be another color. This procedure is applied in recent research [54].

4.3. The Additive and Multiplicative Noises

A high-level description of additive and multiplicative noise is given below. Similarly
to the other noises, n points of the encrypted image are chosen randomly. Furthermore,
each point has an associated frequency fc(x, y) such that 0 ≤ fc(x, y) ≤ 255 and c indicates
the basic color.

For the additive noise, an integer τc(x, y) is chosen randomly for each point and color.
The discrete value f ′dc(x, y) is calculated according to Equation (43); subsequently, fc(x, y)
is changed by the discrete value of f ′dc(x, y).

f ′dc(x, y) = [ fc(x, y) + τc(x, y)] mod 256 (43)

To apply the multiplicative noise in the same way as additive noise, an integer τc(x, y)
is selected randomly. Therefore, the frequency f ′dc(x, y) is calculated, taking into account
Equation (44). Later, the value of fc(x, y) is replaced by f ′c(x, y).

f ′dc(x, y) = [ fc(x, y)× τc(x, y)] mod 256 (44)

5. Results

This Section begins showing Figure 3. Figure 3a shows the original image of Lena,
while Figure 3b shows Lena encrypted with AICLDH. Figure 3c–e are the histograms of
the basic colors of Figure 3b. AICLDH was made in Java programming language, using its
BigInteger library for numerical operations. The cipher execution was 0.4 s on a computer
with Windows 11 over an i9-10900K CPU with ten cores.
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(a) (b)

(c) (d) (e)

Figure 3. Lena image: (a) Original Lena image; (b) Lena ciphered image with AICLDH; (c) Red color
histogram of (b); (d) Green color histogram of (b); (e) Blue color histogram of (b).

The numerical results begin the evaluation of encrypted images without damage. In
addition, first, the results of the instruments that are not statistical hypothesis tests are
shown: Correlation, Entropy, UACI, NPCR, AC, Homogeneity, Energy, and Contrast. Later,
the results that use the statistical hypothesis test are presented: the Goodness-of-Fit test
and the Discrete Fourier Transform.

5.1. Correlation and Entropy

The correlation and entropy results are shown in Tables 1 and 2 to measure the
randomness of the encrypted images. This corresponds to the encrypted images from
Figure 2. While the results of the NPCR, UACI, and AC parameters appear in Tables 3–5,
respectively. In the same sense, the energy, contrast, and homogeneity results are presented
in Tables 6–8.

Table 1. Correlation coefficient C of the encrypted test images of Figure 2.

Direction Color Peppers Donkey Lena Barbara

Red −0.00448 −0.00134 0.00116 −0.00351
Horizontal Green 0.00020 0.00043 0.00104 −0.00301

Blue 0.00005 0.00601 0.00635 −0.00414

Red 0.0043 −0.00086 −0.00128 −0.00369
Vertical Green 0.00068 −0.00322 0.00523 0.00194

Blue 0.00067 −0.00760 0.00088 −0.00646

Red 0.00777 −0.00138 −0.00152 −0.00211
Diagonal Green −0.00152 0.00136 −0.00503 −0.00344

Blue 0.00220 −0.00103 0.00011 −0.00550
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Table 2. Entropy of test images of Figure 2 after encryption.

Color Peppers Donkey Lena Barbara

Red 7.99929 7.99937 7.99932 7.99927
Green 7.99926 7.99930 7.99938 7.99934
Blue 7.99935 7.99930 7.99938 7.99918

Table 3. NPCR of the test images after encryption.

Color Peppers Donkey Lena Barbara

Red 99.623 99.598 99.609 99.632
Green 99.605 99.617 99.614 99.613
Blue 99.597 99.603 99.625 99.618

Table 4. UACI of the test images after encryption.

Color Peppers Donkey Lena Barbara

Red 33.581 33.482 33.438 33.522
Green 33.496 33.462 33.486 33.471
Blue 33.443 33.496 33.516 33.453

Table 5. AC of the test images after encryption.

Color Peppers Donkey Lena Barbara

Red 50.01 49.98 49.96 50.04
Green 50.01 49.97 50.01 49.97
Blue 49.94 49.96 50.00 49.99

Table 6. Energy of encrypted images of Figure 2.

Color Peppers Donkey Lena Barbara

Red 0.01563 0.01563 0.01563 0.01563
Green 0.01563 0.01563 0.01563 0.01563
Blue 0.01563 0.01563 0.01563 0.01563

Table 7. Contrast of encrypted images of Figure 2.

Color Peppers Donkey Lena Barbara

Red 10.54102 10.42625 10.46554 10.47795
Green 10.49049 10.49013 10.49560 10.45892
Blue 10.51685 10.50117 10.52990 10.47287

Table 8. Homogeneity of Figure 2 images after encryption.

Color Peppers Donkey Lena Barbara

Red 0.38886 0.39047 0.38974 0.389900
Green 0.38924 0.38935 0.38920 0.389762
Blue 0.38892 0.38923 0.38895 0.389790

5.2. Discrete Fourier Transform and the Proposal Test

The results after applying the DFT instrument to the AICLDH-encrypted images of
Figure 2 are shown in Table 9. Likewise, an additional test based on the χ2 distribution is
proposed. The results of this parameter are in Table 10.
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Table 9. The randomness measurement using the Discrete Fourier Transform (X Accept, x Reject),
with α = 0.01.

Color Peppers Donkey Lena Barbara

Red 0.296/X 0.707/X 0.674/X 0.759/X
Green 0.072/X 0.064/X 0.864/X 0.551/X
Blue 0.151/X 0.602/X 0.256/X 0.174/X

Table 10. Results of the Goodness-of-Fit test (X Accept, x Reject), with α = 0.01.

Color Peppers Donkey Lena Barbara

Red 272.9/X 274.2/X 276.3/X 239.9/X
Green 275.2/X 241.1/X 220.7/X 273.1/X
Blue 240.2/X 251.6/X 262.3/X 274.2/X

5.3. Images Black and White

Since AICLDH has a symmetric cryptosystem, the following experiment is detailed
below: a black image and a white image of size 512 × 512 are encrypted. Subsequently, the
encrypted figures are evaluated according to the NPCR, UACI, and AC parameters. The
results are in Table 11.

Table 11. AC, NPCR, and UACI values for the completely black and completely white images.

Parameter Color Black Image White Image

Red 50.004 49.957
AC Green 50.027 49.952

Blue 49.990 49.968

Red 99.617 99.599
NPCR Green 99.595 99.603

Blue 99.590 99.598

Red 33.522 33.421
UACI Green 33.418 33.452

Blue 33.506 33.407

5.4. Encrypted Images with Noise

Below, the results explore the images encrypted with damage after noise application.
The experiment considers Figures 4 and 5. While Figure 4 shows the result of the following
procedure. The AICLDH algorithm encrypts Peppers’ image in Figure 2. Then, the en-
crypted image is applied with the multiplicative noise of size 40% and the figure encrypted
with damage is decrypted with AICLDH. Finally, Figure 5 is the result of the same previ-
ous procedure, with only one difference. The original image and the one encrypted with
damage are encrypted and decrypted with the AES-CBC algorithm, respectively.

In Section 2, the median filter 5 × 5 was described to improve the encryption process
with noise. In this way, Figure 6a presents the Peppers image encrypted and decrypted with
AICLDH after the χ2 noise application at 40%. In contrast, Figure 6b shows the Peppers
image after the median filter 5 × 5 application to the deciphered image with damage.
Consequently, it is possible to observe how the sharpness of the damaged image improves.

On the other hand, Table 12 shows the SP parameter evaluations. It is when the images
of Figure 2 encrypted with AICLDH were damaged with the χ2 noise of different sizes.
Finally, Table 13 shows the following results. The images were encrypted with AICLDH in
Figure 2, after a 40% size damage applied using the different types of noise proposed in
this research, and then the decrypted images with noise after the 5 × 5 filter application
are shown.
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(a) (b)

Figure 4. Peppers image deciphered with AICLDH: (a) Original image; (b) Deciphered image when
a multiplicative noise of 40% size was applied after encryption.

(a) (b)

Figure 5. Peppers image deciphered with AES-CBC: (a) Original image; (b) Deciphered image when
a multiplicative noise of 40% size was applied after encryption.

(a) (b)

Figure 6. Peppers image deciphered: (a) Just deciphered with noise and AICLDH; (b) Deciphered
and filtered using median filter of 5× 5.
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Table 12. SP for different damage sizes of the testing images after encryption, using χ2 noise damage.

Color Size Noise Peppers Donkey Lena Barbara

20% 82.77 72.24 80.19 82.06

Red
30% 73.70 57.74 70.60 73.20
40% 66.17 44.65 60.42 64.31
50% 57.69 30.30 50.11 55.78

20% 79.91 71.95 81.57 82.10

Green
30% 69.16 57.35 72.70 73.34
40% 60.37 44.00 63.46 64.28
50% 50.20 29.44 53.63 55.76

20% 79.37 72.14 83.38 82.06

Blue
30% 68.27 57.66 75.34 73.26
40% 59.38 44.42 67.00 64.30
50% 49.10 30.16 58.20 55.79

Table 13. SP after a 5 × 5 median filter was applied to encrypted images with 50% damage from
different noise sources.

Color Noise Type Peppers Donkey Lena Barbara

Occlusion 91.30 69.41 88.18 83.45

Red
Additive 91.35 69.78 88.30 83.20

Multiplicative 91.51 69.76 89.12 83.95
Chi-square 91.56 68.53 87.57 83.66

Occlusion 86.54 68.84 87.83 83.38

Green
Additive 86.52 69.02 87.78 83.24

Multiplicative 87.16 69.22 88.45 83.94
Chi-square 87.26 67.67 87.50 83.57

Occlusion 86.11 69.46 90.70 83.45

Blue
Additive 86.04 69.71 90.75 83.33

Multiplicative 86.87 70.00 90.94 84.02
Chi-square 86.95 68.40 90.48 83.58

6. Discussion

Since security is vital for any cryptosystem, it starts with the AICLDH resistance
against different known attacks. With this objective in mind, attacks are divided into three
categories. Those that apply to the ElGamal cryptosystem, those that impact the proposed
symmetric cryptosystem, and those that damage encrypted images.

The attack on the ElGamal cryptosystem aims to obtain the private key, a, when the
public key, β, is known. In this sense, some generic algorithms have been realized, which
have a complexity of O(

√
p), to obtain a solution. In addition, there is another well-known

procedure to obtain the private key known as the Pohlig–Hellman attack, and also, in
this case, the complexity is O(

√
p) [55]. On the other hand, the value of p used in this

investigation is approximately 21024. As a result, the attack complexity would be O(2512).
In conclusion, this type of attack, at least for the moment, does not affect the proposed
cryptosystem [56].

The security benefits of the proposed AICLDH symmetric algorithm are described
below. The substitution boxes, 8× 8 S− box, used in the encryption procedure are dynamic.
In other words, they are unknown before encryption. In addition, each round employs
a different box. In conclusion, it is impossible to accomplish linear and algebraic attacks; at
least as we know it [57]. On the other hand, a brute-force attack requires knowing C1, C2.
However, that problem has a complexity of 21024. Hence, the brute-force attack cannot be
performed successfully. It is important to remember that AES has at most 2256 and has not
been broken yet. In addition, it has been reported that in private key algorithms, the impact
due to the appearance of quantum computers will be less drastic [7]. Moreover, because
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the proposed symmetric cryptosystem was built using the ElGamal cryptosystem, it makes
it possible for ElGamal to distribute its keys.

In the same way, Table 11 shows that the values of the NPCR, UACI, and AC parame-
ters are adequate to avoid the differential attack. Other attacks tested on encrypted images
are the noises: additive, multiplicative, occlusion, and the χ2 proposed. Moreover, the
affected area is available in four sizes; 20%, 30%, 40%, and 50%.

In addition, the SP parameter evaluates the sharpness loss of decrypted images with
damage. The result appears in Table 12. Furthermore, Figure 5a shows the decrypted
image when the original was encrypted with the proposed algorithm and then χ2 noise
application of size 50%. While Figure 5b considers the same procedure, although the
original image is encrypted with AES-CBC. As can be noticed, the image encrypted with
the AICLDH algorithm offers better clarity than the one encrypted with AES-CBC. Under
those circumstances, Table 13 shows the results when a median filter of 5 × 5 is applied to
the decrypted images with damage. In this way, the SP parameter evaluates the increase in
sharpness, which can be higher than 91% in some cases. With attention to black and white
images are more affected than others by the noise. One example is the Donkey image.

The image encryption quality is explored in two directions: according to the DFT
result and the proposed goodness-of-fit test. The second includes correlation, entropy,
NPCR, UACI, AC, homogeneity, contrast, and energy parameters. As can be seen, in
both directions, the results show that the encryption of the images is robust. In fact,
Table 14 presents a comparison of the entropy in the images encrypted with AICLDH and
other works.

Table 14. Entropy comparison between the AICLDH algorithm and other works.

Image Algorithm Entropy

AICLDH 7.9993
Peppers Ref. [58] 7.996

Ref. [59] 7.9938

AICLDH 7.99935
Lena Ref. [60] 7.9975

Ref. [14] 7.9953

7. Conclusions

The present work proposed a hybrid cryptosystem based on the Diffie–Hellman proto-
col. For this reason, it can distribute its keys and sign. As part of the hybrid cryptosystem,
using the shared key of the Diffie–Hellman protocol and Lorenz Equations was possible
to build a fourteen-round private key cryptosystem. Its substitution boxes, permutation,
and round keys are dynamic; they are all different in each encryption process. The most
relevant reason for choosing a symmetric system is that this type of development will be
less affected in the quantum era, with a less drastic impact. This hybrid algorithm is robust
because it resists differential, linear, algebraic, and brute-force attacks. The encryption
quality evaluation considered: entropy, correlation, DTF, goodness-of-fit test, NPCR, UACI,
AC, homogeneity, energy, and contrast, and the results were satisfactory in all, which is why
the AICLDH is safe. To conclude this work, comparing the encrypted images with noise, it
can be observed in Figures 4 and 5 that AICLDH is superior to AES-CBC. Furthermore, we
say that future work intends to distribute the seed using post-quantum algorithms.
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