
Citation: Gantenbein, B. New

Developments on Growth Factors,

Exosomes, and Single Cell

RNA-Sequencing for Regeneration of

the Intervertebral Disc. Appl. Sci.

2023, 13, 7346. https://doi.org/

10.3390/app13137346

Received: 12 June 2023

Accepted: 19 June 2023

Published: 21 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

New Developments on Growth Factors, Exosomes, and Single
Cell RNA-Sequencing for Regeneration of the
Intervertebral Disc
Benjamin Gantenbein 1,2

1 Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Bone & Joint Program, Department for
BioMedical Research (DBMR), Faculty of Medicine, University of Bern, CH-3008 Bern, Switzerland;
benjamin.gantenbein@unibe.ch; Tel.: +41-31-632-88-15

2 Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty,
University of Bern, CH-3010 Bern, Switzerland

1. Introduction

Low back pain (LBP) is the number one cause of disability worldwide, with incidences
increasing exponentially [1–3]. A recent study estimates that by the year 2050, an increase
of 200 million people is expected, with a current peak at 619 million people [1]. This
Special Issue targets the specific niche of finding innovative ways to address the clinical
problem of LBP, which is often induced by the prolapse of the spinal column caused by
genetic or epigenetic factors. Intervertebral disc (IVD) degeneration is often believed to
be the root cause of chronic pain. Future research aims to understand the contribution of
metabolic factors such as nutrition, besides other risk factors such as smoking and Diabetes
mellitus [1]. This Special Issue provides a heterogeneous snapshot of recent applied research
on IVD and LBP, ranging from cell biology studies to artificial intelligence in diagnostics.
In the following subsections, I provide a short overview and summarize the seven articles’
main findings.

2. Wet Laboratory Studies in the Second Special Issue

Two original studies focused on the single-cell transcriptomics to characterize pheno-
types in rats in an IVD degeneration model [4] or performed a pathway study of ~100 genes
using qPCR gene arrays using total RNA extractions from human donors suffering from
idiopathic skeletal hyperostosis (DISH). The first study established an in vivo IVD degener-
ation model in 8-week-old Sprague Dawley rats that underwent surgery for retroperitoneal
exposure using a 27 Gauge needle of the L4-L6 lumbar spine. Rohanifar et al. (2022) [4] then
allowed the rats to recover for two and eight weeks postoperatively. Then, they digested
the single cells from the tissue using mild digestion protocols, extracted and sequenced
the total RNA and compared the next-generation sequencing (NGS) data relative to un-
treated controls. Rohanifar et al. (2022) confirmed that the nucleus pulposus (NP) mainly
expressed key markers such as CD24 [5] as well as aggrecan and collagen type 2 [6–8].
In the outer part of the IVD, the cells mainly expressed collagen type 1, as previously
identified in rats [6–8] but also in other species such as bovine and human [9]. Furthermore,
their data allowed us to distinguish IVD cells from lymphoid, endothelial and myeloid
cells [4]. The needle-punctured groups subsequently had a significantly higher amount of
myeloid cells and lymphocytes than controls. These data are logical since needle puncture
causes inflammation [4]. The second transcriptome study is on DISH patients. DISH is
also known as Forestier’s disease [10–13]. To the best of my knowledge, the study by
Gantenbein et al. (2021) [14] is the first to elucidate on the possible phenotypic changes and
deregulations of DISH cells compared to the phenotype of IVD cells isolated from trauma
patients. This comparison has its limitations, of course, as trauma cells are not necessarily
“healthy” cells. However, it most likely that these cells are still in a better state than cells
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isolated from degenerated IVDs. Nevertheless, by comparing the expression levels of bone
morphogenic protein pathway cytokines and their inhibitors, i.e., Gremlin, Noggin and
Chordin, my group found that these were dys-regulated [15], although these changes were
not significant. However, DISH-IVD, in contrast to IVD obtained from trauma, showed
a significant up-regulation of early growth response 2 (EGR2) interleukin 6 (IL6), and
insulin-like growth factor 1 (IGF1) tended to be up-regulated [14]. IGF1 has been proposed
by other authors to be a possible marker in serum samples of DISH patients [16,17].

The third study in the Special Issue is that of Bischof et al. (2021) [18], who focused on
cell culture and tissue-specific progenitor cells. They presented a study on the optimization
of culture conditions on the so-called nucleus pulposus progenitor cells (NPPC). In this
study, primary IVD cells were isolated from human disc tissue with a mild digestion
protocol [19,20]. After reaching confluence in monolayer recovery, these mixed IVD cells,
mainly from the nucleus pulposus (NP), were then trypsinized and sorted with a surface
marker named Tie2 (or CD202b), which stands for angiopoeitin receptor-1. The Tie2+ cells
and the Tie2- cells were then further cultured in normoxic and hypoxic (i.e., 2%) conditions
in presence of Angiopoetin-1 (Ang-1) or Ang-2 at increasing doses [21]. However, the
results of the study [18] did not produce the expected results, namely, that Tie2+ were
stimulated and would proliferate faster compared to Tie2− cells. Despite this, it seemed
very clear that hypoxia, i.e., at 2% oxygen level, was the most important factor for higher
cellular metabolic activity. Their conclusion that hypoxia is beneficial for these NPPC
is in agreement with other studies performed by the team of Daisuke Sakai from Tokai
University School of Medicine [22,23].

3. Clinical/Radiological Studies in the Second Special Issue

There are two radiological studies published in this Special Issue. Firstly, Landauer and
Trieb (2022) [24] provide radiological evidence that the lumbosacral transitional vertebrae
(LSTV) are valid as a model for IVD regeneration. They scanned 1482 patients radiologically,
and their LSTV were then classified according to Castellvi classification type II–IV [24].
Additionally, magnetic resonance scans (MRIs) were also obtained from selected patients.
The authors concluded that the reduced or absent mobility in the LSTV segments led to an
overload of the adjacent segments in these patients.

The second study, by Kim et al. (2022) [25], is on the usage of natural language pro-
cessing (NLP), which is defined as understanding, analyzing, and extracting meaningful
information from text (natural language) by computer science [26]. This research targets a
highly significant area of research, which is “big data”. It is obvious that artificial intelli-
gence (AI) will be necessary to make full use of all the available clinical data and to help
surgeons to take decisions with the assistance of fast data processing. In this approach, the
authors tested their NLP pipeline on a balanced sample of 300 X-ray, 300 CT, and 300 MRI re-
ports. When evaluating their NLP model performances, four parameters—recall, precision,
accuracy, and a so-called “F1” score (the harmonic mean of precision and recall [27])—were
greater than 0.9 for all 23 radiologic findings.

4. A Review on Secretomes of the IVD

Extracellular vesicles (EVs) have long attracted the attention of the regenerative com-
munity. The importance of this topic is underlined by a current “wave” of comparable
articles that also focus on the usage of EVs to regenerate the IVD [28–31]. This is not
altogether surprising as regulatory hurdles toward proving non-toxicity and patient safety
have recently been introduced by authorities such as the Federal Drug and food Agency
(FDA) and the label of the Conformité Européene (CE) [32]. This applies in particular to
cellular applications. Thus, secretomes, or so-called conditioned media, have been the
focus of recent IVD-related research [29,33]. The review by Tilotta et al. (2023) provides a
valuable insight into the field of EVs and a summary of their characterization [29].
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5. Conclusions

Overall, this Special Issue offers a good insight into the heterogeneity of IVD research
and the recent findings not only from clinics, but also from biologists and engineers. I
hope that this Special Issue will give scientists an overview of this highly translational and
applied fast growing research field. There is still yet further research to come to help to find
possible “cures” for affected patients. With the recent prognosis by Ferreira et al. (2023) [1]
warning of an increase of one-third more LBP patients in the next 50 years, the scientific
community is urged to find better treatment options and also especially early diagnostic
tools to foresee critical cases to come.
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