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Abstract: Hierarchical multi-label text classification (HMTC) is a highly relevant and widely discussed
topic in the era of big data, particularly for efficiently classifying extensive amounts of text data. This
study proposes the HTMC-PGT framework for poverty governance’s single-path hierarchical multi-label
classification problem. The framework simplifies the HMTC problem into training and combination
problems of multi-class classifiers in the classifier tree. Each independent classifier in this framework uses
an XLNet pretrained model to extract char-level semantic embeddings of text and employs a hierarchical
attention mechanism integrated with Bi-LSTM (BiLSTM + HA) to extract semantic embeddings at the
document level for classification purposes. Simultaneously, this study proposes that the structure uses
transfer learning (TL) between classifiers in the classifier tree. The experimental results show that the
proposed XLNet + BiLSTM + HA + FC + TL model achieves micro-P, micro-R, and micro-F1 values
of 96.1%, which is 7.5~38.1% higher than those of other baseline models. The HTMC-PGT framework
based on XLNet, BiLSTM + HA, and transfer learning (TL) between classifier tree nodes proposed in
this study solves the hierarchical multi-label classification problem of poverty governance text (PGT). It
provides a new idea for solving the traditional HMTC problem.

Keywords: HMTC; XLNet; hierarchical attention mechanism; Bi-LSTM; transfer learning; rural
poverty governance; NLP; BERT; text classification

1. Introduction

Machine intelligence is increasingly important in global poverty governance [1,2]. By
using algorithms and models, social scientists and policymakers can embrace more sub-
stantial insights into the essence of poverty, using complex phenomena and vast amounts
of data to prevent vulnerable populations from falling into the cycle of poverty [3]. From
the viewpoint of the digital governance of poverty [4], unstructured text data have become
a significant part of poverty governance data. These documents contain policies, news
announcements, working papers, etc. [5]. At the same time, each class includes a tree of
subclasses, adding much information related to certain aspects of the poverty governance
lifecycle. Usually, researchers give these texts multiple labels in line with the above hierar-
chical classes via time-consuming manual efforts before analyzing this information and
extracting knowledge about poverty governance [6,7]. Therefore, a classification model
based on natural language processing is the primary method for automatic multi-label
classification [8].

According to the existing literature, a multi-label classification model can be divided
into two parts based on the number of classifiers in the model. First, a single-classifier model
transforms the multi-label classification into a multi-class classification problem [9], which
is concise and considers labels’ correlation as a whole, but usually has an unsatisfactory
effect because of the imbalanced training dataset [10]. As the number of labels increases,
the parameter size and complexity of the model also significantly increase. In contrast,
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combining multiple classifiers [11], namely one or a subset of labels corresponding to a
classifier, could reduce the complexity of a single model and avoid being influenced by the
dataset’s quality, yielding a better holistic classification result. Nevertheless, the number of
classifiers will increase while the labels are abundant. In the classifier set, the correlation of
each classifier can be independent or dependent on the relationship between related labels.
The former transforms the multi-label problem into several single-label issues, ignoring
label correlation. The latter regards a combination of classifiers as a chain of classifiers.
The advantage of classifier chains is that they construct topological relationships between
independent classifiers based on the semantic topological relationships of labels and form
a chain structure. However, excessively long classifier chains can lead to a systematic
accumulation of classification errors, affecting the end labels’ classification accuracy [12]. It
is necessary to ensure that each classifier in the classifier chain can achieve the best accuracy
to remedy this problem.

From a process perspective, each text classifier includes four modules: data preprocess-
ing, feature extraction, classification algorithms, and result evaluation [13]. To improve the
performance of the classifier chain, researchers typically perform unified preprocessing on all
classifier inputs and a unified assessment of the classification results [11]. Feature extraction
and classification are two kernel processes that determine the performance of a classifier.

The methods for obtaining text features are usually divided into metadata-based and
content-based methods [7]. The metadata-based approaches utilize explicit information
such as titles, authors, keywords, categories, and other existing labels in the text as text
features. This method is standard for the scientific literature with complete metadata
information [11], but for text in poverty governance, metadata information is often not a
mandatory configuration. Therefore, content-based feature extraction methods are more
valuable in PGT text classification. In the existing literature, content-based text feature
extraction mainly includes traditional statistical methods such as word bags and TF-IDF,
neural network methods such as Word2Vec, and pretrained models such as BERT, ERNIE,
and XLNet [14]. Since Google proposed BERT in 2018, with the continuous introduc-
tion of new models and methods, the performance of pretrained models has significantly
improved owing to their unsupervised training on massive corpora [15]. As a result, pre-
trained models have gradually become mainstream compared with other feature extraction
methods. The basic structure of the BERT model consists of multiple layers of Transformers,
including the “masked language model” (MLM) and “next sentence prediction” (NSP) as
pretrained tasks. The most prominent feature of the ERNIE model is the introduction of
a knowledge map as information outside the text to supplement the semantics of words.
The state-of-the-art version of ERNIE has reached 3.0 [16]. Unlike the BERT and ERNIE
models, based on the BERT model, the XLNet model replaces the traditional Transformer
with Transformer-XL [17] and introduces two improved methods, namely the “permuta-
tion language model” and the “two-stream self-attention” mechanism, to achieve better
performance [18]. Text is a type of temporal dataset. Before the emergence of attention
mechanisms, models such as LSTM and RNN were widely used for the semantic extraction
of temporal data [19]. However, these models always suffer from the problem of gradient
disappearance as the text becomes too long. Attention mechanisms can avoid the problem
of gradient disappearance and better understand text semantics [20].

However, the labels of poverty governance texts (PGTs) have a hierarchically fixed
relationship. Moreover, for a specific training dataset, the label that reaches the relation
tree leaves has less simple data [10]. Therefore, an unbalanced training dataset results
in poor holistic classification accuracy. Because the current research results cannot solve
the multi-label classification problem in the above situations better, this study focuses on
hierarchical labels and limited training datasets to conduct multi-label classification research
on PGTs. The research innovation of this article mainly lies in the following four aspects:
(1) designing a hierarchical label tree for PGTs and constructing a standardized HTMC-PGT
corpus through preprocessing and data labeling; (2) proposing an overall model to solve the
hierarchical and transferable multi-label classification of PGTs (HTMC-PGT); (3) verifying
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the optimality of feature extraction based on XLNet for poverty alleviation governance text
classification; and (4) proposing a transfer learning mechanism between hierarchical label
classifiers based on an attention mechanism integrated with Bi-LSTM. Based on the results
of this study, HTMC-PGT can achieve better hierarchical multi-label classification effects
with limited training datasets and provide data support for further research on the policy
analysis and knowledge graph of poverty governance [5,21,22]. The rest of the paper is
organized as follows: Section 2 highlights the hierarchical label tree of PGTs and the formal
definition of the HTMC-PGT problem; Section 3 presents the primary models and methods
utilized in this study; Section 4 introduces and discusses the process, methods, and results
of the experiments; the final section concludes the paper.

2. Preliminaries

Compared with traditional multi-label classification problems, the HTMC-PGT pro-
posed in this paper has a hierarchy in the label system. This hierarchical and multi-
label feature comes from PGT itself and the internal correlation logic between PGTs (see
Section 2.1). Unlike traditional HTMC problems that focus on solving single-classifier
parameters, HTMC-PGT focuses on solving the parameter set (partial order set) of the
classifier tree. This change undoubtedly increases the difficulty of studying the problem
(see Section 2.2).

2.1. Hierarchical Label Tree of PGTs

With the openness and transparency of information in the internet era, PGTs can
accurately reflect the dynamic process of poverty governance. The government’s publicly
available PGTs include crucial elements, such as poverty issues, governance policies,
working methods, and governance effectiveness, which are presented in four main types of
text: policy documents, dynamic news, working papers, and public announcements [23]. In
contrast to the analysis methods of traditional structured data surrounding these four types
of unstructured texts of poverty governance, it is easy to gain insights into the life cycle
processes of poverty governance policy formation, implementation, and refinement, which
contribute to the formation of poverty governance knowledge that can be accumulated or
shared globally (see Figure 1).
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Figure 1. The interclass correlation of PGTs.

The classification of texts is a prerequisite for extracting and mining the entities and
relations of PGTs. On the one hand, different text categories are heterogeneous in the
structure of semantic information. Therefore, the corresponding ontology model must
be used according to the text classification results. On the other hand, the relationship
between text classes is hierarchical; therefore, only a hierarchical multi-label classification
of text can fully reflect the ontological relationship between texts based on categories.
Therefore, depending on the need for knowledge extraction, PGTs should be subdivided
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into multilevel and multidimensional collections. These collections of subclasses with
hierarchical relationships constitute a hierarchical label tree rooted in the PGTs. The label
trees of different subclasses have different labels and depths (Figure 2).
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2.2. Problem Definition

In the HTMC-PGT problem, a set of PGTs exists. Each text in this set contains a fixed
number of words that together constitute the semantics of the text. Based on semantic
features, these texts also correspond to multiple categories with a hierarchical structure.
Unlike the nonlinear structure of multiple labels in traditional HMTC (hierarchical multi-
label text classification) problems [24], the multiple categories corresponding to text in
HTMC-PGT are linear structures. To clearly express the focus of this article, this section first
defines the hierarchical structure of multiple labels, text semantics, and the linear structure
of multiple target labels.

Definition 1 (Hierarchical Label Tree of PGT). The hierarchical label tree of PGT (HLT-PGT)T
introduced in Section 2.1 can be defined as a partial order set (CT ,≺) where CT = {c1, c2, · · · , cN}
is a finite set of all categories of PGT and the size of the set is N. ≺ is a partial order that represents
the parent–child relationship between nodes in T , which is antireflective and transitive [25]. On the
other hand, the node elements in the tree CT can be demarcated into three parts: root, stem, and leaf,
corresponding to three non-overlapping subsets R, S, and L; CT = R

⋃
S
⋃

L. Because each tree only
contains one root node, |R| = 1:

- ∀cx ∈ CT , cx ⊀ cx;
- ∀cx, cy, cz ∈ CT , if cx ≺ cy and cy ≺ cz then cx ≺ cz;
- ∀cx ∈ L, ∃cy ∈ R

⋃
S, cx ≺ cy then cy ⊀ cx;

- ∀cx ∈ S, ∃cy ∈ R
⋃

S, cx ≺ cy then cy ⊀ cx.

Therefore, compared with the nonlinearity of HMTC, the elements in the classification
result set of HTMC-PGT form a directed acyclic graph connected by ≺ relationships, and
the arrangement of nodes is a linear sequence.

Definition 2 (Linear Structure of Target Multiple Labels). In the HTMC-PGT problem, each
document Di contains multiple labels CTi. One and only one of these labels CTi belongs to the leaf
node set L (denoted as li), and CTi must contain elements from the set R (i.e., root nodes, denoted as
γ), while the other node sets Si = {c1, c2, · · · , ck} , are subsets of the set S. If Si is not an empty set,
a sequence exists

{
c
′
1, c

′
2, · · · , c

′
k

}
such that all elements in Si satisfy the following arrangement

li ≺ c
′
1 ≺ c

′
2 ≺ · · · ≺ c

′
k ≺ γ. Therefore, all elements of the leaf node setLcorrespond one-to-one

to the sequence of the multi-label classification results in the HTMC-PGT problem. That is, the set
of classification results for the HTMC-PGT problem is the set of paths from all leaf nodes in set L to
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the root node. Therefore, in the HTMC-PGT problem, the set of all the classification result sequences
can be denoted as follows, where i = 1, 2, · · · , |L|:

CS = {CTi|i = 1, 2, · · · , |L|} (1)

The HTMC-PGT problem exhibits three typical characteristics. First, the classified text
has multiple labels, which differs from the traditional single-label text classification. Second,
there is a hierarchical semantic relationship between labels, which differs from independent
labels. Finally, the hierarchical multi-label classification has strict temporal dependencies
among label classifiers. Unlike the binary relevance (BR) method [26], hierarchical multi-
label classification decomposes the classification problem with n labels into an n − m
multi-class classifiers problem where n = |C T | is the total number of labels including the
root node of the label tree and m =|L| is the total number of label leaf nodes. According
to Definition 2, HTMC-PGT aims to have text with a unique leaf node label. Therefore,
from the perspective of leaf node sets alone, HTMC-PGT can be considered a single-label
classification, also called the “flat classification approach” [27]. However, owing to the
imbalanced distribution of label semantics, single-label classification methods often fail to
achieve satisfactory classification results. At the same time, it is also impossible to model
the problem as a holistic solution that integrates hierarchical label trees and document
semantics, as proposed in [24,28,29]. Therefore, it is necessary to start from the root node of
the label tree and construct a multi-class classifier to gradually reduce the target leaf node
label set until the final target label is obtained (Figure 3).
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Definition 3 (HTMC-PGT Problem). Let X be the feature vector of a given poverty governance
text. Each classifier in the classifier tree shares X as the input parameter.

ŷj = Cj(x) = argmin Hj(x, y) f or index j = 1, . . . ,
∣∣∣n−m

∣∣∣ (2)

In Equation (2), ŷj is the classification result of feature vector x in the multi-class classi-
fier Cj(·). Hj is the cost function of the classifier Cj(·). By transforming the classification
problem into a minimum cost function problem using Hj(·), the optimal classification
result can be obtained. Based on the classification results of the previous classifier, the next
classifier can be determined and used to continue classifying text feature vector x.

Given a poverty governance text set D and the corresponding hierarchical label tree
structure T = (CT ,≺), first, text set D is divided into multiple text sets Di based on the
classifier set, whereas CT is divided into several corresponding label sets CTi. The goal of



Appl. Sci. 2023, 13, 7377 6 of 23

HTMC-PGT is to learn the parameter Θi of the classifier model Ωi based on the text set
Di and corresponding multiple labels CTi, and ultimately predict the label sequence of a
document using the model in the hierarchical classifier tree. To improve the performance
of classifiers with a small sample number |Di|, this study adopts the method of transfer
learning between classifiers, that is, the model parameter Θi of the parent node in set S is
taken as the initial value of the model parameter of the child node, and the training effect
of the child node is improved through incremental calculations:

Ωi
(
Di, Θi, Θip

)
−→ CTi (3)

where Θip is the parameter set of the parent node of this classifier in the classifier tree and
i = 1, · · · , |R

⋃
S|.

The HTMC-PGT problem requires solving Equations (2) and (3) and forming a classi-
fier tree Y = (Θ,≺), which can be used to classify any PGT:

Ω(D, Y) −→ CS (4)

3. Materials and Methods

This study aims to build a classifier tree for the problem defined in Section 2, in which
transfer learning can occur among classifiers. Thus, the classifier tree can achieve optimal
classification accuracy for the HTMC-PGT problem. From a data flow perspective, the
PGT must undergo unified data preprocessing before entering the classifier tree to avoid
redundant calculations at all levels of classifiers. In Definition 3 of Section 2, the classifier
tree is defined as Y = (Θ,≺), which is isomorphic to HTMC-PGT without leaf nodes, noted
as (R

⋃
S,≺). The classifier tree can determine whether transfer learning can be carried

out between two classifiers according to the semantic relationship between the parent and
child nodes; in other words, some of the parameters of the parent classifier are used as the
initial parameters of the child classifier in the training, to achieve the goal of incremental
training of the child label classification model when the number of training samples of the
child classifier is relatively small (Figure 4).
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All classifiers adopt the same architecture model based on XLNet and the attention
mechanism to facilitate knowledge transfer between classifiers. In addition, this study
utilizes a pretrained XLNet model to extract features from PGT and obtain char-embeddings
for PGT sentence segmentation, thus completing the data preprocessing process. Then,
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starting from the root node of the classifier tree, a hierarchical attention mechanism based
on MLP is implemented for char-level embeddings in PGT-segmented sentences to obtain
PGT semantic feature vectors corresponding to the text and category, which can be used
for the final classification. Finally, when training the sub-classifier, the parameters of
the attention mechanism in the parent classifier are transferred to the initial values of
the corresponding parameters in the sub-classifier. Then, the classification effect of the
sub-classifier is improved through the transfer learning method.

3.1. Features Extracted through XLNet Model

XLNet is an improved model for BERT proposed by scholars from Carnegie Mellon
University and the Google AI Brain Team in 2019 [18]. Unlike the self-coding language
model method based on BERT dependency masks, XLNet adopts an autoregressive lan-
guage model to avoid the problem of ignoring dependencies between mask positions in
BERT and the negative impact of artificially introducing “[MASK]” markers. Meanwhile,
XLNet overcomes the drawbacks of traditional autoregressive models, which can only
utilize unidirectional information, by introducing a bidirectional context learning method
based on self-coding language models. In addition, it replaces the Transformer in BERT
with Transformer XL. This new neural network framework has a segment-level recurrence
mechanism (segment-level recurrence with state reuse) and a new location coding strategy
(relative positional encoding), which can not only break through the limitation of fixed con-
text length in language modeling of Transformer, thus learning long-distance dependencies
in text sequences, but also solve the problem of context fragmentation [17] and improve the
overall performance of the model.

The most prominent feature of XLNet compared to BERT and other models is that
it introduces the Transformer XL framework to solve the problem of long text dependen-
cies. This is of great significance for the research presented in this paper: PGTs are long,
structurally complex, and diverse. However, owing to fixed length limitations, the tradi-
tional Transformer framework cannot effectively capture the semantic connections between
segments, leading to BERT’s inability in terms of long-term text dependency.

Regarding specific methods, Transformer-XL introduces a recurrence mechanism
between segments so that each segment does not need to start entirely from scratch during
calculation but can learn from the information of the previous segment [17]. The output
of the hidden layer in the previous section enables the model to accumulate long-term
dependencies during the training phase. Furthermore, the model can learn longer distance
dependencies in the text during testing.

For the HTMC-PGT problem (see Definition 3 in Section 2 of this paper), each classifier
in the classifier tree must use XLNet for feature extraction, which is time-consuming.
Therefore, this study separates the feature extraction layers that commonly exist in a single
classifier in other studies and places them in the data preprocessing stage to maintain the
simplicity of each classifier in the next stage, thereby improving the overall training and
testing efficiency of the model.

In the data preprocessing stage, the PGT is first split into paragraphs of consistent
length. Then, the words of each paragraph are input into XLNet’s pretraining model
to extract the corresponding char-level semantic features, forming a char-level semantic
feature matrix based on segments. Meanwhile, based on the algorithmic advantages of
XLNet for solving long-distance dependencies, the hidden layer information of the previous
paragraph is also input into XLNet’s pretraining model when calculating each paragraph,
thus preserving the long-distance dependencies between the long-text paragraphs [17]
(Figure 5).
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The preprocessing first involves cropping all texts in the PGT set to a fixed length and
dividing them into multiple segments. If the length of the text is insufficient, it is filled
with placeholders. Then, the fixed length document set is denoted as D and the individual
documents in the set are denoted as Di, where the number of PGT set D is noted as m, and
i = 1, · · · , m. Therefore, the PGT set D can be represented as a matrix form of Di:

D = |D1D2 · · ·Dm| (5)

Each PGT Di can be divided into several fixed-length segments, the number of which
is n. Therefore, text Di can be represented as a vector form of paragraph sil , where
l = 1, · · · , n:

Di = |si1si2 · · · sin| (6)

and each segment of sil can be represented as a vector of word tokens:

sil =
∣∣wt

il1wt
il2 · · ·wt

ilk
∣∣ (7)

where k is the length of a segment.
Then, taking a single PGT Di as a unit, all segments in the text Di are input into the

XLNet pretrained model as parameters, and the char-embedding vectors of all word tokens
in each segment and the hidden layer information mil are obtained using transfer learning.
This information can be input into the XLNet pretrained model as parameters when solving
the char-embedding vector of the next segment, thus preserving the semantic association
among the segments.

mil , s
′
il ← XLNet_WordEmbedding

(
sil , mi(l−1)

)
(8)

s
′
il = |we

il1we
il2 · · ·we

ilk| (9)

Set the number of dimensions of the char-embeddings (we
ilt , t = 1, · · · , k) to d. The

most commonly used d in XLNet is 768.

3.2. Hierarchical Attention Mechanism

This study builds a basic model of a single classifier in the classifier tree based on the
improved multilayer perception mechanism to complete the mapping from the segmented
char-embeddings to categories after data preprocessing (Figure 6). From a functional
perspective, the model can be divided into three parts. First, a hierarchical attention
mechanism layer solves the problem of transitioning from char-level to document-level
embeddings [30]. The second layer is the fully connected layer, which converts document-
level embeddings into category probabilities. Finally, an activation layer uses the function
Argmax to find the target category with the highest probability.
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The hierarchical attention mechanism layer utilizes hierarchical MLP to learn and
sequentially obtain (1) attention weights from char-level embeddings to segment-level em-
beddings mapping and (2) attention weights from segment-level embeddings to document-
level embeddings [31]. Using this hierarchical calculation method, vectors that represent
the semantic features of documents are obtained. Furthermore, this hierarchical attention
mechanism layer can be further divided into a lower-order representation layer and a
higher-order representation layer. Of these, the lower-order representation layer repre-
sents the semantics of words, whereas the higher-order representation layer represents
the semantics in paragraphs. This method of hierarchical attention mechanism can extract
document-level embeddings from the text on the one hand and shorten the length of input
text in each processing unit through text segmentation and layering on the other hand, thus
avoiding the vanishing gradient problem common in long text processing [32].

In the low-order representation layer, the char-embeddings s
′
il of each segment are

converted into a hidden layer whose dimension number is half of the char-embeddings size
through the linear function. Formally, let X ∈ Rm×n×k×d be the input char-embeddings,
where m is the amount of PGT, n is the number of segments in a text, k is the number
of words contained in each segment, and d is the dimension of the char-embeddings.
Moreover, let xil ∈ Rk×d be the char-embeddings matrix of segment l in document i.
Ail ∈ Rk×(d//2) denotes the activations and is given by

Ail = φ
(

W1
l xil

T + b1
l

)T
(10)

where W1
l ∈ R(d//2)×d is a weight matrix and b1

l ∈ R(d//2)×1 is the bias vector in the
low-order layer. Meanwhile, φ is a nonlinear activation function, which is taken as the
function Tanh in this study, that is,

Tanh(x) =
ex − e−x

ex + e−x (11)
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Let Oil ∈ R1×d be the output of the low-order representation layer, given by

Oil = σ
(

W2
l Ail

T
)

xil (12)

where W2
l ∈ R1×(d//2) is a weight matrix that can convert Ail into a vector and σ denotes

the function so f tmax(·) function, which can calculate the weights of each word for the
semantic vectors of a segment.

After obtaining segment-level embeddings in the higher-order representation layer, it
is necessary to concatenate the embeddings of all segments in the same document in the
order of the corresponding segments in the text. Therefore, let Oi ∈ Rn×d be the segment-
level embeddings matrix of text i and

⊙
denote vector concatenation. Then, Oi can be

calculated as
Oi = Oi1

⊙
Oi2

⊙
· · ·

⊙
Oin (13)

Subsequently, the higher-order representation layer uses a method like the low-level
representation layer to calculate document-level embeddings. Let Ai ∈ Rn×(d//2) denote
the activations given by

Ai = φ
(

W1
hOi

T + b1
h

)T
(14)

where W1
h ∈ R(d//2)×d is a weight matrix and b1

h ∈ R(d//2)×1 is the bias vector in the
high-order layer.

Let Hi ∈ Rm×d be the output of the high-order representation layer, which is given by

Hi = σ
(

W2
h Ai

T
)

Oi (15)

where W2
h ∈ R1×(d//2) is a weight matrix that can convert Ai into a vector.

At the end of the classifier model, let C be the target category set that corresponds
to the current classifier. Therefore, |C| denotes the number of categories. Therefore,
document-level embeddings can be implicitly classified as category probabilities through a
fully connected layer, forming a document category probability matrix. Let I ∈ Rm×1 be
the final classification result of the classifier, which can be given by

I = Argmax
((

W f HT + b f

)T
)

(16)

where W f ∈ R|C|×d is a weight matrix of the fully connected layer, b f ∈ R|C|×m, and the
function Argmax takes the category with the highest probability corresponding to the PGT.

3.3. Hierarchical Attention Mechanism Fused with Bi-LSTM

Reference [28] proposed a method for extracting contextual information from char-
embeddings sequences using Bi-LSTM networks prior to hierarchical attention mechanisms.
Although the performance of Bi-LSTM in the semantic learning of long-distance dependen-
cies outweighs traditional RNN and LSTM [33], this method is unsuitable for long texts. It
also introduces too many parameters that are inappropriate for an unbalanced dataset. In
contrast, reference [27] proposed an algorithm structure for Bi-LSTM based on an attention
mechanism. However, this attention mechanism does not consider the inherent hierarchical
characteristics of text data and cannot effectively achieve deep fusion of HA and Bi-LSTM
to extract semantic features suitable for classification problems. Therefore, this paper
improves on these deficiencies: based on the hierarchical attention mechanism above, a
Bi-LSTM network layer is added between the low-order and higher-order representation
layers to extract the contextual semantic information of the segment-level embeddings.

The specific algorithm adds a group of calculation formulas for the Bi-LSTM network
between formulas (13) and (14) of HA in the previous text. That is, taking the output result
sequence of Equation (13) as the input of the Bi-LSTM network, a new result sequence
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with the same structure is calculated and finally is input into Equation (14). The detailed
calculation process is as follows [28,33]:
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the training phase, each classifier uses cross-entropy as a loss function [24] as follows:
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(18)

Simultaneously, Adam [37] is used as the optimizer algorithm to optimize and update
the parameters, which is given by

W+ = −LearningRate× m√
v

m = b1 ×m + (1− b1)× dx
v = b2 × v + (1− b1)× (dx)2

(19)

The transfer learning method proposed in this section can theoretically make the
classifier model have an initial value closer to the optimal solution, thereby reducing the
dependence of the child classifier on the amount of training sample data and improving
the convergence efficiency of the training process.
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4. Results and Discussion

This section briefly introduces the datasets used in this study and the experimental
environment configuration and parameter settings. Then, baseline models, such as BERT
and ERNIE, are proposed, and the evaluation metrics for the experimental results are
determined. Finally, the performance of the XLNet model, the effect of HAs, and the effect
of HA-based transfer learning are evaluated from multiple perspectives. The purposes of
these experiments are to answer the following four questions.

RQ1: How does the XLNet pretrained model perform in extracting text semantic features?
RQ2: Which types of HAs have the best performance in learning document-level embed-
dings?
RQ3: Can HA-based transfer learning improve the training and testing performance of the
classifier trees?
RQ4: Can the XLNet + Has + TL model achieve the best performance for the classifier tree?

4.1. Dataset Description

Owing to the lack of publicly available textual datasets on poverty governance, the
authors’ team created the dataset used in the experiments. Its source is the webpage
text searched and extracted by the authors using a web crawler program on the Internet
with poverty governance-related keywords in the Chinese style, such as “targeted poverty
alleviation”, “poverty alleviation”, “returning to poverty”, etc. Then, we cleaned the
webpage text data, filtered the HTML tags and characters unrelated to the main text, and
unified the encoding of all texts. To eliminate the influence of geographical names, time,
and people’s names on the classification results of nouns, we replaced these words in the
original texts with unified category markers. Next, based on the standardized format of the
texts, industry experts on our team were organized to annotate the text using HLT-PGT. To
eliminate as many non-objective factors as possible from the labeling, these experts were
divided into three groups, two of which conducted their work back to back. Finally, texts
with inconsistent markings from these two groups of experts were taken out and handed
over to the third group for independent evaluation. We obtained a labeled dataset with this
organizational structure and process (Table 1).

4.2. Experimental Setups

To verify the effectiveness of HTMC-PGT, this study uses a 7:3 ratio to partition the
dataset, forming a training set (70%) and a validation set (30%), with the testing set being
the same as the validation set. We do not plan to optimize the hyperparameters (mentioned
later) in the experiments, aiming to simplify constructing the classifier tree. Therefore,
preserving an independent testing set is unnecessary, which can also avoid inconsistent
data distribution between datasets (for training, validation, and testing) when randomly
extracted from the original dataset.

Document Model Settings. We set the word count of PGT documents to 600, which
means that documents exceeding this limit will be truncated, whereas documents below
this length will be filled with the placeholder “[PAD]”. Each document is divided into
150 segments, each containing four words.

XLNet Settings. We downloaded the pretrained model “chinese-xlnet-base” from
Hugface, which has 13 hidden layers, each with a dimension of 768 [18]. Because the
last hidden layer extracts the semantic information of words in the original text, we use
the output of this layer as the char-level embeddings to input the classification model of
PGT [35].

Training Details [28,38]. We use Adam as the optimizer and set the learning rate to
0.0005, the weight rate to 0.0001, and the batch size to 32. In addition, for the sub classifier
i whose parent node j in the classifier tree Y has already obtained the optimal training
parameters, the parameters’ values
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parameters in HAs and FC can be automatically tuned during training. At the same time,
to avoid overfitting, we use dropout technology [39] and set the dropout rate to 0.5.

Platform Settings. These experiments are implemented on the Windows Server 2020
platform with Intel Core processors i7-7800X@3.5 GHz and a memory of 32 GB (DDR4
2666 MHz 16 GB * 2). The program is encoded in Python 3.6 and uses Pytorch 1.7.0 as its
machine learning library. To improve the efficiency of the tensor calculation, the machine is
equipped with a graphics card (NVIDIA GeForce GTX 1080 Ti) with a graphics memory of
11 GB, and the CUDA (Compute Unified Device Architecture) version is 10.2.

Table 1. Summary of datasets for each classifier in the classifier tree *.

Index Classifier
No.

Parent
Classifier |C| |D|

Training Set Valid Set

Total PL Total PL

1 C00000 — 4 13,979 9785 2446 4194 1049
2 C01000 C00000 6 4620 3233 539 1387 231
3 C01100 C01000 2 1383 967 484 416 208
4 C01110 C01100 5 1017 711 142 306 61
5 C01120 C01100 4 365 255 64 110 28
6 C01200 C01000 2 1673 1170 585 503 252
7 C01300 C01000 2 475 332 166 143 72
8 C01310 C01300 2 194 135 68 59 30
9 C01320 C01300 7 280 195 28 85 12

10 C01400 C01000 2 228 159 80 69 35
11 C01410 C01400 3 156 108 36 48 16
12 C01420 C01400 4 71 49 12 22 6
13 C01500 C01000 2 659 460 230 199 100
14 C01510 C01500 2 440 307 154 133 67
15 C01600 C01000 2 197 137 69 60 30
16 C02000 C00000 3 4890 3422 1141 1468 489
17 C02100 C02000 2 3711 2597 1299 1114 557
18 C02110 C02100 4 2788 1951 488 837 209
19 C02120 C02100 2 922 645 323 277 139
20 C02200 C02000 4 652 456 114 196 49
21 C02300 C02000 2 525 367 184 158 79
22 C02310 C02300 2 456 318 159 138 69
23 C03000 C00000 4 3202 2241 560 961 240
24 C04000 C00000 3 1264 884 295 380 127
25 C04100 C04000 2 268 187 94 81 41
26 C04200 C04000 2 511 357 179 154 77
27 C04300 C04000 2 483 337 169 146 73

* Classifier number (Classifier No.), number of labels (|C|), number of documents (|D|), the total number of
instances (Total), the total number of instances per label (PL).

4.3. Baseline Models

We construct a baseline model from three perspectives for the experimental evaluation:
(1) an extraction method for char-level embeddings. We use pretraining models based on
BERT, such as XLNet [18], BERT-BASE (BERT), BERT-WWM (WWM) [40], and ERNIE3.0 [16],
to extract char-level embeddings representations during the preprocessing. (2) An extraction
method for document-level embeddings. We use models such as HAs (HA or Bi-LSTM + HA)
and FastText (FT) [41] to extract document-level embeddings representations for classification
based on char-level embeddings. (3) Whether to enable transfer learning between classifiers.
That is, whether transfer learning (TL) is enabled for classifiers using HA models in the
classifier tree. Therefore, we design 13 models based on these elements from these three
perspectives. Of these, the first one, XLNet + HAs + FC + TF, is the HTMC-PGT model
proposed in this paper, and the remaining 12 models are the baseline models (see Table 2).
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Table 2. Baseline models in each experiment.

Ex. Model W-Embeddings D-Embeddings Transfer Learning

Ex. I

XLNet + HA + FC XLNet HA /
BERT + HA + FC BERT HA /
WWM + HA + FC BERT-WWM HA /

ERNIE3.0 + HA + FC ERNIE3.0 HA /

Ex. II
XLNet + HA + FC XLNet HA /
XLNet + FT + FC XLNet FT /

XLNet + BiLSTM + HA + FC XLNet Bi-LSTM + HA /

Ex. III

XLNet + HA + FC XLNet HA /
XLNet − HA − FC − TL XLNet HA TL

XLNet + BiLSTM + HA + FC XLNet BiLSTM + HA /
XLNet + BiLSTM + HA + FC + TL XLNet BiLSTM + HA TL

Ex. IV

XLNet + BiLSTM + HA + FC + TL XLNet BiLSTM + HA TL
XLNet + BiLSTM + HA + FC XLNet BiLSTM + HA /

XLNet + HA + FC + TL XLNet HA TL
XLNet + HA + FC XLNet HA /
WWM + HA + FC BERT-WWM HA /
BERT + HA + FC BERT HA /

ERNIE3.0 + HA + FC ERNIE3.0 HA /
XLNet + FT + FC XLNet FT /

4.4. Evaluation Metrics

This study assesses the effectiveness of specific methods by utilizing precision (P),
recall (R), and F-measure (F1) as metrics [42]. The classifier tree models used in this study
differ in their training and testing stages, leading to the division of these metrics into
three categories based on specific algorithms: micro-label, macro-averaging [11,43], and
micro-tree. These categories are used to evaluate the performance of the model during the
training and testing stages. We compare these three types of metrics and use the micro-label
and macro-averaging of the precision P, recall R, and F1 to determine the overall average
performance of all classifiers in the classifier tree in each class. In contrast, we use the
micro-tree of precision P, recall R, and F1 to observe the performance of the classifier tree in
the classification results.

Given a classifier i ∈ C (C is the classifier set for a classifier tree) and category j ∈ Li

(Li is the category set of classifier i), let TPj
i , FPj

i , and FN j
i be the values of true positives,

false positives, and false negatives, respectively. Then, the Pi, Ri, and F1i metrics for
classifier i are defined as follows [11,28]:

Pi =
∑j∈Li

TPj
i

∑j∈Li
TPj

i+∑j∈Li
FPj

i

,

Ri =
∑j∈Li

TPj
i

∑j∈Li
TPj

i+∑j∈Li
FN j

i

,

F1i =
2×Pi×Ri

Pi+Ri

(20)

To combine the results measured by all classifiers in the classifier tree, we use the
macro-averaging of the precision Pmacro, recall Rmacro, and F1macro [11]:

Pmacro−train = ∑n
i=1 Pi

n

Rmacro−train = ∑n
i=1 Ri

n

F1macro−train = ∑n
i=1 F1i

n

(21)
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Given a label k ∈ K (K is the set of leaf nodes on the multi-label tree), let TPk, FPk, and
FNk, be the values of true positives, false positives, and false negatives, respectively, in the
test stage. Subsequently, the Pk, Rk, and F1k metrics are defined as

Pk =
TPk

TPk + FPk
, Rk =

TPk
TPk + FNk

, F1k =
2× Pk × Rk

Pk + Rk
(22)

Pmacro−test =
∑m

i=1 Pi

m
, Rmacro−test =

∑m
i=1 Ri

m
, F1macro−test =

∑m
i=1 F1i

m
(23)

Pmicro−test =
∑k∈K TPk

∑k∈K TPk+∑k∈K FPk
,

Rmicro−test =
∑k∈K TPk

∑k∈K TPk+∑k∈K FNk
,

F1micro−test =
2×Pmicro×Rmicro

Pmicro+Rmicro

(24)

4.5. Experiment I: The Performance of the XLNet Model

The primary purpose of Experiment I is to verify the effectiveness of using XLNet to
extract text semantic features using a combination of pretrained models and hierarchical
attention. We select pretrained models in the experiment, such as BERT base, BERT-WWM,
and ERNIE3.0, as baseline models. First, we train 27 classifiers for each of the four classifier
trees, totaling 108 classifiers. The corresponding P, R, and F1 values are then calculated
for each classifier based on the metrics described in Section 4.4. The detailed results are
presented in Table 3. Among the four models listed in Table 4, no pretrained model has
a 100% overwhelming absolute advantage for the 27 classifiers. However, from a relative
perspective, the advantage of XLNet’s training effect is still significant (Figure 7). In Figure 7,
the horizontal axis represents each model’s performance metrics P, R, and F1. In contrast,
the vertical axis represents the proportion of classifiers with the best training performance
compared to other models for each metric. Among each group of the 27 classifiers for
the four classifier trees, from the perspective of P, the group using XLNet has 16 (59%)
classifiers outperform the groups using the other three baseline models in terms of training
performance. The best classifiers using BERT, WWM, and ERNIE3.0 are 10 (37%), 4 (19%),
and 2 (7%), respectively.
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Figure 7. Comparison of training advantages between XLNet and baseline models such as BERT,
WWM, and ERNIE3.0.

Based on Table 3, we calculated the mean values of P, R, and F1 for the 27 classifiers in
each model. The model using XLNet demonstrates the best performance in the training
of the classifier tree, with an average of P value as 93.7%, R value as 93.3%, and F1 value
as 93.2%. Moreover, the results show that the performance of XLNet is 2.7%, 5%, and
15% higher than the other baseline models on P values, 4.4%, 5.9%, and 18.1% higher on
R values, and 4.3%, 6%, and 18.8% higher on F1 values, respectively. Therefore, for RQ1
“How does the XLNet pretrained model perform in extracting text semantic features?”, we
can conclude that the training results using the XLNet pretrained model in the classifier
tree are significantly better than those of the other three models.
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Table 3. The performance of the XLNet model.

Classifier
No.

XLNet + HA + FC BERT + HA + FC WWM + HA + FC ERNIE3.0 + HA + FC

P R F1 P R F1 P R F1 P R F1

C00000 0.970 * 0.967 0.969 0.963 0.960 0.961 0.965 0.964 0.964 0.948 0.957 0.952
C01000 0.956 0.934 0.944 0.940 0.919 0.928 0.951 0.936 0.943 0.923 0.913 0.917
C01100 0.977 0.990 0.983 0.987 0.984 0.986 0.979 0.988 0.983 0.958 0.955 0.957
C01110 0.974 0.892 0.926 0.965 0.744 0.781 0.731 0.598 0.594 0.303 0.394 0.335
C01120 0.971 0.989 0.979 0.924 0.953 0.936 0.972 0.988 0.979 0.610 0.502 0.483
C01200 0.955 0.952 0.953 0.893 0.884 0.889 0.952 0.955 0.954 0.889 0.900 0.895
C01300 0.826 0.816 0.821 0.918 0.905 0.910 0.884 0.878 0.881 0.928 0.886 0.900
C01310 0.962 0.972 0.966 0.962 0.972 0.966 0.951 0.944 0.947 0.821 0.763 0.773
C01320 0.953 0.833 0.863 0.638 0.512 0.532 0.427 0.326 0.314 0.340 0.329 0.310
C01400 0.809 0.830 0.819 0.809 0.848 0.824 0.812 0.866 0.829 0.826 0.858 0.839
C01410 0.802 0.844 0.808 0.563 0.637 0.554 0.649 0.692 0.653 0.489 0.389 0.308
C01420 0.969 0.917 0.933 0.659 0.727 0.683 0.384 0.464 0.420 0.125 0.250 0.167
C01500 0.780 0.772 0.775 0.862 0.846 0.853 0.826 0.816 0.820 0.791 0.765 0.775
C01510 0.977 0.970 0.974 1.000 1.000 1.000 1.000 1.000 1.000 0.951 0.878 0.905
C01600 0.978 0.941 0.958 0.825 0.665 0.688 0.958 0.883 0.912 0.922 0.765 0.804
C02000 0.989 0.982 0.986 0.978 0.976 0.977 0.983 0.970 0.976 0.970 0.969 0.969
C02100 0.996 0.996 0.996 1.000 0.998 0.999 0.996 0.994 0.996 0.985 0.989 0.987
C02110 0.986 0.980 0.983 0.981 0.970 0.975 0.980 0.967 0.973 0.709 0.633 0.648
C02120 0.995 0.997 0.996 0.987 0.990 0.989 0.990 0.987 0.988 0.940 0.952 0.945
C02200 0.670 0.784 0.704 0.936 0.833 0.839 0.935 0.818 0.830 0.531 0.603 0.533
C02300 0.979 0.997 0.988 0.930 0.946 0.938 0.997 0.979 0.987 0.831 0.920 0.866
C02310 1.000 1.000 1.000 0.996 0.965 0.980 1.000 1.000 1.000 0.901 0.849 0.873
C03000 0.919 0.914 0.916 0.926 0.920 0.923 0.926 0.914 0.919 0.914 0.906 0.909
C04000 0.986 0.987 0.987 0.963 0.945 0.953 0.946 0.954 0.950 0.861 0.879 0.869
C04100 0.975 0.975 0.975 1.000 1.000 1.000 1.000 1.000 1.000 0.807 0.516 0.411
C04200 0.974 0.974 0.974 0.981 0.979 0.980 0.968 0.966 0.967 0.960 0.948 0.953
C04300 0.984 0.996 0.990 0.984 0.934 0.956 0.801 0.754 0.773 0.924 0.650 0.690
Avg(C) 0.937 0.933 0.932 0.910 0.889 0.889 0.887 0.874 0.872 0.783 0.752 0.740

* The bold numbers in the table indicate that in the horizontal direction, the performance of this classifier using
this model could achieve the best.

4.6. Experiment II: Performance of Hierarchical Attention Mechanism

The experiment in this section aims to compare the performance of various hierarchi-
cal attention mechanisms based on semantic features extracted from XLNet pretraining
models. The HA, FT, and Bi-LSTM + HA selected in Experiment II are hierarchical atten-
tion mechanisms. These three structures aim to solve the problem of mapping char-level
embeddings of the text to document-level embeddings. Unlike HA, FT uses maximum
pooling to address the mapping from char-level embedding to segment-level embeddings
and finally to document-level embeddings. Bi-LSTM + HA, on the other hand, adds a bidi-
rectional LSTM (Bi-LSTM) on top of the lower-order representation layer of HA and then
maps segment-level embeddings to document-level embeddings using the higher-order
representation layer of HA.

In Experiment II, we train 27 classifiers in the classifier tree using the XLNet-based HA,
FT, and Bi-LSTM models and then obtain a total of 3 classifier trees and 81 classifiers, as well
as the P, R, and F1 values of each classifier (see Table 4 for detailed results). Compared with
the other two models, the XLNet + BiLSTM + HA + FC model has a significant advantage
in various metrics, with the average values of P, R, and F1 reaching 95.6%, 95%, and 94.9%,
respectively. Furthermore, from the micro perspective of each classifier, for the three metrics
of P, R, and F1, the number and proportion of classifiers that used BiLSTM + HA and achieved
optimal performance in the three models are significantly higher than those of the other two,
namely 22 (81%), 21 (78%), and 21 (78%), as shown in Figure 8.
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Table 4. The performance of the hierarchical attention mechanism.

Classifier
No.

XLNet + HA + FC XLNet + FT + FC XLNet + BiLSTM + HA + FC

P R F1 P R F1 P R F1

C00000 0.970 0.967 * 0.969 0.844 0.819 0.827 0.971 0.966 0.968
C01000 0.956 0.934 0.944 0.875 0.792 0.826 0.961 0.946 0.953
C01100 0.977 0.990 0.983 0.919 0.868 0.889 0.988 0.995 0.992
C01110 0.974 0.892 0.926 0.804 0.452 0.527 0.949 0.890 0.915
C01120 0.971 0.989 0.979 0.567 0.473 0.476 1.000 1.000 1.000
C01200 0.955 0.952 0.953 0.870 0.802 0.828 0.964 0.936 0.949
C01300 0.826 0.816 0.821 0.683 0.684 0.684 0.882 0.882 0.882
C01310 0.962 0.972 0.966 0.737 0.638 0.629 0.980 0.986 0.983
C01320 0.953 0.833 0.863 0.320 0.283 0.239 0.950 0.926 0.924
C01400 0.809 0.830 0.819 0.723 0.592 0.597 0.846 0.922 0.867
C01410 0.802 0.844 0.808 0.605 0.585 0.552 0.740 0.797 0.752
C01420 0.969 0.917 0.933 0.162 0.250 0.197 1.000 1.000 1.000
C01500 0.780 0.772 0.775 0.669 0.654 0.659 0.847 0.814 0.826
C01510 0.977 0.970 0.974 0.797 0.801 0.799 1.000 1.000 1.000
C01600 0.978 0.941 0.958 0.865 0.530 0.477 0.978 0.941 0.958
C02000 0.989 0.982 0.986 0.885 0.845 0.859 0.994 0.987 0.990
C02100 0.996 0.996 0.996 0.817 0.887 0.839 1.000 0.998 0.999
C02110 0.986 0.980 0.983 0.862 0.653 0.693 0.990 0.980 0.985
C02120 0.995 0.997 0.996 0.698 0.715 0.676 0.990 0.995 0.992
C02200 0.670 0.784 0.704 0.371 0.347 0.312 0.900 0.833 0.813
C02300 0.979 0.997 0.988 0.577 0.635 0.420 0.979 0.997 0.988
C02310 1.000 1.000 1.000 0.555 0.541 0.173 0.996 0.965 0.980
C03000 0.919 0.914 0.916 0.805 0.692 0.685 0.924 0.932 0.928
C04000 0.986 0.987 0.987 0.808 0.812 0.810 0.995 0.994 0.994
C04100 0.975 0.975 0.975 0.666 0.638 0.639 1.000 1.000 1.000
C04200 0.974 0.974 0.974 0.900 0.886 0.892 0.987 0.987 0.987
C04300 0.984 0.996 0.990 0.497 0.499 0.479 0.996 0.984 0.990
Avg(C) 0.937 0.933 0.932 0.699 0.643 0.618 0.956 0.950 0.949

* The bold numbers in the table indicate that in the horizontal direction, the performance of this classifier using
this model could achieve the best.
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Figure 8. Comparison of training advantages of HA, FT and BiLSTM + HA (design concept is
identical to Figure 7).

Moreover, the results show that BiLSTM + HA was 1.8% and 25.1% higher than the
other two models for the P values, 1.7% and 30.7% higher for the R values, and 1.7% and
33.1% higher for the F1 values, respectively. Therefore, for RQ2 “Which types of HAs
have the best performance in learning document-level embeddings?”, we can conclude
that the training results of the XLNet + BiLSTM + HA + FC model in the classifier tree are
significantly better than those of the other two models.
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4.7. Experiment III: The Availability of Transfer Learning Method Based on HAs

Experiment III is designed to verify whether transfer learning between classifiers in a
tree could improve the training performance of the classifier tree. Therefore, based on the
results of the first two experiments, this experiment further modified the XLNet + HA + FC
and XLNet + BiLSTM + HA + FC models. Therefore, when training the classifier tree to
obtain each node in sequence, the current classifier can use the HA parameters of its parent
node classifier (the model that has completed the training and has the best accuracy in the
validation set) as the initial values of its own HA parameters.

In Experiment III, we train all classifiers in the classifier tree using XLNet + HA + FC and
XLNet + BiLSTM + HA + FC models. We then obtain 2 classifier trees and 54 classifiers for each
classifier’s P, R, and F1 values. Simultaneously, we directly reuse the training results of model
XLNet + HA + FC in Experiment I and the results of model XLNet + BiLSTM + HA + FC in
Experiment II. Comparing the results shown in Table 5, the transfer learning of the nodes in the
classifier tree can improve the classifier classification effect from the perspective of P, R, and F1.
The XLNet + BiLSTM + HA + FC + TL model has significant performance advantages in various
metrics, with the average values of P, R, and F1 reaching 96.5%, 96.1%, and 96%, respectively.

Table 5. The availability of transfer learning method based on HAs.

Classifier
No.

XLNet + HA + FC + TL XLNet + BiLSTM + HA + FC XLNet + BiLSTM + HA + FC + TL

P R F1 P R F1 P R F1

C00000 0.970 0.967 0.969 0.971 0.966 0.968 0.971 0.966 0.968
C01000 0.956 0.934 0.944 0.961 0.946 0.953 0.961 0.946 0.953
C01100 0.984 0.993 0.989 0.988 0.995 0.992 0.995 0.995 0.995
C01110 0.898 0.912 0.896 0.949 * 0.890 0.915 0.937 0.925 0.928
C01120 0.989 0.969 0.978 1.000 1.000 1.000 1.000 1.000 1.000
C01200 0.956 0.945 0.950 0.964 0.936 0.949 0.953 0.948 0.951
C01300 0.929 0.923 0.926 0.882 0.882 0.882 0.938 0.929 0.933
C01310 0.962 0.972 0.966 0.980 0.986 0.983 0.980 0.986 0.983
C01320 0.967 0.948 0.954 0.950 0.926 0.924 0.968 0.931 0.943
C01400 0.915 0.943 0.928 0.846 0.922 0.867 0.909 0.961 0.930
C01410 0.841 0.785 0.804 0.740 0.797 0.752 0.764 0.789 0.769
C01420 0.550 0.727 0.611 1.000 1.000 1.000 1.000 1.000 1.000
C01500 0.880 0.875 0.877 0.847 0.814 0.826 0.940 0.916 0.926
C01510 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
C01600 0.978 0.941 0.958 0.978 0.941 0.958 0.978 0.941 0.958
C02000 0.989 0.982 0.986 0.994 0.987 0.990 0.994 0.987 0.990
C02100 0.996 0.992 0.994 1.000 0.998 0.999 1.000 0.998 0.999
C02110 0.984 0.973 0.978 0.990 0.980 0.985 0.987 0.979 0.983
C02120 0.992 0.992 0.992 0.990 0.995 0.992 1.000 1.000 1.000
C02200 0.859 0.829 0.781 0.900 0.833 0.813 0.885 0.832 0.804
C02300 1.000 1.000 1.000 0.979 0.997 0.988 1.000 1.000 1.000
C02310 1.000 1.000 1.000 0.996 0.965 0.980 1.000 1.000 1.000
C03000 0.919 0.914 0.916 0.924 0.932 0.928 0.924 0.932 0.928
C04000 0.986 0.987 0.987 0.995 0.994 0.994 0.995 0.994 0.994
C04100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
C04200 0.995 0.992 0.993 0.987 0.987 0.987 1.000 1.000 1.000
C04300 0.857 0.882 0.869 0.996 0.984 0.990 0.984 0.996 0.990
Avg(C) 0.939 0.940 0.935 0.956 0.950 0.949 0.965 0.961 0.960

* The bold numbers in the table indicate that in the horizontal direction, the performance of this classifier using
this model could achieve the best.

Note that 5 of the 27 classifiers in the classifier tree do not use transfer learning during
the training. This is because (1) the classifier C00000 is the root node of the tree, and there
is no parent node available to it for transfer learning and (2) the target categories of these
four classifiers, C01000, C02000, C03000, and C04000, are not semantically related to the
target categories of the root node classifier C00000, which results in the poor performance
of the classifier using transfer learning. Therefore, these four classifiers do not use transfer
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learning for training to avoid affecting the learning effect of subsequent nodes. The number
of classifiers involved in the transfer learning is 22 instead of 27.

Furthermore, from the micro perspective of each classifier, for the three metrics of
P, R, and F1, the number and proportion of classifiers that use TL and achieve optimal
performance in the three models are significantly higher than those of the other two, namely
22 (81%), 21 (78%), and 21 (78%), as shown in Figure 9.
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Figure 9. Comparison of training advantages of the model XLNet + BiLSTM + HA + FC using TL or
not (design concept is identical to Figure 7).

Moreover, the results show that the XLNet + BiLSTM + HA + FC + TL model is 0.9%
higher than that without TL for the P value, 1.1% higher for the R value, and 1% higher for
the F1 value. Therefore, for RQ3 “Can HA-based transfer learning improve the training
and testing performance of classifier trees?”, we can conclude that the training results of
the model with TL in the classifier tree perform better than those without TL.

4.8. Experiment IV: The Performance of Classifier Trees Based on Various Models

The three experiments conducted above aim to train each classifier in the classifier tree
from different perspectives, enabling the identification of the best model and method for
each direction. Experiment IV in this section, however, focuses on the classification scenario
of PGT by treating the classifier tree, whose purpose is to evaluate various models and
methods using the final classification results to determine the optimal one. This experiment
is based on the results of the training stages of all classifiers obtained from the previous
three experiments. It requires all 27 classifiers to be trained independently using the model
as a unit to be assembled according to a multi-label tree, which associates labels with
classifiers and converts the label tree into an instance of the classifier tree. The detailed
process is shown in Algorithm 1.

Algorithm 1: The construction of the classifier tree

N # the number of classifiers in a classifier tree.
Input: The classifier information set of classifier tree Classi f ierTree is composed of classifiers
instances set Classi f iers and the class–classifier relationship collection of all classifiers RCs (Note:
All classifiers are named as classifier no. above).
Output: The root classifier rootClassi f ier of the classifier tree contains the structure of a complete
classifier tree instance, which can be used to calculate the leaf node labels for PGT.
1: Classifiers = ClassifierTree.Classifiers
2: RCs = ClassifierTree. RCs
3: For j = 1 to N Do
4: classifier = Classifiers[j]
5: classifier.loadcheckpoint() # load model checkpoint from .tar file.
6: rc = RCs[classifier.name] # get class–classifier relationship for this classifier.
7: classifier.rc = rc # rc is a dictionary, the keys of which are classes of the classifier,
and the values are the collection of the corresponding classifier no
8: Return rootClassifier = ClassifierTree.getClassifer (“C00000”) # C00000 is the name of the root node
classifier in the classifier tree.
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In the classifier tree, the test samples start from the root node classifier individually
and turn to the corresponding classifier based on the classification results of each classifier
they experience until they reach the leaf node of the label tree (this process is shown in
Algorithm 2). Theoretically, in the prediction process of all test samples, a maximum of
four classifiers are loaded for each test sample. However, the prediction of all samples
requires the loading of 27 classifiers. The memory required for each classifier’s checkpoint
after loading is 632 MB; therefore, the total memory required for the testing program is
approximately 17 GB, much larger than the graphics memory size used in this experiment.
We preload all models into memory during the experimental process to solve this problem
and wait until a specific classifier is needed for prediction before loading the classifier
and data into the graphics memory. After use, we promptly migrate them to memory. In
this manner, the time cost of the model’s spatial migration in graphics and memory is
exchanged for the computational performance of the classifier model in graphics, and the
average prediction time for each sample is reduced to 0.8 s.

Algorithm 2: The prediction of the classifier tree for PGT

M # the number of examples.
Input: rootClassifier is the root node of the classifier tree; P is the set of examples; L is the set of
labels.
Output: Y is the leaf label predicted.
1: For i = 1 to M Do
2: p = P[i]
3: l = L[i]
4: y = rootClassifier.predict(text = p, truelabel = l)
5: Y.append(y)
6: Return Y

We use the above algorithm to construct the corresponding classifier trees for the
eight models involved in this study and conduct classification performance tests using
the same set of test samples. Various indicators of the test results are presented in Table 6.
These metrics are divided into micro- and macro-average types. The former measures the
classification performance of a classifier tree. By contrast, the latter measures the average
classification performance of all classifiers on each label in the classifier tree.

Table 6. The performance of the classifier tree based on various models.

Model
Micro Macro Avg.

P R F1 P R F1

XLNet + BiLSTM + HA + FC + TL 0.961 0.961 0.961 0.946 0.920 0.929
XLNet + BiLSTM + HA + FC 0.957 0.957 0.957 0.939 0.914 0.919

XLNet + HA + FC + TL 0.882 0.882 0.882 0.778 0.836 0.789
XLNet + HA + FC 0.851 0.851 0.851 0.788 0.817 0.766
WWM + HA + FC 0.857 0.857 0.857 0.737 0.693 0.692
BERT + HA + FC 0.825 0.825 0.825 0.741 0.727 0.705

ERNIE3.0 + HA + FC 0.673 0.673 0.673 0.535 0.491 0.467
XLNet + FT + FC 0.580 0.580 0.580 0.392 0.346 0.340

The results in Table 6 indicate that the proposed model “XLNet + BiLSTM + HA + FC + TL”
achieved the best classification performance for all metrics. The conclusions from the first three
experiments are obtained and verified. Clearly, (1) XLNet performs significantly better than other
pretrained models in extracting semantic embeddings, and (2) BiLSTM + HA has significantly
improved performance compared to HA. At the same time, (3) models using TL can slightly
improve the classification performance on their original basis, and this degree of improvement
weakens the overall performance improvement.
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5. Conclusions

To solve the hierarchical multi-label classification problem of PGTs, this study proposes
an HTMC-PGT framework. The most prominent feature of this framework is transforming
the traditional HMTC problem into a parameter solving problem for various multi-class
classifiers in a classifier tree. In this way, the HTMC-PGT framework brings more flexibility
to problem solving. In particular, (1) gradually training classifiers based on the classifier
tree structure can effectively solve the problems of sample scarcity and imbalance in leaf
node labels on hierarchical label trees. In addition, to improve the overall performance of
the classifier tree, relevant experiments are conducted on the pretrained extraction model of
character semantic embedding, refining the model of document-level semantic embedding
and transfer learning between the parent and child classifiers in the classifier tree. It is found
that (2) XLNet performs better than other pretrained models such as BERT in HTMC-PGT;
(3) BiLSTM + HA can extract document-level embedding vectors that are more conducive
to text classification; and (4) on the whole classifier tree scale, the transfer learning (TL)
between parent and child node classifiers can increase the overall classification performance
of the classifier tree to a certain extent. The above conclusions obtained during the training
phase of independent learning of each classifier are equally valid during the testing phase
of the classifier tree as a whole experiment. Moreover, the micro-precision, recall, and F1
values of XLNet + BiLSTM + HA + FC + (TL) proposed in this paper can reach values over
95%, 7.5%, and 38.1% higher than the other baseline models used in this study. The method
proposed in this study has some shortcomings. First, the time required for extracting
char-level semantic embeddings using XLNet is much longer than that required for models
such as BERT. However, by optimizing the program code, the experimental results (1 s
per example) in the final testing stage can also satisfy practical requirements. Second, the
proposed transfer learning between classifiers requires a semantic parent–child inclusion
relationship between classifiers. Only in this way can TL be used to improve the training
performance of the sub-classifiers. Overall, the HTMC-PGT framework proposed in this
study can better meet the requirements of solving the hierarchical multi-label classification
problem of PGT with various evaluation indicators.
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