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Abstract: Rolling bearings are critical in maintaining smooth operation of rotating machinery and
considerably influence its reliability. The signals collected from rolling bearings in field conditions
are often subjected to noise, creating a challenge to extract weaker fault features. This paper proposes
a rolling bearing fault diagnosis method that addresses the above-mentioned problem through the
moth-flame optimization algorithm optimized variational mode decomposition (MFO-optimized
VMD) and an ensemble differential evolution online sequential extreme learning machine (DE-
OSELM). By using the dynamic adaptive weight factor and genetic algorithm cross operator, the
optimization accuracy and global optimization ability of the moth-flame optimization (MFO) are
improved, and the two basic parameters of VMD decomposition level and quadratic penalty factor
are adaptive selected. Since the vibration characteristics of the signal cannot be fully interpreted by
a single index, The effective weighted correlation sparsity index (EWCS) is utilized to extract the
relevant intrinsic mode functions (IMF) of VMD decomposition and extract their energies as features.
In order to improve the classification accuracy, The energy feature set is subsequently inputted into
DE-OSELM for training and classification purposes, and the proposed method is assessed via a
sample set with four different health states of actual rolling bearings. Our proposed method results
are compared with other diagnosis methods, proving its feasibility to diagnose rolling bearing faults
with higher classification accuracy.

Keywords: MFO; VMD; DE-OSELM; fault diagnosis

1. Introduction

Rolling bearings are one of the most widely used mechanical components in rotary
machinery and have diverse applications in the medical, aerospace, and railway fields [1–3].
Bearing failures account for 30% of rotating machinery failures, according to published
research [4]. Ensuring the normal and safe operation of rolling bearings thus demands
state monitoring and fault diagnosis [5]. When a rolling bearing fails, vibration signals
emit regular pulse signals, which analysts often scrutinize to identify the specific type of
failure [6–8]. However, the noisy nature of collected vibration signals poses difficulties in
extracting fault features from pulse signals, which is an area of active research in the field
of fault diagnosis.

Several approaches have been proposed for processing vibration signals, including
empirical mode decomposition (EMD) [9–11], ensemble empirical mode decomposition
(EEMD) [12–14], and the local mean decomposition method (LMD) [15–17]. Nonetheless,
modal-analysis-based approaches, such as EMD, EEMD, and LMD, are limited in that
they cannot fully address the issue of modal mixing and endpoint effect. Dragomiretskity
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et al. [18] introduced an adaptive signal analysis approach named VMD that deals with sig-
nal processing by formulating and resolving variational issues, providing strong resistance
to noise. Owing to its ability to tackle modal mixing and endpoint effect effectively, VMD
finds applications in multiple fields, including generator anomaly detection, structural
health monitoring, and bearing fault diagnosis [19–21]. Li and colleagues [22] devised a
diagnosis method for fault detection in rolling bearings using VMD and improved Kernel
Extreme Learning Machine and demonstrated that VMD successfully addressed the mode
mixing problem and boasted superior computational efficiency compared to EMD and
LMD methods.

However, VMD requires pre-set parameters, including the decomposition number
(K) and penalty factor (α), which significantly affect the final outcome. To identify the
optimal parameter combination, several studies have proposed different methods. For
instance, Jiang et al. [19] established a central frequency mode decomposition (CFMD),
based on VMD, and the difficulty of the selection of initial parameters in the traditional
VMD was relieved, provided that the range of bandwidth parameters was preset. Wang
et al. [23] compared the center frequency of modal components that were decomposed by
different parameter combinations. However, this method had limited adaptability. Tang
et al. [24] implemented the Particle Swarm Optimization (PSO) algorithm to optimize
VMD and demonstrated its ability to extract early fault features from bearing vibrations.
Another study by Zhang et al. [25] suggested a parameter adaptive VMD strategy based on
the grasshopper optimization algorithm (GOA) and validated its efficiency in analyzing
the vibration signals of real rotating machinery. Moreover, Gu et al. [26] adopted the
grey wolf optimizer (GWO) algorithm, which was superior to the fixed-parameter VMD
and maximum weighted kurtosis optimization VMD in terms of selecting the optimal
parameter combination. These studies show that optimization algorithms with strong
search abilities can achieve better adaptive selection of VMD parameters. Recently, the MFO
algorithm [27] has achieved excellent performance in solving engineering optimization
problems [28,29]. Sivalingam et al. [30] compared MFO with other optimization algorithms,
finding that MFO performed the best. However, the original MFO algorithm searches
in the region around its unique flame, hence increasing the risk of falling into the local
optimum and slow convergence speed. Therefore, the original MFO algorithm requires
improvement. Although VMD can effectively solve the modal problem, there will still be
false intrinsic modal functions (IMF) in the decomposed IMF, which will affect the accuracy
of the fault classification of rolling bearings [31]. Therefore, it is necessary to screen the
decomposed IMF.

In addition to feature extraction, the swift and accurate identification of fault types is
pivotal for fault diagnosis. ELM replaces the gradient descent algorithm with a random
assignment method and enhances the generalization ability of traditional classification
networks, making it effective for fault diagnosis [32]. Jiang et al. [33] proposed a fault
diagnosis model based on multiscale weighted permutation entropy (MWPE) and ELM,
which demonstrated superior recognition accuracy and speed compared to using various
multiscale feature extraction methods with BPNNs and SVMs. Similarly, Lan et al. [34]
achieved the diagnosis of slipper abrasion faults using ELM and demonstrated that the
classification performance of ELM is superior to BP and SVM. Liang et al. [35] proposed
OSELM to resolve the long training time issue of ELM when the training data were large.
This algorithm obviates the need to retrain historical data to facilitate rapid diagnosis.
Sahani et al.’s use of VMD and OSELM for real-time detection and classification of power
quality events provided high classification accuracy and robustness [36]. However, the
randomly generated input weight and hidden layer bias in the OSELM algorithm have
been found to limit its prediction accuracy and robustness. Hence, this paper introduces
the ensemble DE-OSELM method, which was proposed by Zhou et al. [37], to realize fault
classification and diagnosis.

This paper presents a novel approach for detecting rolling bearings faults, utilizing
optimized VMD and DE-OSELM. Firstly, the method adopts a dynamic adaptive weight
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factor and a crossover operator. Compared with the original MFO algorithm and other
intelligent optimization algorithms, the improved MFO algorithm has higher global opti-
mization ability and search accuracy, and it solves the problem of sub-optimal performance
and limited convergence accuracy of multi-objective optimization algorithm. Secondly,
the improved MFO is used to optimize VMD and overcome the susceptibility of VMD
parameters to artificial settings, thus facilitating the adaptive selection of these parame-
ters. Thirdly, since the vibration characteristics of the signal cannot be fully interpreted
by a single index, this method introduces a new evaluation index, the effective weighted
correlation sparsity index, to strip false modal components and filter the IMF recovered
through VMD decomposition. The energy features of the effective IMFs are subsequently
extracted as feature vectors. Finally, in order to improve the classification accuracy, the
energy eigenmatrix is normalized and subjected to DE-OSELM training to identify the
fault type.

2. Basic Principle

VMD is an adaptive signal processing technique that relies on the formulation and
resolution of variational problems [38]. Essentially, the VMD algorithm partitions the
input signal into K IMFs while simultaneously minimizing the estimated broadband sum.
To achieve this, the algorithm operates under the assumption that the sum of the IMF
components is equivalent to that of the original signal. The corresponding variational
problem is subject to certain constraints and can be expressed as: min{uk},{ωk}

{
∑k‖∂t[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt‖2

2

}
s.t.∑k uk = f

(1)

where; uk is the decomposed IMF components, and ωk is the central frequency of each IMF
component.

The problem is solved by introducing a penalty factor α and a Lagrange multiplier
operator λ into the model, thereby transforming it into an unconstrained variational
problem.

L(uk, ωk, λ) = α ∑k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2
+
∥∥∥ f −∑k uk

∥∥∥2

2
+
〈

λ, f −∑k uk

〉
(2)

where; f is the original signal.
The steps for solving Equation (2) are as follows:
Initialize parameters

{
û1

k
}

,
{

ω̂1
k
}

,
{

λ̂1}, and set n = 0;
Let n→ n + 1 , an update uk, ωk, λ iteratively according to Equations (3)–(5):

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)
2

1 + 2α(ω−ωk)
2 (3)

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(4)

λ̂n+1(ω) = λ̂n(ω) + τ( f̂ (ω)−∑k
k=1 ûn+1

k (ω)) (5)

where; n is the number of iterations, ∧ is the Fourier transform, and τ is the noise tolerance.
Repeat Step 2 until the cycle ends, when the components satisfy Equation (6), and K

IMFs are obtained.

∑k
k=1

‖un+1
k − un

k ‖
2
2

‖un
k ‖

2
2

< ε (6)

where; ε is the discriminant accuracy.
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Proper parameter selection is a prerequisite for VMD signal decomposition, where
the parameters K and α exert major influence on the decomposition effect, whereas the
parameters ε and τ play a less prominent role [39]. Hence, achieving the optimal VMD
decomposition effect warrants the identification of suitable K and α values.

3. MFO Algorithm and Its Improvement
3.1. MFO Algorithm

Inspired by the natural phenomenon of moths fighting fire, the MFO algorithm as-
sumes that the moth population flies around the flame population in the form of a logarith-
mic spiral curve. If a new position is found to be better than the original flame position, the
position will be updated. The matrix M represents the initial moth position, and the matrix
OM represents the initial moth fitness value, as given below.

M =


M1
M2

...
Mn

 =


m1,1
m2,1

...
mn,1

m1,2
m2,2

...
mn,2

· · ·
· · ·
. . .
· · ·

m1,d
m2,d

...
mn,d

 (7)

where; Mi is the position of the i− th moth in the solution space of the moth population M;
n is the population number; and d is the dimension of the solution space.

OM =


OM1
OM2

...
OMn

 (8)

where; OMi is the fitness value of the i− th moth.
Each moth has a unique flame corresponding to it. The flame represents the local opti-

mal solution found by each moth in the search process. The flame position is represented
by the matrix F, and the matrix OF represents the flame fitness value.

F =


F1
F2
...

Fn

 =


f1,1 f1,2 · · · f1,d
f2,1 f2,2 · · · f2,d
...

...
. . .

...
fn,1 fn,2 · · · fn,d

 (9)

where; Fi is the position of the i− th flame in the solution space of flame population F; n is
the number of flame population; and d is the dimension of solution space.

OF =


OF1
OF2

...
OFn

 (10)

where; OFi is the fitness value of the i− th flame.
Moth Mi will move towards the corresponding flame Fj in the form of a logarithmic

spiral curve due to phototaxis. The movement formula is defined as Equation (11), and the
matrix S(Mi, Fj) represents the updated position of the moth.

S(Mi, Fj) = Di · ebt · cos(2πt) + Fj (11)

where; Mi is the i− th moth; Fj is the j− th flame; Di is the distance between the i− th
moth and the j− th flame; b is a constant related to the shape of the spiral function; and t is
a random number in the interval [−1, 1].
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The algorithm adaptively reduces the number of flames based on Equation (12),
thereby enhancing its efficiency and ensuring that the population of moths is converging
towards the optimal flame.

f lameno = round(N − l
N − 1

T
) (12)

where; f lameno is the number of current flames; N is the number of original flame popula-
tion; l is the number of current iterations; and T is the maximum number of iterations.

For the MFO algorithm, a good moth population and flame population after the initial
position of the each moth are usually around the corresponding search flame area, and
moths will follow the flame along into local optimum only if the flame in a local optimum.
Thus, the original MFO is unable to jump out from the local optimum, which leads to the
relatively low convergence accuracy and slow convergence speed.

3.2. The Improved MFO Algorithm

To address the issues related to local optimization, low convergence accuracy, and
slow convergence speed of the original optimization algorithm, the MFO is modified by
using both a dynamic adaptive weight factor and a crossover operator to improve the
performance in terms of global optimization ability, accuracy, and efficiency.

In the original concept of the MFO algorithm, the moth population is supposed to fly
around the flame population in the form of a logarithmic spiral curve, and the flame is
not fully utilized, which makes the algorithm fall into local optimal easily. To improve its
global optimization ability and convergence speed, the dynamic adaptive weight factor µ
is introduced into the position updating strategy of moths, as formulated below.

µ =
1 + cos( lπ

T )

2
(13)

where; l represents the current iteration number, and T represents the maximum iteration
number. The updated moth position combined with the adaptive weight factor µ is
introduced in Equation (14).

S
(

Mi, Fj
)
= µ · Di · ebt · cos(2πt) + µ · Fj (14)

The gradual decrease as the iteration µ increases from 1 to 0 results in an enlarged
search scope during the initial stages. Consequently, the algorithm performance sig-
nificantly improves concerning search and global optimization abilities, accuracy, and
efficiency.

In order to effectively elevate the algorithm out of local optima, the positions of
the front m flames are disordered by applying the crossover operator from the genetic
algorithm. The main idea is to make p times of cross recombination of each dimension data
in the matrix involving front m flames, and the corresponding dimension data of other
flames are combined into a new flame. If the fitness value of the new flame is better than
the original flame, the original flame will be replaced. The flame population contains a
relatively high diversity and can jump out of local optimum in a certain probability by
perturbation of the front m optimal flames.

The process for improving the MFO is shown in Figure 1.
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3.3. Verification of the Algorithm

To verify the effectiveness and superiority of the improved MFO algorithm, four
commonly used functions were selected for the test, and the dimensions for the tested
functions are all 30. The tested functions are given as follows.

8. (1) Schwefel’s Problem 1.2 function

f1(x) = ∑d
i=1 (∑

i
j=1 xj)

2
(15)

where;xi ∈ [−100, 100], and the optimal value of this function is 0.

(2) Schwefel’s Problem 2.22 function

f2(x) = ∑d
i=1|xi|+ ∏d

i=1|xi| (16)

where; xi ∈ [−10, 10], and the optimal value of this function is 0.
(3) Sum Squares function

f3(x) = ∑d
i=1 ix2

i (17)

where; xi ∈ [−10, 10], and the optimal value of this function is 0.
(4) Ackley function

f4(x) = −20 exp

(
−0.2

√
1
d∑d

i=1 x2
i

)
− exp

(
1
d∑d

i=1 cos(2πxi)

)
+ 20 + e (18)

where; xi ∈ [−32, 32], and the optimal value of this function is 0.
In the verification, the moth population is set to consist of 30 individuals, with a

maximum of 1000 iterations; the parameters m and p in the crossover operator are set
as 15 and 5, respectively, which indicates that the first 15 flame positions after sorting
are disordered five times. Each tested function was performed 20 times, and the results
are compared with those obtained from the original MFO, GWO, and PSO optimization
algorithms. A summary of the comparison results is shown in Table 1.

The iterative optimization convergence curves of MFO, GWO, and PSO are shown in
Figure 2. Additionally, Table 1 illustrates that the improved MFO algorithm exhibits supe-
rior optimization capability compared to three other algorithms. It produces the highest
optimization accuracy across four test functions and is able to identify global optimal values.
These findings provide convincing evidence that the algorithm improvement was effective.
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Table 1. Test results of the four algorithms.

Test Function Optimization Method Optimal Value Average Value Standard Deviation

f1 MFO 1.805 × 103 2.267 × 104 1.206 × 104

PSO 1.733 × 103 6.425 × 103 4.266 × 103

GWO 4.375 × 10−30 1.048 × 10−22 3.188 × 10−22

Improved MFO 0 0 0
f2 MFO 1.786 × 10−5 37.001 24.516

PSO 9.450 17.299 7.075
GWO 5.2215 × 10−53 3.959 × 10−52 3.899 × 10−52

Improved MFO 0 0 0
f3 MFO 4.436 × 10−6 366.667 441.262

PSO 97.068 297.065 92.301
GWO 9.625 × 10−93 9.744 × 10−88 3.885 × 10−87

Improved MFO 0 0 0
f4 MFO 0.9313 17.3889 5.0531

PSO 4.001 5.156 0.563
GWO 7.105 × 10−15 1.042 × 10−14 2.787 × 10−15

Improved MFO 0 0 0

4. VMD Optimization Based on the Improved MFO
4.1. Optimal Process

Modal aliasing may likely occur if the VMD decomposition process is accompanied
by improperly chosen parameters [40]. To prevent the influence of artificial parameters, the
improved MFO algorithm is implemented in the parameter selection process of VMD to
achieve the adaptive selection of the critical parameters of VMD.

This paper employs envelope entropy to describe the coefficient characteristics of
signals. A smaller envelope entropy indicates more regular fault pulses [27]. Thus, the
minimum average envelope entropy (MAEE) is utilized as the fitness function, which is
defined as:

pi(n) =
ai(n)

∑N
n=1 ai(n)

(19)

Hen(i) = −∑N
n=1 pi(n) log2(pi(n)) (20)

MAEE = min
(K,α)

{
1
K ∑K

i=1 Hen(i)
}

(21)

where; ai(n) is the envelope signal of the i—th modal component, pi(n) is the normalized
form of ai(n), and Hen(i) is the envelope entropy value of the i− th modal component.

After the original signal has been subjected to VMD decomposition, it gives rise to
several modal components. The efficacy of the decomposition can be evaluated through
determination of the average envelope entropy of each modal component. A decrease in the
average envelope entropy value indicates a reduction in noise signals in the decomposed
modal components, yielding more consistent fault pulses.

The specific process of the MFO-optimized VMD proposed in this paper is as follows:

(1) The moth population and flame matrix are initialized, and MAEE was used as fitness
function.

(2) VMD decomposition was performed on the position of each moth to obtain the fitness
value of each moth. The moth population was sorted according to the fitness value,
and the former flameno flames were selected to construct the matrix.

(3) Select the first m flame and any flame for p times cross recombination, and, if the
fitness value of the new flame is better than the original flame, the original flame is
replaced.

(4) Equation (14) was used to update the moth population position, and VMD decompo-
sition was performed on the signal in the new position of each moth to calculate the
fitness value of each moth and update the moth population and flame population.
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(5) The algorithm determines whether the pre-determined number of iterations has been
reached. In case it has not, the algorithm repeats the process in steps 2 to 4. When
the predetermined number of iterations has been reached, the iteration stops, and the
optimal configuration of parameters is presented as output.

4.2. IMF Screening Based on the EWCS

When the value of K is greater than the number of components in the signal, over-
decomposition occurs. False IMFs may exist among the K IMFs components of the original
signal when decomposed by the MFO-optimized VMD method. These false components
can adversely affect subsequent fault classification. Therefore, it is necessary to separate
these false IMF components. While correlation coefficients or kurtosis criteria are frequently
employed in separating false IMFs by existing methods [41], these indicators may not fully
capture the intricate vibration characteristics of signals [42]. To address this limitation,
we propose a novel evaluation index, known as the EWCS, to screen IMFs. A modal
component with a calculated EWCS greater than 0 is identified as an effective one. The
EWCS calculation involves both the correlation coefficient and sparsity of the IMF, pro-
viding a more comprehensive assessment of its suitability. The EWCS is calculated using
the formula:

Spa =

√
1
N ∑N

i=1 x2(t)
1
N ∑N

i=1|x(t)|
(22)

Cor =
E[(x− x)(y− y)]

E[(x− x)2]E[(y− y)2]
(23)

WCS = Spa · Cor (24)

EWCS(i) = WCS(i)− 1
K ∑K

i=1 WCS(i) (25)

where; Spa is the sparsity of signal x(t), and Cor is the correlation coefficient between
signal x and y.

4.3. Simulated Analysis

A mathematical model was utilized to simulate the signal of rolling bearing inner ring
faults for the purpose of evaluating the effectiveness of the MFO-optimized VMD method
and the EWCS index:

x(t) = s(t) + n(t) = ∑i Aih(t− iT − τi) + n(t) (26)

h(t) = exp(−Ct) cos(2π fnt) (27)

Ai = 1 + A0 cos(2π frt) (28)

The simulation signal was synthesized by adding a periodic impact component s(t)
with Gaussian white noise n(t). The sampling frequency ( fs) was set to 12,000 Hz, while
the rotation frequency ( fr), the structural resonance frequency ( fn), the fault frequency
( fi), and the damping ratio (C) were set to 33 Hz, 3000 Hz, 79 Hz, and 500, respectively.
Additionally, the signal-to-noise ratio (SNR) of the Gaussian white noise was set as −5 dB.
The resulting simulation signal was plotted in both the time domain and the envelope
spectrum, as presented in Figure 3.



Appl. Sci. 2023, 13, 7500 10 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20 
 

 =
−= K

i
iWCS

K
iWCSiEWCS

1
)(1)()(  (25)

where; Spa  is the sparsity of signal )(tx , and Cor  is the correlation coefficient between 
signal x  and y . 

4.3. Simulated Analysis 
A mathematical model was utilized to simulate the signal of rolling bearing inner 

ring faults for the purpose of evaluating the effectiveness of the MFO-optimized VMD 
method and the EWCS  index: 

)()()()()( tniTthAtntstx ii i +−−=+=  τ  (26)

)2cos()exp()( tfCtth nπ−=  (27)

)2cos(1 0 tfAA ri π+=  (28)

The simulation signal was synthesized by adding a periodic impact component )(ts
with Gaussian white noise )(tn . The sampling frequency (

sf ) was set to 12,000 Hz, while 
the rotation frequency ( rf ), the structural resonance frequency (

nf ), the fault frequency (

if ), and the damping ratio (C ) were set to 33 Hz, 3000 Hz, 79 Hz, and 500, respectively. 
Additionally, the signal-to-noise ratio (SNR) of the Gaussian white noise was set as −5 dB. 
The resulting simulation signal was plotted in both the time domain and the envelope 
spectrum, as presented in Figure 3. 

  
(a) (b) 

Figure 3. (a) Time–domain of the simulation signal. (b) Frequency–domain diagram of the simula-
tion signal. 

Figure 3 shows that the periodic impact characteristics that resulted from the struc-
ture failure are enveloped by noise, which makes it difficult to extract the impact charac-
teristics precisely and directly. As such, signal processing techniques are necessary to ex-
tract the impact characteristics. 

The optimal parameter combination for VMD was determined using the improved 
MFO. Initially, we set the population size to 20 and a maximum of 10 iterations, with m  
and p  values both set to 10. The outcome of the parameter search is illustrated in Figure 
4. 

Figure 3. (a) Time–domain of the simulation signal. (b) Frequency–domain diagram of the simula-
tion signal.

Figure 3 shows that the periodic impact characteristics that resulted from the structure
failure are enveloped by noise, which makes it difficult to extract the impact characteristics
precisely and directly. As such, signal processing techniques are necessary to extract the
impact characteristics.

The optimal parameter combination for VMD was determined using the improved
MFO. Initially, we set the population size to 20 and a maximum of 10 iterations, with m
and p values both set to 10. The outcome of the parameter search is illustrated in Figure 4.
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Figure 4 demonstrates that the MAEE value of 9.2493800, achieved with parameter
combination <3, 773>, was obtained on the third iteration. To demonstrate the proposed
improved MFO algorithm’s efficiency, we compared its performance to three other popular
optimization algorithms: the original MFO, GWO, and PSO. Each algorithm had an initial
population size of 20 and was restricted to a maximum of 10 iterations. Each algorithm ran
for 10 iterations, and Table 2 presents the results obtained.

Table 2. Results of four optimization algorithms.

Algorithm Optimum Value MSE STD

GWO 9.249382 7.2257 × 10−12 1.8724 × 10−15

PSO 9.249380 1.1715 × 10−6 7.2087 × 10−4

MFO 9.249380 1.9533 × 10−7 4.4167 × 10−4

Improved MFO 9.249380 5.9336 × 10−12 1.5860 × 10−6

Table 2 reveals that GWO exhibits the highest MAEE value amongst the four algo-
rithms across the ten operations. Despite the fact that the MAEE values obtained by the
PSO, MFO, and improved MFO3 algorithms are equivalent, the improved MFO algorithm
has the smallest mean square error and standard deviation across all results, demonstrating
its efficacy.

The optimal parameter combination of <3, 773> was used to decompose the simulation
signal by VMD. To validate the proposed EWCS index, we computed the Peak Signal-to-
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Noise Ratio (PSNR), Mean Squared Error (MSE), and EWCS value of the three resulting
IMFs obtained from the decomposition. The computed results are presented in Table 3,
where it can be observed that IMF2 exhibits the highest PSNR and the smallest MSE, thus
implying that this IMF contains abundant fault information. This observation is consistent
with the outcome of the proposed method, which screens effective IMFs based on EWCS
value, and it substantiates the validity of the proposed method.

Table 3. The selection of effective IMF components.

Index IMF1 IMF2 IMF3

PSNR 52.0958 52.8020 52.2489
MSE 0.4013 0.3411 0.3874

EWCS −0.0096 0.0276 −0.0180
Effective IMFs

√

The effective component IMF2, after being screened, underwent an envelope demod-
ulation analysis and yielded an envelope spectrum displayed in Figure 5. The extracted
frequency components included the conversion frequency ( fr), the fault characteristic
frequency ( fi), and its double frequency (2 fi). These results demonstrate the successful
application of the VMD optimization method proposed in this paper, in combination with
EWCS index screening, for effectively decomposing the simulation signal x(t).
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To verify the superiority of the proposed method, we employed a VMD decomposition
technique with fixed parameters of <5, 2000> and identified effective components as IMF3,
IMF4, and IMF5 based on the EWCS (Method 1). Additionally, we utilized the screening
method based on correlation coefficient and kurtosis value, presented in reference [43],
along with a <3, 773> VMD decomposition, and we identified IMF1 and IMF2 as effective
components (Method 2). Subsequently, we reconstructed and analyzed the selected effective
components using envelope demodulation, and the outcomes are illustrated in Figure 6.
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Figure 6 indicates that Method 1 and Method 2 were unable to extract fr and fi. By
contrast, the VMD optimization method and EWCS index utilized in the proposed method
were successful in extracting signal components that carried the information on system
faults. This finding reinforces the effectiveness of the VMD optimization method and the
EWCS index in fault feature extraction.

5. The Diagnosis Method Based on MFO-Optimized VMD and DE-OSELM
5.1. The Proposed Method

To begin with, a modification of MFO is utilized to enable adaptive selection of
VMD parameters, thereby avoiding the influence of manually set parameters on VMD
decomposition effect. The decomposed IMFs are screened using the EWCS index. Given
that the energy levels of individual components of the vibration signal’s IMF differ based
on the rolling bearing’s distinct movement states, the energy attributes of these components
are isolated to develop a feature matrix. Lastly, the energy eigenmatrix is input into DE-
OSELM in order to perform fault classification using the principles outlined in reference [37].
Figure 7 shows the flow chart for our proposed method.
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The specific process is listed as follows:

(1) The improved MFO was used to optimize K and α in VMD parameters, and the
optimal parameter combination (k0, α0) was obtained.

(2) The VMD with optimized parameters was used to process the collected signals, and
K IMFs were decomposed.

(3) The EWCS index was used to screen K IMFs, eliminate the false IMFs, extract the
energy features of effective IMFs, and form the feature vector matrix.

(4) The energy feature matrix is normalized and input into DE-OSELM for training and
fault classification.

5.2. Experimental Verification

To assess the effectiveness and superiority of MFO-optimized VMD and DE-OSELM
for detecting faults in rolling bearings, we conducted an experiment using actual operation
data of the 6205 deep groove ball bearing type obtained from Western Reserve University’s
laboratory [44]. As illustrated in Figure 8, the simulation test bench for rolling bearing
faults features a pitch circle diameter of 39.04 mm, as well as nine rolling bodies with a
diameter of 7.94 mm each and 0◦contact angle. The vibration signals were collected under
four operating states: normal, inner ring failure, outer ring failure, and rolling body failure.
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We shifted 100 groups of vibration signals for each state, with each group consisting of 1024
signal lengths, resulting in a total of 400 groups.
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Ten groups of normal signals were randomly selected for the experiment. The im-
proved MFO algorithm was initiated with an initial population size of 30. The maximum
number of iterations was set as 10, with m = 10 and p = 5. K and α values were ranged
between [4, 12] and [800, 3000]. Figure 9 shows the search results, and the optimized values
for K and α were determined to be 10 and 924, respectively.
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The EWCS index was utilized to screen the decomposed IMFs, and the EWCS values
of each modal component for the ten groups of signals were presented in Table 4. Based
on the screening outcomes of the ten groups of signals, the effective components of IMF1,
IMF2, and IMF3 were identified.

Table 4. The value of EWCS of each IMF for 10 groups of normal signals.

Number IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

1 0.2567 0.1588 0.6992 −0.0227 −0.1525 −0.1820 −0.1846 −0.1875 −0.1905 −0.1951
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6 0.2352 0.6979 0.6859 −0.0878 −0.2282 −0.2492 −0.2538 −0.2660 −0.2597 −0.2743
7 0.1517 0.5070 0.6256 −0.0689 0.0619 −0.2390 −0.2522 −0.2584 −0.2535 −0.2742
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VMD decomposition was performed using K values of 10 and 924 on 400 sets of
vibration signals in four different states. The energy characteristics of IMF1, IMF2, and
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IMF3 were extracted, resulting in an eigenvector matrix that was normalized. Adding
labels produced a 400 × 4 eigenmatrix. The energy characteristic matrix was randomly
partitioned into training and test sets at a ratio of 3:1, resulting in 300 training samples and
100 test samples. After VMD decomposition, the components of the reconstructed signal
were simpler, and the fault frequency was more obvious. Figure 10 shows the spectrum
diagram of the original signal and reconstructed signal with the rolling element fault.
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Parameter settings used in the DE algorithm consisted of NP = 20, F = 0.5, and
CR = 0.75 [37]. The performance of the OSELM algorithm is affected by the choice of
activation function. Therefore, to shorten the training time, which is twice as long as that
of OSELM with RBF activation [32], the Sigmoid function was selected as the activation
function for OSELM. The number of nodes in its hidden layer and bias range were set
to 25 and [0, 1], respectively. The input weight was constrained to [−1, 1]. An amount
of 50 training data were used initially, and each learning data block in the following step
contained 40 data.

The OSELM and DE-OSELM were implemented to investigate the robustness of the
latter, with 30 experiments conducted for each group. The experiment results presented in
Figure 11 demonstrate the superior classification accuracy of DE-OSELM, as compared to
OSELM, indicating better robustness.
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To substantiate the efficacy of this approach, the results obtained from Fixed Parameter
<8, 2000> VMD and MFO-optimized VMD were fed into several machine learning models,
namely, ELM, OSELM, KNN, and DE-OSELM, to recognize and classify the data. We
repeated the experiment 30 times to ensure its reliability. Classification outcomes of the
proposed approach, as well as the other three methodologies, are showcased in Table 5.
The results demonstrate that the accuracy of classification achieved through the proposed
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method is notably better than the other three methods, affirming the efficacy and superiority
of the proposed method.

Table 5. The comparison of classification accuracy of the four methods.

Classify <8, 2000> VMD MFO-Optimized VMD

ELM 92.67% 96.17%
OSELM 92.70% 96.40%

KNN 88.00% 99.00%
DE-OSELM 99.73% 100%

5.3. Diagnostic Case Analysis

The viability and effectiveness of the proposed approach were evaluated using the
drivetrain dynamics simulator (DDS), as illustrated in Figure 12, manufactured by Spec-
traQuest [45]. The ER-16K rolling bearing type was utilized to obtain the corresponding
vibration signals. The bearing had a pitch circle with a 15.16 mm diameter, nine rolling
bodies with a diameter of 3.125 mm, and a contact angle of 0◦. The experiment was con-
ducted with a motor frequency of 20 Hz, zero load, a sampling frequency of 12,800 Hz, and
a sampling length of 200 KiB. Vibrations were captured under four operating conditions:
normal operation, inner ring failure, outer ring failure, and rolling body failure. A total of
400 signals were recorded, consisting of 100 sets of vibration signals for each of the four
operating conditions, with a signal length of 1024 samples per group.
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Ten groups of normal signals were randomly selected for this study, and their decom-
position layers and quadratic penalty factor were optimized through the improved MFO
algorithm to obtain an optimal combination of <10, 1535>. The VMD algorithm was then
applied to decompose each signal using this optimized parameter combination, after which
the EWCS value of each IMF was calculated. The findings are presented in Table 6. After
VMD decomposition, the components of the reconstructed signal were simpler, and the
fault frequency was more obvious. Figure 13 shows the spectrum diagram of the original
signal and reconstructed signal with the rolling element fault.

The feature matrix is input into both OSELM and DE-OSELM classification models,
and their respective classification results are presented in Figure 14. Accordingly, it is
evident from the figure that DE-OSELM achieves higher classification accuracy than OS-
ELM, further reinforcing the effectiveness and universality of DE-OSELM. This comparison
result provides robust evidence to support the superiority of DE-OSELM in classification
performance.

To validate the efficacy of our proposed technique, we input the results of both
the fixed parameter <7, 2000> VMD and the MFO-optimized VMD into four distinct
classification algorithms—ELM, OSELM, KNN, and DE-OSELM—for classification and
recognition purposes. Table 7 displays the classification outcomes of the four techniques.
Table 7 supports the efficacy of the proposed MFO-optimized VMD and DE-OSELM
diagnostic methods, which demonstrate greater accuracy and reliability compared to the
other three methods.
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Table 6. The value of the EWCS of each IMF for 10 groups of normal signals.

Number IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

1 0.0278 0.4454 0.0871 0.1326 0.0537 0.0165 −0.1641 −0.1761 −0.2020 −0.2209
2 −0.0127 0.2431 0.3095 0.1650 0.0614 −0.0283 −0.1590 −0.1753 −0.1918 −0.2118
3 0.0611 0.3306 0.2607 0.1559 0.0237 −0.0913 −0.1882 −0.1716 −0.1823 −0.1985
4 0.0243 0.2993 0.3166 0.1179 0.0566 −0.0794 −0.1805 −0.1891 −0.1802 −0.1855
5 0.1275 0.4619 0.1291 0.0676 −0.0368 −0.0952 −0.1517 −0.1502 −0.1724 −0.1798
6 0.0274 0.5054 0.1340 0.1041 −0.0280 −0.1411 −0.1289 −0.1295 −0.1700 −0.1733
7 −0.0157 0.4426 0.1010 0.0586 0.0445 −0.0090 −0.1345 −0.1454 −0.1733 −0.1688
8 0.0704 0.5200 0.1909 0.0291 0.0018 −0.1494 −0.1634 −0.1509 −0.1732 −0.1753
9 0.0525 0.4863 0.0815 0.0608 −0.0111 −0.0304 −0.1660 −0.1417 −0.1570 −0.1749

10 −0.0823 0.3017 0.2943 0.1209 0.0768 0.0123 −0.1820 −0.1602 −0.1963 −0.1851
Effective

IMFs
√ √ √ √ √
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Table 7. Comparison of classification accuracy of the four methods.

Classify <7, 2000> VMD MFO-Optimized VMD

ELM 90.37% 91.33%
OSELM 90.97% 91.07%

KNN 91.00% 93.00%
DE-OSELM 97.43% 98.80%

At the same time, it is compared with two existing fault diagnosis methods, namely,
the fault diagnosis method, based on EMD and OSELM [46], the fault diagnosis method,
based on VMD and KNN [47], and results are shown in Table 8. From the results, we can
see that their classification accuracy scores. The differences are 92.7% and 97.13%, and,



Appl. Sci. 2023, 13, 7500 17 of 19

compared with the improved VMD and DE-OSELM diagnostic methods proposed in this
paper, these are higher. This also further verifies the effectiveness and superiority of the
proposed method.

Table 8. Fault classification accuracy of three methods.

Fault Diagnosis Method Accuracy Rate %

EMD and OSELM 92.70
VMD and KNN 97.13

improved VMD and DE-OSELM 98.80

6. Conclusions

Two novel methods for diagnosing rolling bearing faults have been proposed, MFO-
optimized VMD and DE-OSELM. The objective of these methods are to tackle the challenge
of signal degradation, caused by environmental noise, which presents difficulties in iden-
tifying subtle fault features. The method presented in this paper presents a new idea for
fault diagnosis of rolling bearings.

(1) The original MFO algorithm is subject to low accuracy and slow convergent speed,
probably due to falling into the local optimal solution. This issue is solved through the
proposed dynamic adaptive weight factor and crossover operator, which significantly
improves the algorithm’s global optimization ability.

(2) The traditional VMD decomposition method faces a challenge of modal aliasing due
to suboptimal selection of critical parameters, including the number of decomposition
layers and quadratic penalty factor. To address this problem, this study introduces an
improved MFO algorithm, utilizing the Mean Absolute Envelope Error (MAEE) as
the fitness function, to adaptive select these two parameters and effectively improve
the quality of VMD decomposition.

(3) False IMF components generated by VMD decomposition are removed using the
EWCS index. The real components containing fault feature information are subse-
quently extracted.

(4) This study proposes a fault diagnosis method that utilizes MFO-optimized VMD and
DE-OSELM. Numerical analysis and field test data analysis were conducted to verify
the effectiveness and feasibility of the proposed method. Our results demonstrate
that the proposed approach displays superior anti-noise performance and accuracy in
fault identification when compared to other commonly used diagnostic techniques.
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