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Abstract: Of past years, wearing masks has turned into a necessity in daily life due to the rampant
new coronavirus and the increasing importance people place on health and life safety. However, cur-
rent mask detection algorithms are difficult to run on low-computing-power hardware platforms and
have low accuracy. To resolve this discrepancy, a lightweight mask inspection algorithm ECGYOLO
based on improved YOLOv7tiny is proposed. This algorithm uses GhostNet to replace the origi-
nal convolutional layer with ECG module instead of ELAN module, which greatly improves the
inspection efficiency and decreases the parameters of the model. In the meantime, the ECA (efficient
channel attention) mechanism is led into the neck section to boost the feature fetch capability of
the channel, and Mosaic and Mixup data enhancement techniques are adopted in training to obtain
mask images under different viewpoints to improve the comprehensiveness and effectiveness of the
model. Experiments show that the mAP (mean average precision) of the algorithm is raised by 4.4%
to 92.75%, and the number of arguments is decreased by 1.14 M to 5.06M compared with the original
YOLOv7tiny. ECGYOLO is more efficient than other algorithms at present and can meet the real-time
and lightweight needs of mask detection.

Keywords: ECG; ECA; mask detection; YOLOv7

1. Introduction

Globally, coronaviruses are rampant [1], spreading and endangering all countries at
a rate rare in the history of human medicine. Since the first outbreak in Wuhan, Hubei
Province, China, in late 2019, the virus has rapidly spread around the world, becoming a
global public health emergency. The pandemic has not only caused massive casualties and
medical stress but has also had a profound impact on global economic, political and social
life. During this difficult time, governments, social organizations, medical institutions
and ordinary people around the world acted together to call for world solidarity against
the epidemic and to maintain generosity and self-discipline. However, many people did
not keep their distance or wear masks in crowded public places (such as stations, bars,
parks), causing the global epidemic to become more serious. To address the inefficiency
of preventive measures taken by government agencies, this study aims to create a deep-
learning-based mask detection system using an improved ECGYOLO based on YOLOv7tiny
to ensure that all people wear masks in these places, thereby reducing the risk of COVID-19
virus transmission.

At present, with the rapid increase in computing power, deep-learning-based target
detection algorithms [2] are also gaining more and more attention and are widely used.
Common application scenarios include small target detection [3], hidden object detection [4]
and optical remote-sensing images [5], among other fields. For example, a small target
detection method is proposed for feature extraction [6], a method for FPRNet is proposed
for remote-sensing target detection [7], and an adaptive balanced network is proposed for
remote-sensing image detection in the literature [8]. These methods include some of the

Appl. Sci. 2023, 13, 7501. https://doi.org/10.3390/app13137501 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137501
https://doi.org/10.3390/app13137501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7054-997X
https://orcid.org/0000-0002-8040-0367
https://doi.org/10.3390/app13137501
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137501?type=check_update&version=1


Appl. Sci. 2023, 13, 7501 2 of 16

latest research results in the domain of object detection. At the moment, target detection
algorithms are parted into two main kinds: two-step algorithms and one-step algorithms.
Two-step algorithms are represented by FasterRCNN [9], which introduces the concept
of candidate region proposals to generate a set of candidate ranges at the first step and
afterwards adopts a classifier to further filter them. The one-step algorithm is represented
by YOLO [10] and SSD, which directly performs dense sampling on the image and only
needs to be fed into the network once to predict all the bounding boxes, so the speed is
faster [11].

Although present target detection algorithms have relatively good detection speed
and accuracy, there are still some shortcomings, the main problem being that for average
hardware platforms, most current detection algorithms are not yet able to meet the real-
time and accuracy requirements needed for mask detection. Therefore, in order to further
improve the real-time and accuracy of mask detection, this paper proposes the ECGYOLO
model based on YOLOv7tiny. Experiments show that ECGYOLO outperforms YOLOv7tiny
in terms of accuracy and inference speed.

The contribution of this article is in three major areas:

1. This paper proposes a lightweight mask detection model ECGYOLO, further improv-
ing the ELAN module based on YOLOv7tiny, using the ECG module and adding the
ECA model, replacing the normal convolution with GhostConv and reintroducing
RepConv. All these upgrades can effectively improve the model in the mask-wearing
detection task performance.

2. Throughout this paper, the authors evaluate and compare the performance of com-
monly used target detection models including YOLOv7, YOLOv7tiny, FasterRCNN
and SSD with the proposed ECGYOLO model in the mask-wearing detection task.
The evaluation results show that ECGYOLO achieves 92.7% in the mAP metric, which
is 4.4% better than that of YOLOv7tiny and even higher than that of other models such
as YOLOv7, FasterRCNN and SSD. As a result, ECGYOLO has better performance
and efficiency in mask detection tasks.

3. Another contribution of this paper is in decreasing the number of model parameters
of the ECGYOLO model to 5.06 M, which is 1.14 M lower than YOLOv7tiny and
much smaller than that of other evaluation models. This will make the ECGYOLO
model more suitable for deploying and promoting its use on devices with limited
computational resources.

All this being said, the ECGYOLO model proposed throughout this paper achieves
high performance in the mask detection scenario and has the advantages of small number
of parameters and fast computational speed, which will make the model more practical
and feasible in practical applications.

The sections of this paper are organised as follows: the Section 2 presents some related
work, the Section 3 describes the improved model, the Section 4 describes the dataset
and the operating environment, the Section 5 analyses the results of the experiments and
the comparison of the models, and the Sections 6 and 7 provide some discussion and
conclusions.

2. Related Works

YOLO is currently the most powerful open source target detection model and can be
found in various fields, for example, one study reported in the literature applied YOLO to
citrus orchards, which can save a lot of manpower and resources [12], another study also
described in the literature used YOLO to detect whether drivers are distracted [13], and
another study in the literature applied YOLO to ship detection [14]. The best of the YOLO
series right now is YOLOv7, which was formerly known as YOLOv1 and has undergone
several improvements in YOLOv2 [15], YOLOv3 [16], YOLOv4 [17] and YOLOv5 [18].
YOLOv7 introduces the residual module Darknet-53 [19] and the FPN [20] structure to
achieve multi-scale fusion and prediction of objects at three different scales. In addition,
YOLOv7 extends the original ELAN structure and proposes an Extended ELAN framework,
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which can increase the self-study capability of the circuit without damaging the primary
gradient path. On the whole, YOLOv7 has great advantages in terms of parameters,
calculation and accuracy and is a very advanced target recognition model.

A study described in the literature uses a global attention mechanism to reduce the
loss of feature information to some extent and Soft-NMS to improve the accuracy of the
prediction frame [21]. The authors of another study reported in the literature use the Mish
activation function to replace the LeakyReLU activation function, a dense SPP layer in
feature extraction, and offer their own understanding of the detection of small targets.
However, the F1 index in mask detection is poor, only 78%, and there is a large number of
missed and wrong detections [22]. The authors of another study presented in the literature
proposed to introduce CSPDarkNet53 into YOLOv4 with Hardswish activation function
to achieve relatively high-accuracy mask recognition, but the computational cost of the
model is high, and the model itself is more strenuous on low-computing-power hardware
devices [23]. A YOLO mask detection framework using an improved Res2Net module is
proposed in the literature, but the improved model is more complex and not as good as
YOLOv7 in terms of performance [24].

However, it can be seen from the above literature that there is a lack of a mask detection
system suitable for a low-computing-power platform with high accuracy and fast operation.
Therefore, this paper proposes a dataset based on WIDER Face and MAFA and uses the
lightweight YOLOv7tiny model, combined with ECA attention mechanism, GhostConv
convolution module, ECG module and EIoU loss function for improvement. Experiments
show that these mends are profitable to improve the preciseness and rate of the model
and realize the lightweighting of the model. The trial run on the dataset and suggested
in this article shows that the arithmetic can effectually detect the face of the mask wearer
and compare other existing object detection arithmetic on the market, so the accuracy and
speed are improved, and the model is lightweight.

3. YOLOv7tiny Model Improvements
3.1. ECGYOLO

The input layer of ECGYOLO model adopts various technical means, which include
adaptive image adjustment and Mosaic high-order data enhancement, etc. Among them,
the Mosaic technique is mainly used to process small target detection, which can effectively
increase the robustness and accuracy. In addition, ECGYOLO’s backbone network uses the
ECG model and downsampling model, activation function uses Hardswish, and convo-
lution layer uses GhostConv. In the Neck layer of ECGYOLO, SPPCSPC, ELAN structure
and downsampling model are mainly used, which can obtain the spatial information and
context information of the input features more effectively, thus improving the detection
efficiency of the model for small targets. Similarly, the attention mechanism uses the ECA
model, which can further improve the perceptual field and the capacity to concentrate on
significant features across channels of the model. In the head layer, ECGYOLO mainly
adopts the reparameterized structure RepConv to solve the problems in detecting small
targets. In addition, the loss function adopts EIoU, which can enhance the effect of the local-
ization accuracy and robustness of the model to the target edges. In summary, ECGYOLO
adopts a series of advanced technical means, including Adaptive image adjustment, Mo-
saic high-order data enhancement, ECG model, GhostConv convolutional layer, ELAN
structure, ECA attention mechanism, RepConv reparameterization structure and EIoU
loss function, which make the model have high accuracy and robustness in the target
detection field.

As can be seen from Figure 1, the backbone network part of ECGYOLO has nine
modules: two CBS modules, four ECG modules and three MP modules. The CBS modules
mainly include convolution, normalisation and activation functions; the ECG module is
a modified module based on the YOLOv7tniy’s ELAN structure; and the MP module is
Maxpooling, which is mainly used for downsampling. In the neck FPN section, there
are four CBS modules, one SPPCSPC module, four MCB modules and two UpSampling
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modules. The SPPCSPC module is a special SPP (spatial pyramidal pooling) layer that
introduces a CSP structure into the SPP structure; the MCB module is the ELAN structure
of YOLOv7tiny. Other parts include the expansion of three RepConv modules and three
YOLOhead modules.
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3.2. CBS Module Improvements

CBS is the convolution, normalisation (batch normalization) and activation function.
In YOLOv7, CBS is the normal convolution, normalization and SiLu activation function. In
YOLOv7tiny, CBS represents the normal convolution, normalization and LeakyReLU acti-
vation function. In ECGYOLO, CBS represents GhostConv, normalization and Hardswish
activation function.

Compared to YOLOv7tiny, the ECGYOLO’s CBS module uses the cheaper GhostConv
to replace the normal convolution and uses some less computationally intensive operations
to generate these redundant feature maps, which greatly reduces the number of model
parameters and increases the execution speed of the model. In terms of activation functions,
the Hardswish activation function can be implemented as a segmentation function to
reduce the number of memory accesses compared to the LeakyReLU activation function,
thus significantly reducing the waiting time cost. Therefore, the use of GhostConv instead
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of normal convolution and Hardswish instead of LeakyReLU activation functions in the
CBS module is a better option.

3.2.1. GhostConv

Achieving high accuracy and light weight on platforms with poor hardware configura-
tion still has many problems. Although lightweight network models such as ShuffleNet [25]
and MobileNet [26] have emerged, GhostNet has become a better alternative to traditional
convolution with its unique convolution module. Compared with the traditional convolu-
tion, GhostNet uses a more efficient Ghost module, by dividing the convolution kernel of
the original convolution into two parts, and the application of a few lower computations for
manipulations to produce these redundant feature maps, thereby reducing the number of
parameters and increasing the implementation rate of the model. Moreover, GhostNet also
introduces the SE module, which can go a step further to enhance the precision of the model.
These innovations enable GhostNet to maintain high precision while keeping the parame-
ter within a reasonable range, making it suitable for deployment in resource-constrained
scenarios such as mobile devices.

GhostNet is a lightweight CNN model that uses a new type of module called Ghost to
decrease the parameter of the model. GhostNet decomposes each standard convolutional
layer into two parts, one of which extracts features from the trunk convolution kernel,
while the other smaller subconvolution kernel. The Ghost convolution kernel is used to go
a step further to optimize the function extraction process [27]. In this way, GhostNet can
obtain smaller model size and lower computational cost while maintaining model accuracy.
GhostModule chiefly falls into the following three sections:

Foremost, the authors obtain the intrinsic feature maps Yω′∗h′∗m′ with regular convo-
lution; w′ and h′ are the width and height of the output data, and m represents m maps.

Y′ = X× f′, (1)

Afterwards, the feature map yi
′ of apiece channel of Y′ is used to generate yij of Ghost

feature map by Φi,j operation. yij as shown in Equation (2).

yij = Φi,j
(
yi
′), (2)

Finally, the received intrinsic feature maps and Ghost feature map yij are spliced
together to achieve the ultimate result OutPut. The Ghost model is as displayed in Figure 2.
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3.2.2. Hardswish

Hardswish [28] is an activation function that is an improvement of the Swish activation
function. The Swish activation function has achieved good results in deep learning, but its
computational complexity is high, so Hardswish was proposed to reduce the computational
cost. Unlike Swish, Hardswish uses a segmented linear function instead of a sigmoid
function. Specifically, Hardswish is equivalent to ReLU [29] for input values less than −3
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or greater than 3, while smoothing is performed in a sigmoid-like form for input values
between −3 and 3. Compared to Swish and other familiar activation functions, Hardswish
has lower computational cost and can improve the computational efficiency of the model
while maintaining similar performance; thus, using Hardswish to replace YOLOv7tiny’s
LeakyReLU in resource-constrained environments such as mobile devices can effectively
reduce inference time and power consumption. In addition, Hardswish has a number
of other advantages. For example, it is monotonically differentiable and has no negative
outputs, which makes training more stable and reliable. Moreover, using Hardswish on
feature maps does not lead to information bottlenecks (bottleneck) because its output
range is the same as that of ReLU. In conclusion, Hardswish is a lightweight, efficient and
easy-to-implement activation function. In prospect, it can reduce computational costs while
improving model accuracy and has the advantages of monotone differentiability and no
negative output, making it a good choice of activation function. The Hardswish function
has been implemented in many deep learning frameworks.

In conclusion, Hardswish and LeakyReLU are essentially two different activation
functions, although they have some similarities in some aspects. Hardswish is suitable for
scenarios requiring high computational efficiency, while LeakyReLU can effectively allevi-
ate problems such as neuron death problem and gradient disappearance. The Hardswish
formula is shown in Equation (3).

Hardswish(a) =


0 a ≤ −3,
a a ≥ +3,

a2

6 + a
2 otherwise

, (3)

3.3. MCB Module Improvements

This study uses ELAN idea to redesign the C3 module in YOLOv5 and uses GhostConv
to replace the ordinary convolution in C3 to obtain a new target detection model ECG.
Compared to the ELAN structure of YOLOv7, YOLOv7tiny is lighter with fewer branches
and convolutions. Experimental results show that while ensuring light weight, ECGYOLO
has richer feature expression capability and higher detection accuracy compared with
YOLOv7tiny. The ECG model is shown in Figure 3. The ELAN structure and the ELAN
structure of YOLOv7tiny are shown in Figures 4 and 5.
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3.4. Bounding Box Loss Function Improvement

The IoU (intersection over union) is used to measure the extent of overlay between
the real frame and the prediction frame in the target detection task [30]. However, IoU
has a fatal flaw that the backpropagation gradient vanishes when the bounding box A
and bounding box B do not overlap, so many IoU-based GIoU, DIoU, CIoU, SIoU, WIoU
and EIoU appear. The loss function used in YOLOv7tiny is CIoU, while EIoU was chosen
in ECG, a more important reason being that EIoU allows for better regression of the
bounding box.

The GIoU (generalized IoU) [31] is a loss calculation method for bounding box pre-
diction, which originated and extended from the IoU metric. In target detection tasks,
the comparison between the predicted and actual labelled bounding boxes and the cor-
responding loss value calculation are crucial. Compared with IoU, GIoU considers the
non-overlapping region of the bounding box and can exactly mirror the way of overlap
between objects A and B. Therefore, compared to the traditional IoU indicator, GIoU is
able to assess the overlap between bounding box B and bounding box A more accurately.
Figure 6 shows that at IoU values all equal to 0.33, positioning from left to right becomes
less and less effective, and the value of GIoU decreases in turn.

B and A express two bounding boxes, and C represents the bounding box that can
contain the area of bounding box A and bounding box B. This formula considers the effect
of the area difference set of B and A by the ratio of the area intersection of B and A to the
area union of B and A and subtracts it from the original IoU value to obtain a more accurate
assessment of the degree of overlap. The GIoU metric is an important metric used in object
detection tasks, which can help improve the performance of the simulator and enhance the
precision of the detection outcome [32]. The IoU is shown in Equation (4). The GIoU is
shown in Equation (5).

IoU =
|A∩ B|
|A∪ B| , (4)
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GIoU = IoU− |C− (A∪ B)|
|C| , (5)
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The value range of GIoU is −1~1, which can be obtained from Equation (6), and its
loss function range is 0~2.

LGIoU = 1−GIoU(0 ≤ LGIoU ≤ 2), (6)

The GIoU solves the problem of loss of 0 when bounding box A and bounding box B
do not overlap to a certain extent, but there is also the problem that GIoU degenerates into
IoU when real box and detection box are included, and the convergence of the two boxes is
slow in the horizontal and vertical directions.

The CIoU is based on GIoU, which further considers the geometric factor of the aspect
ratio of the bounding box, thus making the regression of the bounding box more stable
and exact, where β and ν are the corresponding weights and aspect ratio coefficients,
respectively. Specifically, in the calculation, β is used to balance the effect between the
central point length and the length–width ratio, while ν is used as a parameter to survey
the uniformity of the length–width ratio. The formula of CIoU is shown in Equation (7).

CIoU = IoU− ρ2(A, B)
c2 − βv, (7)

From GIoU to CIoU, all three loss functions have excellent performance in dealing
with the bounding box of the inclusion relation, unlike IoU which degenerates. However,
when the central points of B and A overlap, CIoU degenerate to IoU and do not regress well
on the bounding box. Therefore, the EIoU (efficient IoU) loss function comes into being,
which separates the impact factors of A and B on the basis of CIoU and calculates the width
and height of A and B. The EIoU equation is as follows, where hc and wc are the width and
height of the bounding box C. The EIoU loss equation is as Equations (8) and (9).

LEIoU = LIoU + LDIS + LASP, (8)

LEIoU = 1− IoU +
ρ2(b, bgt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)
(hc)2 , (9)
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3.5. Attention Mechanisms

Recently, introducing channel attention mechanisms into convolutional blocks has
become a highly anticipated research direction. Efficient channel attention (ECA), a rep-
resentative attention mechanism, has shown significant performance gains for various
deep-learning network architectures after proposing an ECA module without dimensional-
ity reduction. It effectively prevents the impact of dimensionality reduction on attention
learning effect [33] and has significant performance gains for various deep-learning net-
work architectures. Therefore, the ECA module is widely used in convolutional neural
networks and performs well in feature extraction. In ECGYOLO, we use three ECA at-
tention mechanisms, located behind the feature layers obtained by the second, third and
fourth ECG modules, which allows us to focus more on the feature information of the
input images.

4. Materials and Methods
4.1. Dataset Preparation and Processing

In this experiment, several rigorous measures were taken in the production of the dataset
to ensure the diversity and balance of the dataset contents. A total of 10,043 multi-scene
images of human faces and faces wearing masks were collected and accurately labelled
according to detailed annotation files. For the web-crawled data, the authors used the
LabelImg tool to annotate all images and generated xml files. In addition, the authors
extracted more than 4000 face images and 5000 mask images from the public datasets
WIDER Face [34] and MAFA to augment the multiplicity and number of datasets. The
dataset was divided into three parts: training set, validation set and test set. The training
set is used to learn data characteristics and continuously update the network arguments,
and the validation set can find problems with the model or parameters in time after each
round of training. The test set evaluates the trained model. These strict dataset production
measures, and dataset partitioning methods can efficiently raise the accuracy and better
cope with the face mask detection problem in various complex scenarios. Partial images of
masks and faces in the dataset are shown in Figures 7 and 8.
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To reduce the risk of model overfitting and improve generalization capabilities, ECGY-
OLO employs a variety of data augmentation methods, including Mosaic and Mixup data
enhancement and colour space conversion, among which, Mosaic data enhancement can
fuse multiple images to produce a new picture, enriching the background of the picture.
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While Mixup data augmentation blends two images to generate a new training sample,
both strategies can efficiently enrich the number of targets and prevent the net from over-
fitting. These techniques can effectively enrich the diversity and complexity of training
data, making the model more adaptive and robust and better handling image recognition
problems in various scenarios.

4.2. Environment Configuration and Parameters

The RTX3060 graphics card is used for this training, and the whole network is fine-
tuned so as to accelerate the learning efficiency of the model. The batch size is set to 24,
set 1 × 10−5 is used as the value of the learning rate, the Adam algorithm is used for the
optimizer and to prevent the model from overfitting. Label smoothing is used to enhance
the model generalization ability [35]. The operating environment for the experiments in
this study is shown in Table 1.

Table 1. Operating environment configuration.

Category Metrics

Operating systems Windows10
GPU NVIDIA GeForce RTX 3060
CPU Intel core i7 10750H

CPU main frequency 2.6 GHz
Memory 16 GB
CUDA CUDA 11.5

Framework PyTorch 1.11.0
Scripting languages Python 3.9

In order to make the experiments objective, ECGYOLO mainly tests the accuracy of
the model through AP and mAP. Precision calculation formula is given in Equation (10),
and recall calculation formula is given in Equation (11).

P =
TP

TP + FP
, (10)

R =
TP

TP + FN
, (11)

In the mask detection task, TP is the part that correctly identifies the “wearing a mask”,
FP is the part that mistakenly identifies “not wearing a mask” as “wearing a mask”, and
FN is the part that does not correctly detect “wearing a mask” or “not wearing a mask”.
Precision rate and recall, on the other hand, are two commonly used algorithm evaluation
indicators to evaluate the capability of the algorithm to perform the mask detection task.
Specifically, the precision rate is the percentage of mask wearers detected by the algorithm
that are actually correct; the recall rate is the percentage of all mask wearer samples that
are correctly detected by the algorithm. The recall rate is more concerned with the number
of undetected mask wearers than the precision rate and provides a better measure of the
comprehensiveness and effectiveness of the models. In a real-world environment, precision
and recall are two indicators that are both contradictory and unified, so the authors need to
consider the balance between both precision and recall, i.e., F1. The F1 calculation formula
is given in Equation (12).

F1 =
2× P× R

P + R
, (12)

AP denotes the extent under the precision-recall chart, and the AP calculation formula
is given in Equation (13). Value mAP is the mean of all APs, where N is the total value of
species, and i denotes a category. Calculation formula for mAP is given in Equation (14).

AP =
∫ 1

0
P(R)dR, (13)
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mAP =
∑N

i=1 APi

N
, (14)

5. Results
5.1. Network Model Comparison

The ECGYOLO model is improved by using GhostConv convolution, which simplifies
the traditional convolution of complex operations. This optimization allows ECGYOLO
to achieve a faster frame-per-second (FPS) time of 65.3 while maintaining high detection
accuracy, which is only 6.2 less than that of the YOLOv7tiny model, 29 more than YOLOv7
and comparable to SSD. In addition, ECGYOLO is also lightweight. The model requires
only 5.06M parameters, which is 94.64M smaller than the SSD model, 103.54M smaller
than the highest Faster R-CNN, 31.8M smaller than YOLOv7 and even 1.04M smaller than
YOLOv7tiny. This lightweight design makes ECGYOLO acceptable for most hardware
devices and has good application prospects. The improved ECGYOLO model not only
reduces the amount of code to achieve light weight but also improves the accuracy of
the model. To specify our evaluation method, the authors set 640X640 to the resolution
of all model input images, the optimizer used Adam, label smoothing, cosine annealing
algorithm and non-extreme suppression. The maximum and minimum learning rates were
set to 0.001 and 0.00001, and the momentum was set to 0.9. The detailed evaluation results
of each model in precision, recall, F1, FLOPs and mAP parameters are listed in Table 2.

Table 2. Network Model Results.

Model
AP/%

mAP/% Precision Recall F1 FLOPs(G) FPS
Parameter

/MBFace Face_Mask

YOLOv7tiny 82.5 94.2 88.35 0.89 0.817 0.851 13.8 71.5 6.2
YOLOv4 83.03 93.47 88.25 0.896 0.765 0.825 61.2 12.65 64.5
YOLOv7 83.7 93.8 88.75 0.86 0.823 0.841 104.3 36.3 36.9
SSD-vgg 76.6 92.3 84.45 0.801 0.825 0.812 272.1 64.4 99.7

FasterRCNN 80.6 91.5 86.05 0.784 0.85 0.815 371.7 8.5 136.69
(Mine) 89.1 96.4 92.75 0.962 0.876 0.917 11.3 65.3 5.06

Table 2 data show that ECGYOLO is 4.4% more accurate than YOLOv7tiny, overtops
YOLOv7 by 3.0%, exceeds SSD by 8.3%, and outperforms FasterRCNN by 6.7%. The
increase in precision is 6.6% above the second highest of YOLOv4, recall is 2.6% above
the second highest of FasterRCNN, and F1 is also 6.6% higher than the second highest of
YOLOv7tiny. These figures can reduce the number of wrong and missed checks to some
extent. FPS is the second highest of that of the above models, only 6.2 below YOLOv7tiny.
Parameter is 1.04M below the second lowest, and FLOPs are 2.5 lower than the second
lowest, of YOLOv7tniy. The above figures are satisfactory for use and operation on most
low-computing platforms. The models based on this dataset are shown in Figures 9 and 10.
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Due to the application of learning rate cosine annealing decay, the curve is fluctuating,
and after 25 epochs, the curve as a whole has no decreasing trend, at which time, the Loss
can be considered to have converged. The loss results and the map curve are shown in
Figures 13 and 14.
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5.2. Ablation Experiments

Table 3 data show that the model accuracy, precision and recall are upgraded after
replacing the normal convolution with GhostConv in YOLOv7tiny. Also, further improve-
ments such as adding the ECA attention mechanism, replacing the EIoU loss function and
replacing the activation function Hardswish can also raise the mAP of the model by 0.72, 0.3
and 0.4, respectively. In addition, when replacing the ordinary convolution with RepConv
and replacing the ECG with ELAN, the accuracy is increased by 1.02 and 1.15. It is worth
noting that these improved methods correspondingly increase the number of parameters
by 0.94 M and 0.8 M. Although these methods increase the number of parameters partially,
they also bring significant accuracy and precision and recall improvements. Therefore,
these improvement methods are well worth trying and promoting. In Table 3, GC refers to
GhostConv, RC denotes RepConv, and HS is Hardswish.

Table 3. Ablation experiment results.

Model
AP/%

mAP/% Precision Recall
Parameter

/MBFace Face_Mask

YOLOv7tiny 82.5 94.2 88.35 0.89 0.817 6.2
YOLOv7tiny + GC 83.6 95 89.3 0.92 0.828 3.32

YOLOv7tiny + GC + EIoU 86.7 92.16 89.43 0.92 0.84 3.32
YOLOv7tiny + GC + EIoU + ECA 86.2 94.1 90.15 0.93 0.845 3.32

YOLOv7tiny + GC + EIoU + ECA + HS 88.2 92.96 90.58 0.93 0.856 3.32
YOLOv7tiny + GC + EIoU + ECA + HS + RC 88.3 94.9 91.6 0.95 0.86 4.26

YOLOv7tiny + GC + EIoU + ECA + HS + RC + ECG 89.1 96.4 92.75 0.962 0.876 5.06

6. Discussion

This study investigates mask-wearing testing and proposes a lightweight mask-
wearing testing algorithm that has both higher detection speed and guaranteed detection
accuracy and directs at the issue that present detection algorithms are slow and difficult
to deploy on low-computing-power hardware platforms (e.g., embedded, mobile, etc.).
Compared with YOLOv7tiny, ECGYOLO has faster speed, higher accuracy and is more
lightweight. It uses some including cleaner ECG model, more efficient EIoU loss function
and more efficient ECA attention mechanism. Compared with the better YOLOv7 and
YOLOv7tiny on the market, ECGYOLO is better in mAP, F1 metrics and 1.14M smaller in
the number of parameters than YOLOv7tniy. However, ECGYOLO also has some short-
comings. Because of the lightweight measures taken throughout this paper for deployment
in low-computing-power platforms, the mAP of the face without mask is not too high. The
mAP of the target result is not too high, only 89.1%. How to improve the AP of face targets
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while retaining tall detection efficiency and light weight is the next problem to be solved.
In summary, the ECGYOLO design scheme can meet the demand for lightweight, efficient
and accurate models in practical applications compared to previous models in the target
detection domain, so the emergence of the ECGYOLO model is of great significance for the
large-scale application in the target detection domain and will provide great convenience
for future intelligent applications.

7. Conclusions

In this document, a modified model ECGYOLO based on YOLOv7tiny is introduced,
which is mainly used to resolve the detection discrepancy of mask wearing. In terms of
model improvement, three main improvement methods are proposed. First of all, the
ELAN module is replaced by the ECG, and the ordinary convolution is displaced by the
GhostConv. Second, the ordinary convolution is replaced by RepConv to enhance precision
for small target layers. Finally, in the layers of the head, neck and backbone network of
the ECGYOLO model, the reorganization and optimization are completed by replacing
the activation function Hardswish, replacing the loss function EIoU and appending the
ECA attention.

The evaluation results suggest that the ECGYOLO model outperforms the Faster-
RCNN, YOLOv7tiny, SSD and YOLOv7 models by 6.7%, 4.4%, 8.3% and 3.0%, respectively,
in mAP. The model also exceeds YOLOv7tiny by 6.6%, overtops YOLOv7 by 6.7%, out-
performs SSD by 10.5% and is 10.2% superior to c in terms of F1 metrics. In addition, in
terms of FPS parameters, the FPS of the ECGYOLO model is 65.3, which is lower than
YOLOv7tiny’s 71.5 but somewhat higher than that of the rest of the models. In addition,
the number of arguments of this model is 5.06 M, which is smaller than that of the smallest
YOLOv7tiny by 1.14 M. Therefore, it can be seen that this model is lightweight and superior
in mask detection.

Although the mask detection technique still faces some challenges and difficulties
in practical scenarios, the authors believe that these problems can be gradually solved
as the technology continuously upgrades, and the datasets continuously improve, thus
providing people with a perfect mask detection solution. In conclusion, it is important to
develop a mask inspection system based on YOLOv7tiny, and the high-performance and
lightweight features of the ECGYOLO model will also make the model more advantageous
in practical applications.
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