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Abstract: Fine-grained image classification remains an ongoing challenge in the computer vision
field, which is particularly intended to identify objects within sub-categories. It is a difficult task
since there is both minimal and substantial intra-class variance. Current methods address the issue
through first locating selective regions with region proposal networks (RPNs), object localization,
or part localization, followed by implementing a CNN network or SVM classifier to those selective
regions. This approach, however, makes the process simple via implementing a single-stage end-to-
end feature encoded with a localization method, which leads to improved feature representations
of individual tokens/regions through integrating the transformer encoder blocks into the Yolov5
backbone structure. These transformer encoder blocks, with their self-attention mechanism, effectively
capture global dependencies and enable the model to learn relationships between distant regions.
This improves the model’s ability to understand context and capture long-range spatial relationships
in an image. We also replaced the Yolov5 detection heads with three transformer heads at the
output for object recognition using the discriminative and informative feature maps from transformer
encoder blocks. We established the potential of the single-stage detector for the fine-grained image
recognition task, achieving state-of-the-art 93.4% accuracy, as well as outperforming existing one-
stage recognition models. The effectiveness of our approach is assessed using the Stanford car
dataset, which includes 16,185 images of 196 different classes of vehicles with significantly identical
visual appearances.

Keywords: fine-grained image recognition; Yolov5; transformer encoder block; attention mechanism

1. Introduction

Among the most significant challenges in computer vision is fine-grained image
recognition, which seeks to distinguish objects from different sub-categories of a partic-
ular super-category, for instance, different consumer product categories, vehicle models,
bird species, etc. In computer vision, there are numerous fine-grained image recogni-
tion applications, including fine-grained image retrieval [1], visual-based recommended
systems [2,3], picture generation [4], visual search system [5], and image labelling [6]. There-
fore, fine-grained image recognition is a key research topic as well as an actively emerging
area of image recognition. Even though networks based on deep learning are capable of
extracting important features [7], particularly CNNs [5,8], fine-grained classification is
still a difficult task that needs learning to differentiate fine image features. As a result,
there has always been a spotlight on learning desired features regarding both fine and
discriminating information.

Present fine-grained image recognition approaches can usually be sorted as weakly
supervised and strongly supervised. Weakly supervised methods gather specific local
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areas for part localization using just image labels, whereas strongly supervised methods
train a network using extra information such as bounding boxes, image labels, and man-
ual annotation [9–15]. In weakly supervised learning, attention-based approaches are
becoming more prevalent in recent times given the ability to perform end-to-end training
without additional information. Convolutional neural networks are used in attention-based
approaches to construct a local sub-network that gathers important parts of the image.
After that, an additional sub-network is utilized to achieve recognition at the output. These
methods, however, come with certain acknowledged drawbacks. The amount of object
parts must be addressed; for example, the object parts are limited and predefined, which
restricts the model’s efficiency and adaptability. Furthermore, constructing and training
sub-networks to handle every attention element in an object is unreliable, resulting in
bottlenecks within the structure. Additionally, local regions could be concatenated but
cannot affect the connection between several local regions from a global perspective, which
is also extremely important for fine-grained image recognition. Such restrictions need the
development of a reliable model capable of extracting unrestricted main features, such as
coarse-grained along with fine-grained (attention) features in a relational manner.

The vision transformer [16] recently gained incredible results in the recognition task,
proving that using a simple transformer aligned to a series of image patches is capable of
capturing the relevant regions because of its inherent attention mechanism. A number of
expanded research projects targeting related tasks, including semantic segmentation [17,18]
and object detection [19], demonstrated its capacity to extract local features as well as global
features. The transformer’s capabilities make it suitable for fine-grained image recognition,
considering the initial distant receptive field [16], which allows it to track down minimal
differences and associated spatial relationships within the initial layers. Convolutional
neural networks, on the other hand, primarily leverage the image localization feature
and simply locate weaker distant relationships in highly dense layers. Moreover, minor
differences among fine-grained categories appear only in particular regions; it is unsuitable
to construct a filter that notices minute differences across every region of an image.

The main idea of our research is to investigate the fusion of the vision transformer with
the one-stage object detector and their performance in fine-grained image recognition, as
there are few studies proving the viability of one-stage object detectors in the fine-grained
recognition problem. The aim of our study is to exploit the vision transformer’s ability to
learn more discriminative and informative features, which is the most important factor
considered for the fine-grained recognition problem, as well as to utilize the inference
speed of the one-stage object detector simultaneously. Our method integrates transformer
encoder blocks with CSP-Darknet53 [20], which results in expanding the receptive field to
forecast various scale features through considering the object’s local and global information.
We swapped several CSP bottleneck blocks with transformer encoder blocks, and after
comparing the bottleneck block with the transformer encoder block, we anticipated that the
transformer encoder block accumulates both global and local contextual details. Our model
learned more discriminative and informative features, leading to improved performance in
downstream tasks, and also enhanced feature representations, which are beneficial for fine-
grained image classification, where capturing detailed visual patterns is crucial. We utilized
some recent computer vision methods, such as the transformer encoder block, multi-stage
feature fusion, and various training approaches. To summarize, we have contributed some
important and notable improvements to fine-grained image recognition:

• To the best of our understanding, our study is the first to demonstrate the capability
of transformer encoder blocks using a one-stage object detector with respect to the
fine-grained image recognition task.

• We proposed a single-stage fine-grained model to improve efficiency and minimize
the level of complexity, compared to existing two-stage models for the fine-grained
recognition problem.

• We introduced the transformer encoder blocks in the backbone of Yolov5 to capture
detailed visual patterns and feature representations.
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• We replaced the Yolov5 detection heads with three transformer heads at the output to
detect discriminative fused features extracted using the transformer encoder blocks.

To validate the algorithm’s performance, comparison studies were conducted, and the
empirical results indicate that the model is capable of recognizing sub-classes with high
precision and accuracy.

The rest of the article is structured as follows: Section 2 discusses related work in detail,
providing an overview of the existing two-stage and one-stage methods to overcome the
fine-grained recognition problem. Section 3 first introduces the existing Yolov5 backbone
structure, subsequently modifies the backbone using transformer encoder blocks, and
finally compares the proposed model to the existing model. Section 4 summarizes the
experimental setup and presents the training and validation results from a fine-grained
dataset using evaluation metrics, demonstrates the proposed model’s results on the test set,
and finally compare the results with the state-of-the-art fine-grained recognition methods.
Discussion of these results is covered in Section 5, and lastly, Section 6 concludes the
proposed work.

2. Related Work

Currently, there are two prevailing techniques for fine-grained image recognition. The
first approach is known as localization classification subnetworks, and the other one is
end-to-end feature encoding.

The two-stage method (localization classification subnetworks), in particular, depends
on the object and part localization annotations, region proposal networks [21], or attention
mechanisms to acquire discriminatory areas, which are subsequently fed to the classifier.
Study [22] built object and part detectors using bounding box datasets to find the most
effective local semantic parts, and afterward applied a classifier to retrieve final classifica-
tions. Ref. [23] generated portions using segmentation and a posture graph, followed by
moving them to a classification model. The authors of [24] layered a series of branches com-
prising a part cascade, an object cascade, and part landmark localization to merge feature
maps carrying information from each component along with the bounding box. In [25],
researchers combined classification and semantic part recognition. Study [26] designed
a multi-granularity algorithm for learning with two stages: a targeted search to discover
ROI (regions of interest) followed by classification. Ref. [27] utilized a weakly supervised
approach to locate various relevant regions coming from proposals and subsequently apply
them to generate a broader representation for classification. An attention mechanism was
employed by [28] to train a coarse-grained model to identify relevant regions, which were
then forwarded through a fine-grained network to enhance categorization. In terms of
conclusion, each of those techniques attempts to use object-level or local-level details to
eliminate unnecessary information, then feed the relevant information to the classifier for
the classification task.

Considering the complex two-stage pipeline and tedious and resource-intensive
datasets, the present work emphasizes end-to-end feature encoding through deep learning
neural networks to identify minute differences within subcategories. This strategy relies on
maximizing classification outcomes through improved feature representations. A couple
of research studies [29,30] proposed paired interaction learning approaches to gather se-
mantic differences. The authors of [31] employed the self-attention mechanism to retrieve
discriminative features. Study [11] suggested a hierarchical architecture that performs
cross-layer bilinear pooling. A small number of studies have focused on fine-grained image
recognition with one-stage object detectors, which similarly adopt the feature encoding
approach with the object localization system. Consequently, in this study, we intended to
explore the performance and ability of the single-stage detector [32] to fill the void in the
fine-grained image recognition problem.
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3. Proposed Model
3.1. Yolov5 Backbone

The Yolov5 backbone serves the purpose of feature extraction from the given input
image. The backbone includes a focused network, spatial pyramid pooling, and a cross-
stage partial network, which can be seen in Figure 1. The focus structure decreases model
parameters and GPU storage space for execution, which results in boosting the model
speed. The spatial pyramid pooling unit has the ability to enhance the receptive field. A
broad receptive field is capable of spotting object information and discriminating some
of the significant relevant features. The cross-stage partial network has two different
kinds of patterns; the difference between them is the reiterated ResUnit, which has more
complex layers that are capable of extracting detailed information. The Yolov5 backbone,
however, struggles with modeling long-range dependencies across the entire input as
well as understanding detailed contextual information, which is essential for fine-grained
image recognition. As a result, we proposed an improved backbone through introducing
transformer encoder blocks to replace the bottleneck CSP blocks.
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Figure 1. (a) The focus structure uses down-sampling and concatenation operations to capture both
fine-grained details and larger spatial context. (b) BottleNeckCSP module is a building block that
extracts features through utilizing cross-stage partial connections. (c) Spatial pyramid pooling utilizes
multiple levels of pooling operations to capture features at different scales.

3.2. Improved Backbone with Vision Transformer

A traditional vision transformer [16] is composed of two basic components: a linear
projection from an image as well as a transformer encoder block that includes numerous
MLP models alongside a self-attention network.

3.2.1. Patch Embedding

The vision transformer method involves splitting the input image into different patches
of identical shapes, similar to a pattern of embedded words in natural language processing.
The image is broken down into image tokens using the vision transformer as

[X1, X2, X3, . . . . . . .XN ] by x ∈ rn×d (1)

A convolutional neural network employs pixel arrays; however, the patch size (n)
must be specified. This phase involves vectorizing the received visual patches into vectors
or flattening them, and then these flattened patches are projected onto a lower-dimensional
space using the linear operator on each of the vectors xn. Since w and b are two accepted
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parameters obtained using the training data, these individuals also append a position
embedding acquired through patches P ∈ 1, 2, . . . ., N to their respective

⇀
z vectors to

ensure that the
⇀
z vector retains both the content as well as the position simultaneously.

This result is regarded as patch embedding and is written as

ZN = WXN + B (2)

Through this, nearer patches often have matching position embedding compared to
other patches. In recognition tasks, including a second embedded learnable vector Z0
into the sequential X, which represents the CLS token, enables gathering and keeping
data that has been acquired through other tokens and has an identical form as the rest of
the

⇀
z vectors.

3.2.2. Transformer Encoder Block

The self-attention mechanism transforms a single feature into another through captur-
ing long-range dependencies across each input via taking N instances with no contextual
information and then returning N entities with contextual information. In other terms, it
accepts inputs in the manner of [X1, X2, X3, . . . . . . .XN ] by x ∈ rn×d, and further employs
the learnable weighted matrices that are queries wQ ∈ rD × DQ, keys wK ∈ D× DK, and
values wv ∈ D× DK. Evidently, through combining each value with weights after mea-
suring the query across all keys, the equation below represents the self-attention output.

attention(q, k, v) =
⇀
z = So f tMax(

q·kt

√DQ
)v (3)

upon which,
⇀
z ∈ rN×D along with SoftMax to achieve the attention level having

v = xwv, q = xwq, and k = xwk using the dot product calculation. Relying on adopt-
ing a self-attention layer, the vision transformer applies multi-head self-attention. Where
eight headers are often used to streamline various complex connections among different
components in a series and handle longer-term dependencies, this corresponds to the
aggregated multiple self-attention that is independent of parameters wq

i , wk
i , and wv

i and
possesses similar input, where I = 0, . . . . .(H − 1), and H is the overall length of attention
blocks, respectively.

multihead(q, k, v) = concat(HEAD1, . . . . . . , HEADH) w (4)

while HEAD1 = attention(vwv
i , qwq

i , and kwq
i ), and outcomes are combined to a single

matrix, [c0, c1, . . . .cH−1] ∈ rH·D×DK .
Multilayer perception layers (MLPs) in the transformer encoder block have enabled

our model to narrow its attention to the relevant features while minimizing the number
of parameters after integrating them into the final layer inside the feature extraction stage.
The dimensions of the input image along with extracted features and the output can be
seen in Figure 2, where 640× 640× 3 represents the size of the input, and once the input
image is converted into a feature map, its dimensions change to 20 × 20 × 512. As a
result, the transformer encoder block input size is 20× 20× 512. The feature map’s size is
400× 512 (length× channel) using patch embedding, which applies a simple additive
operation through a learnable vector. Therefore, transformer encoder block input vectors
and output vectors are of the same size.
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has the same input and output size.

3.3. Improved Yolov5
3.3.1. Yolov5 Architecture Overview

In the Yolov5 model, the learning capability offered by the CSPNet (cross-stage partial
network) is used to formulate the CSPDarkNet53 network to boost network performance.
The results greatly minimize the model parameters, simultaneously improve residual
feature information, and boost feature learning abilities compared to the ResNet model.
Meanwhile, the neck primarily functions to combine information coming from multiple
features to form a model with improved representation and richer features. The total
number of heads is chosen by the neck, where objects of different sizes are assigned to each
head for learning. The neck also maintains a multi-scale feature fusion order that improves
the existing range of the features in a more effective manner than simply utilizing a single
pooling method and notably distinguishes the object context.

3.3.2. Proposed Model Improvement Comparison with the Existing Model

• Multi-Head Self-Attention: Convolutional layers (CSP bottleneck module) are effective
for feature extraction, but they do not capture fine-grained details and subtle differ-
ences required for accurate fine-grained recognition. The fixed receptive field size
and limited context modeling of convolutional layers hinder their ability to capture
fine-grained visual cues. We replaced these convolutional layers with multi-head
self-attention layers which enabled the model to capture both local and global depen-
dencies, as it allowed the model to attend to specific fine-grained details and captured
the broader context.

• Feed-Forward Neural Network: The residual connection in the CSP bottleneck module
helps propagate information through skip connections. However, it is not sufficient to
capture the intricate relationships and dependencies present in fine-grained recogni-
tion tasks, where subtle details and local patterns play a crucial role. We replaced it
with feed-forward networks, which allowed the model to refine the feature represen-
tation in a non-linear manner and enabled the model to learn complex patterns and
capture subtle differences between visually similar categories.

• Layer Normalization: An additional layer normalization step helped with stabilized
training and improved gradient flow. The first normalization layer enhanced the
model’s ability to learn discriminative features through reducing the impact of vari-
ations in scales and intensities across fine-grained images, while another layer of
normalization further enhanced the stability and convergence of the model.

• Position-wise Feed-Forward Network: Additional convolutional layers in the CSP
bottleneck module have limited context modeling capabilities, which limits their
ability to capture the intricate details necessary for accurate fine-grained recognition.
Our position-wise feed-forward network added additional non-linearity, allowing the
model to capture more intricate relationships between tokens/regions.
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• In our experiment, we also applied transformer heads at the last stage of the Yolov5
network because the feature maps at that stage have low resolutions, and using
transformer heads on low-resolution feature maps reduces high computing costs and
memory consumption. The proposed architecture can be seen in Figure 3, where
transformer encoder blocks containing a multi-head self-attention module with a
feed-forward neural network and layer normalization are integrated at the end of the
feature extracting stage and the transformer encoder blocks included in the model’s
neck are used to form prediction heads.
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4. Model Training and Results

In this section, we will explain the dataset and experimental setup, then exhibit the
training outcomes, and compare the models. Finally, we will demonstrate the outcomes of
the experiment.

4.1. Dataset

The Stanford car dataset, having 16,185 images of 196 classes and sometimes extended
to 208 classes, is used for the experiment. This dataset contains images of vehicle brands
with significantly identical visual appearances and is one of the few benchmark datasets
that are specifically designed for fine-grained image recognition. The dataset images, which
are in JPEG format and contain different sizes, were first converted into Yolov5 format and
then split into train, validation, and test sets. Figure 4 shows the dataset visualization.
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Figure 4. Visualization of the dataset. (a) The number of annotations for each class; (b) a vi-
sual representation of the location as well as the dimensions associated with each bounding box;
(c) the statistical distribution of bounding box location; (d) the statistical distribution of bounding
box dimensions.

4.2. Experimental Environment

Our training setup involved a Windows 10 64-bit operating system with a 13th Gen
Intel(R) Core(TM) i5-13400 processor, 32 GB of RAM, NVIDIA GeForce RTX 3060 Ti GPU,
and Python 3.9 with the Pytorch framework. To optimize the performance of our model
and to compare and analyze it with existing Yolov5 models, we trained all the models with
SGD and ADAM optimizers. Table 1 displays multiple experimental hyperparameters.

Table 1. Experimental hyperparameter details. Most of the parameters were set to the same as the
default Yolov5 model; only data loaders and optimizers were tested at different stages.

Parameter Values

Batch Size 16
Learning Rate 0.01

Learning Rate Decay 0.999
Momentum 0.937

Learning Rate Decay Step 5.e−4
Epoch 300

Workers 8
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4.3. Evaluation Metrics and Model Training

Precision, recall, average precision, and F1 score are commonly used for statistical
analysis to evaluate the effectiveness of a detection model. Below are the equations adopted
to evaluate precision, recall, and F1 score.

Precision =
True Positives

True Positives + False Positives
(5)

Recall =
True Positives

True Positives + False Negatives
(6)

The number of correctly detected objects refers to true positives; false positives are
wrongly identified as targets, and false negatives are the number of undetected objects. If
the predicted bounding box of an object differs from the ground truth, this is not evidence
that the detection is incorrect; therefore, intersection over union (IoU) is a frequent approach,
where intersection over union is the ratio of the detected bounding box over the ground
truth (bounding box). If the value of the IoU is higher than the set threshold, the detection
is accurate (true positive); else, it is incorrect (false positive).

We derived the F1 Score assuming a harmonic mean of recall and precision upon cal-
culating the precision and recall scores for each class. The F1 Score allows us to understand
how the model becomes confused while providing predictions. Equation (7) is often used
to compute the F1 Score for all classes.

F1 Score =
2× Precision·Recall
Precision + Recall

(7)

The precision–recall curve represents a curve where the x-coordinate is the recall rate,
and the y-coordinate is the accuracy. The total area under precision–recall curve is referred
to as the average precision (AP), and it can be calculated using Equation (8).

Average Precision =

1∫
0

Precision(Recall)dRecall (8)

mAP indicates the average across all APs to evaluate the model’s performance.

mAP = ∑ 1
n

Average Precision (9)

We trained our proposed model using both SGD and ADAM optimizers along with
the Yolov5l, Yolov5x, Yolov7, and Yolov8 models on the Stanford car training data set. The
training results after every epoch are displayed in Figure 5. We observed that during the
first 100 epochs, all eight models’ precision increased gradually, while the recall dropped
and fluctuated until the 50th epoch. However, the mAP@50 and mAP@50:95 remained
stable and were gradually increasing, which shows that the instability during the initial
stage of the training did not affect the performance of the models. Our proposed models’
accuracy peaked at 0.934 on the 220th epoch followed by the Yolov8 at 0.919, while both
models maintained high recall at 0.89 and 0.88, respectively, considering stable training
where the model was improving at every epoch. Consequently, we let the models train
until the 300th epoch, where no such improvement in accuracy and recall was seen.

Table 2 demonstrates the overall training results of all six models, where we can
better analyze the models’ performance during training. Our proposed model with the
transformer encoder block performed relatively well during training with higher accuracy
and recall.
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Table 2. Overall training results for all the models. The proposed model performed better during
the training process, whereas Yolov5x slightly improved with the ADAM optimizer. Yolov7 recall
dropped the most compared to other models.

Model Precision Recall mAP
@0.5

mAP
0.5:0.95

Yolov5l_SGD 0.890 0.885 0.912 0.863
Yolov5l_ADAM 0.911 0.880 0.912 0.864
Yolov5x_SGD 0.896 0.889 0.917 0.874

Yolov5x_ADAM 0.901 0.891 0.919 0.868
Yolov5_tr_SGD 0.931 0.892 0.921 0.873

Yolov5l_tr_ADAM 0.934 0.895 0.927 0.878
Yolov7 0.898 0.839 0.884 0.811
Yolov8 0.919 0.887 0.914 0.877

Loss Function

Three different parts form the Yolov5 loss function: object loss, bounding box loss, and
class loss. These components are weighted and paired to create the final loss function and
can be seen in Equation (10).

LOSS = a·LOSSobject + b·LOSSB.box + c·LOSSclass (10)

The weights assigned to the loss function are represented by a, b, and c. Typically,
object loss is given the highest weight, followed by bounding box loss and class loss.
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Equation (11) shows the two cross-entropy losses, which are class loss and object loss.

LOSSCLASS,OBJECT = − 1
n

n

∑
I=1

YI ·Log(P(Yi)) + (1−Yi)× Log(1− P(Yi)) (11)

where the total number of categories is (n), true value is referred to as Yi, and predicted
probability is P(Yi).

The model’s predicted result and the true value are compared using binary cross-
entropy. The loss function value will be closer to zero if the predicted value is nearer to 1,
meaning that the loss function value decreases as the gap between the expected result and
the actual value reduces. On the other hand, if the predicted value moves nearer to 0, the
gap between the true value and the predicted result will be greater so that the loss function
value will be higher.

We calculated the losses using Equation (11) during the training, where we have seen
all the models’ losses (object loss, bounding box loss, and class loss) decreased gradually,
apart from the bounding box loss of Yolov5l and Yolov5x with the SGD optimizer, which
moderately decreased from 0.04 to 0.02 initially, but between the 40th epoch and the
110th epoch, it increased and did not converge relatively as expected. The object loss of
our proposed model with the ADAM optimizer as well as the Yolov7 model instantly
decreased to 0.005 after 10 epochs, which later ended up at 0.003—far better than the
other models’ during training—whereas during validation, different models have shown
different convergence rates, where the class loss decreased gradually while box loss and
object loss decreased until the 100th epoch and later settled with same rate until the end,
which can be seen in Figure 6.
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4.4. Model Adaptability over Test Images

To test our model’s capability for fine-grained image recognition, we used the Stanford
test set, having 2530 challenging identical images. Vehicle recognition results can be seen in
Figure 7. Table 3 demonstrates our models’ inference speed and compares the result with
other trained models. Our model has a slower inference speed as well as preprocessing
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time compared to other models because of the increased training parameters after including
transformer encoder blocks.
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colors at different viewing angles.

Table 3. All models’ inference speed comparison on the Stanford car test set. The latest Yolov7 and
Yolov8 models with fewer training parameters have the edge of being lighter models that can detect
at a minimum inference speed of 15.1 and 13.9 ms, respectively, but recognition accuracy is lower
than that of our proposed model, which is moderately behind by 39.2 ms.

Model Pre-Process (ms) Inference Speed (ms) NMS/
Image (ms) Image Size

Yolov5l_SGD 0.3 15.5 0.6 640 × 640
Yolov5l_ADAM 0.3 15.5 0.6 640 × 640
Yolov5x_SGD 0.3 28.7 0.7 640 × 640
Yolov5x_ADAM 0.4 28.4 0.7 640 × 640
Yolov5_tr_SGD 0.8 39.2 0.9 640 × 640
Yolov5l_tr_ADAM 0.8 39.2 0.9 640 × 640

Yolov7 0.4 15.1 0.6 640 × 640
Yolov8 0.3 13.9 0.5 640 × 640

The normalized confusion matrix of the proposed model is presented in Figure 8,
which was generated after obtaining the precision and recall scores for the test images.
Predicted true positive and true negative values for all 208 sub-classes can be seen in
the diagonal position, with the dark blue color indicating confidence of over 0.8 on the
predicted class, whereas very few false positive and false negative predictions with light
blue color indicating that confidence of below 0.4 was obtained. These false predictions
occurred where the model became confused due to occlusion and low light.

The precision–recall curve and the F1 confidence score curve for all the classes are
produced using Equations (7) and (8) and can be visualized in Figure 9. Intuitively, it is
evident that as the recall is increasing, the rate of change in accuracy is also increasing. The
PR curves are established near the upper right corner, demonstrating the proposed model’s
efficiency in recall and accuracy. The substantial area under the PR curves suggests that our
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approach works effectively. Furthermore, the smooth PR curves confirm that our model’s
accuracy and recall rate have a very stable relationship.
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Figure 9. PR curve and F1 confidence score curve from the proposed model’s test set recognition
results. (a) represents the mAP@0.5 threshold for all classes where the average precision is 0.944.
(b) represents the proposed model confidence score of 0.88 at the 0.581 threshold value.

The F1 curve for all classes started to flatten at a confidence score of 0.8, as shown
in Figure 9b, which means that the bounding boxes under the confidence score of 0.8 are
discarded later in validation.
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We compared the trained model’s performance on a Stanford car test set. We passed
2530 images to all the models with the batch size of 10 and calculated the mAP scores
through averaging the precision scores for each model using Equation (9). Yolov5′s existing
models performed moderately well against the latest Yolov7 and Yolov8 models on unseen
data. However, our model performed better than the others but at the cost of inference
speed, which can be seen in Table 4.

Table 4. All models’ performance comparison on the Stanford car test set, where Yolov7 and Yolov8
performed at a minimum inference speed with lower mAP compared to the proposed model, which
performed better than all, scoring 0.919 at mAP@50 and 0.871 at mAP@0.5:95 thresholds.

Model Precision mAP
@0.5

mAP
0.5:0.95

Total Inference
Time (s),

Test Images = 2530,
Batch Size = 10

Yolov5l_SGD 0.874 0.899 0.845 40
Yolov5l_ADAM 0.871 0.896 0.847 40
Yolov5x_SGD 0.88 0.9 0.844 47

Yolov5x_ADAM 0.891 0.901 0.848 47
Yolov5_tr_SGD 0.926 0.919 0.864 56

Yolov5l_tr_ADAM 0.927 0.919 0.871 56
Yolov7 0.899 0.882 0.831 37
Yolov8 0.901 0.9 0.858 31

4.5. Comparison with State of the Art

We compared our model with some of the existing state-of-the-art fine-grained image
recognition models. Most of the models have utilized the VGG-19 and Resnet-50 backbones
and are weakly supervised, where no training annotations were employed. The comparison
is based on the accuracy achieved using the benchmark Stanford car dataset. Our method
achieved 93.4 percent accuracy with an improved CSP-Darknet53 backbone; a comparison
can be seen in Table 5.

Table 5. Accuracy comparison of our model with the state of the art on Stanford car dataset.

Methods Train Anno Backbone Image
Resolution Accuracy

RA-CNN VGG-19 448 × 448 92.5%
BoT Alex-Net Not given 92.5%

WPA BBox CaffeNet 224×224 92.6%
MA-CNN VGG-19 448 × 448 92.8%
PA-CNN VGG-19 448 × 448 93.3%
M2DRL VGG-16 448 × 448 93.3%

Yolov5-Trans BBox CSP-Darknet53 640 × 640 93.4%
DFL-CNN VGG-16 448 × 448 93.8%

TASN ResNet-50 224 × 224 93.8%
Hsnet Parts GoogleNet 224 × 224 93.9%

MGE-CNN ResNet-50 448 × 448 93.9%
NTS-Net ResNet-50 448 × 448 93.9%

GCL ResNet-50+BN 448 × 448 94.0%
FDL ResNet-50 448 × 448 94.3%
S3N ResNet-50 448 × 448 94.7%

DF-GMM ResNet-50 448 × 448 94.8%

5. Discussions

This research focuses on the recognition of fine-grained vehicles, which are almost
visually identical. Although promising results have been achieved using a one-stage object
detector, vision transformers are known for their computational and memory requirements.
The self-attention mechanism used in the transformer encoder block computes pairwise
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interactions between all elements in the input feature map, resulting in quadratic complexity
with respect to the input size. During the training stage, our model performed considerably
better but still consumed a lot of time because of the higher number of training parameters
as compared to the other models, and when we tested the model on the test set, the inference
speed was slightly increased as well. The implementation of a visual transformer, which
costs additional speed and memory resources, is a drawback of this study. However, as we
know, vision transformers divide the input image into fixed-size patches and process them
individually. Through reducing the patch size, the number of patches and the subsequent
memory requirements can be decreased. But taking into consideration that this reduction
should be balanced with the model’s ability to capture fine-grained details, smaller patches
might result in a loss of information. Various methods have already been proposed to
make transformer attention mechanism more efficient, such as utilizing sparse attention
patterns or approximating attention mechanisms with lower complexity operations such
as kernelized self-attention or linear attention. These approaches can significantly reduce
memory requirements and computational overhead and can be considered to align with
our future research work.

However, while testing all the models with an unseen test set, these transformer
encoder blocks expressed robustness through enhancing the generalization capability of
the model via ensuring consistent performance across all classes through capturing the
underlying patterns and features that are characteristic of each object class, which enabled
accurate recognition even on samples that differ from the training data. Although general-
ization capability improved with transformer encoder blocks, there are still some resilience
issues faced during the testing stage, including occlusion, poor lighting conditions, and
partial visibility where our model became confused and struggled with accurately detecting
objects. There is another factor that came during the test phase which affected the model’s
performance: sensitivity to image quality and noise. In scenarios where images have low
resolution, high noise levels, or significant distortions, our model, along with other models,
was ineffective due to the nature of one-stage feature extraction. Despite that, strengthening
the preprocessing techniques, denoising methods, or data augmentation strategies can help
to improve the model’s resilience to these challenges, while enhancements in multi-scale
feature fusion can make the proposed model robust to occlusion handling. A BiFPN (bi-
directional feature pyramid network) can be utilized in future research; it is a variant of
the FPN that introduces additional connections to create a bidirectional information flow,
facilitating more effective feature fusion and refinement. It aims to address both feature
resolution degradation and inconsistent feature propagation issues in the FPN architecture.

6. Conclusions

In this paper, we proposed a one-stage fine-grained object recognition model based
on the Yolov5 object detector. We improved the backbone of the existing Yolov5 model
to effectively capture global dependencies and enabled the model to learn relationships
between distant regions. This improved the model’s ability to understand context and
capture long-range spatial relationships in an image, which are important aspects of the
fine-grained recognition task. We also replaced the Yolov5 detection heads with three
transformer heads using the discriminative feature maps from transformer encoder blocks.
To evaluate model improvement after adding the transformer encoder blocks, we used the
famous Stanford car dataset, which is a benchmark dataset for fine-grained recognition
consisting of 16,185 highly similar images of 196 different classes of vehicles, which has
been updated to 208 classes. We trained the existing Yolov5l and Yolov5x models along
with our proposed model for 300 iterations using both the stochastic gradient descent
(SGD) and adaptive moment estimation (ADAM) optimizers. Evaluation matrices such
as precision, recall, mAP, and F1 score were used to evaluate model performance and to
obtain comparisons with the existing Yolov5 and state-of-the-art models. However, further
study is required to implement modern vision transformers effectively, particularly to solve
the challenges of speed and extreme memory usage.
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