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1 Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec,
Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland

2 Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec,
Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055 Katowice, Poland

* Correspondence: bszulc@sum.edu.pl; Tel.: +48-(32)-2699820

Abstract: Topical drug delivery in skin diseases provides a non-invasive, direct application of
treatments to the affected area and avoids systemic toxicity. Quercetin is a natural polyphenol with
documented activity to alleviate the symptoms of many skin diseases. The objective of this study was
to prepare and assess the physicochemical properties of hydrogels made of sodium alginate (SA) and
cellulose derivatives (methyl cellulose (MC) and carboxymethyl cellulose (CMC)), containing different
concentrations of quercetin (0.4 and 0.7%). The physicochemical evaluation of the obtained hydrogels
included organoleptic evaluation, texture analysis, spreadability, rheological properties, pH, and
stability. Among the prepared formulations, MC-based gels had the highest viscosity, adhesiveness,
cohesiveness, and stickiness. The results of this study indicate that MC-based hydrogels were superior
to CMC- or SA-based gels in their ability to effectively deliver quercetin to the porcine skin ex vivo.
The amount of quercetin retained in the skin after application of MC-based preparations containing
higher concentrations of quercetin was 2.04-fold higher for CMC-based hydrogels and 2.6-fold higher
for SA-based hydrogels.

Keywords: hydrogels; rheological properties; quercetin; sodium carboxymethyl cellulose; sodium
alginate; methylcellulose; skin retention; texture analysis; stability of hydrogels; topical application

1. Introduction

Quercetin is a plant-derived compound belonging to the flavonols group, which are
flavone derivatives containing a hydroxyl group in the molecule connected to a carbon
atom in the third position. Quercetin is one of the most widespread flavonoids in the plant
world [1].

Due to its pharmacological and biological activities, quercetin has a significant role
in the prevention of cardiovascular diseases, obesity, type 2 diabetes, asthma, cancer,
viral infections, mood disorders, and many others [2–10]. Its anti-inflammatory and anti-
ulcer effects have been demonstrated [11–14]. It stimulates neurogenesis and has been
shown to improve memory [12,15,16]. The intake of a quercetin-rich diet reduces the risk of
myocardial infarction and avoids varicose veins and atherosclerotic lesions by sealing blood
vessel walls [17–20]. In the case of quercetin, it has been proven to reduce venous spider
veins through its effect on cyclooxygenase activity, while its inhibition of the hyaluronidase
enzyme contributes to a reduction in oedema [21]. This natural polyhydroxy flavonoid
is classified as an effective antioxidant, diminishing the secretion of pro-inflammatory
cytokines (IL-1 β, IL-6, TNF-α), chemokines, and nitric oxide [22].

Skin diseases are usually treated using topical formulations: ointments, creams, hydrogels.
A key problem with topical drug delivery is that only a small number of APIs can

overcome the biological barriers in the human body. The skin acts as an external natural
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barrier to protect against dangerous external agents such as microorganisms and chemicals.
Crucial in this protection is the stratum corneum, which is in direct contact with the
environment. Thanks to its special and well-ordered structure, it acts as an efficient barrier
and determines the rate of the transdermal diffusion of drug molecules.

Quercetin, like other flavonoids, has been shown to have a number of beneficial
effects on human skin, which may, among others, inhibit oxidative stress and inflammatory
processes, prevent cancer, and reduce skin aging [23,24].

Several tests have demonstrated the anti-allergic effects of this natural polyphenol by
inhibiting histamine release from basophils and mast cells, as well as via the inhibition of
pro-inflammatory cytokines and interleukin-4 (IL-4) and IL-13,15 [25,26].

Pretreatment with quercetin in an experimental atopic dermatitis model resulted in
faster wound healing through the mitogen-activated protein kinase (MAPK)/extracellular
signal-regulated kinase (ERK) and NF-κB pathways. The authors of the study observed
that this natural compound improved wound healing and regeneration of skin damaged
by atopic dermatitis more effectively than dexamethasone [27].

As a result of its protective action on the skin, quercetin is an ingredient in skin care
products in the form of a plant extract or in combination with other bioactive compounds.
Quercetin has been proven to slow down UV-induced skin aging, dyspigmentation, and
carcinogenesis [28–31]. Quercetin may also act as a chemopreventive agent by initiating
cancer cell growth arrest, reducing tumor incidence and normal cell differentiation [32–35].
The study by Shin et al. also showed that quercetin inhibited the MAPK, Akt, and STAT3
signaling pathways. Furthermore, the authors revealed that quercetin directly targets the
protein kinases JAK2 and PKCδ, preventing photo-aging in human skin [36].

In an in vivo study, Bagde et al. showed that the topical application of a quercetin
nanogel with TiO2 before exposure to UV radiation resulted in a significant reduction in
the mean number of tumor nodules (3.63-fold) and mean tumor volume compared to the
control group. However, in the Western blot analysis, a decrease in the expression of COX-2,
EP3, EP4, cyclin D1, and PCNA was observed in the study group [28]. Another study
found that the use of quercetin fatty acid esters increased cell–cell adhesion forces and had
a higher apoptosis effect compared to the unconjugated form [37].

Many reports indicate an important supportive function for quercetin in the mecha-
nism of wound healing [38,39]. This natural flavonoid has a broad spectrum of antibacterial
properties but also has significant inhibitory effects on fungi, viruses, and parasites [40–43].
Quercetin destroys the bacterial cell wall or changes its permeability. In addition, it can
prevent bacterial adhesion and weaken biofilm formation [40,44].

Water-soluble polymers of semisynthetic—methyl cellulose (MC), carboxymethyl cel-
lulose (CMC)—and natural origin—sodium alginate (SA)—are used as gelling agents to
prepare dermatological hydrogel-type formulations. SA is an anionic polysaccharide in
which the carboxyl groups present in its structure interact with divalent metal cations such
as Ca2+ to form a stable gel network [45]. It is a biomaterial with numerous applications in
the pharmacology, cosmetics and biomedical fields. This polymer is used in many studies to
obtain composite scaffolds that may have future applications in tissue engineering [46,47].
Yao et al. developed a scaffold of polycaprolactone and SA loaded with melatonin for
tendon repair [48]. The authors observed that slow-release melatonin inhibited ROS produc-
tion and macrophage infiltration and activated the Nrf-2/HO-1 signaling pathway. A high
antioxidant capacity, higher in comparison to the base matrix (on average by 30 %), was de-
termined for hydrogels based on cellulose, collagen, and SA with quercetin, anthocyanins,
and lipoic acid [49]. The growing interest in this natural flavonoid is associated with its
antimicrobial activity and biodegradability, as well as its low production costs. In an animal
model, it was shown that exosomes, incorporated into an alginate hydrogel, accelerated
wound closure, collagen synthesis, and vascularization in the injury area [50]. A hydrogel
consisting of SA and platelet-rich plasma also showed high wound closure efficacy [51].
In contrast, another study showed that SA-based hydrogel membranes containing gallic
acid were effective in inhibiting biofilm formation [52]. The presence of silver nanoparticles
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in a tragacanth–alginate hydrogel enhanced, in a concentration-dependent manner, its
antibacterial effects against planktonic and biofilm-forming efficiency [53].

The cellulose ethers, MC and CMC, are also of great interest both scientifically and
commercially. Thanks to attributes such as biodegradability, biocompatibility, and low
production inputs, they are often used in the preparation of hydrogels, patches, and medical
devices [54–58].

The aim of this work was to prepare hydrogels based on semisynthetic (MC, CMC)
and natural polymers (SA) that deliver API to the skin with the potential to be used in the
treatment of dermatological diseases. Hydrogels containing quercetin at two concentrations
(0.4% and 0.7% wt/wt) were prepared, and the effects of the type of polymer and API
content on their physicochemical properties, as well as the amount delivered through the
skin or retained in the skin reservoir ex vivo, were assessed.

2. Materials and Methods
2.1. Materials

Quercetin (Cayman Chemical Company, MI, USA); MC (viscosity of 2% solution at
25 ◦C: 3755 mPa.s; Sigma Aldrich, Inc. St. Louis, MO, USA); SA (viscosity of 2% solu-
tion at 25 ◦C: ~250 cps; Biomus, Lublin, Poland); CMC (viscosity of 2% solution at 25 ◦C:
400–800 cps; Sigma Aldrich, Inc. St. Louis, MO, USA); glycerol 85% (Galfarm, Kraków,
Poland); calcium chloride (Avantor Performance Materials Poland S.A., Gliwice, Poland);
dimethyl sulfoxide (Gaylord Chemical Company, L.L.C., USA); potassium dihydrogen
phosphate (Avantor Performance Materials Poland S.A., Gliwice, Poland); disodium hydro-
gen phosphate anhydrous (Avantor Performance Materials Poland S.A., Gliwice, Poland);
sodium chloride (Avantor Performance Materials Poland S.A., Gliwice, Poland); water
for injection (Galfarm, Krakow, Poland); ethyl alcohol 96% (Avantor Performance Materi-
als Poland S.A., Gliwice, Poland); and phosphate-buffered saline (PBS) (Biomed, Lublin,
Polska). All materials used in the study were of the analytical grade and satisfy the
requirements of standards and certificates.

2.2. Methods
2.2.1. Formulation of the Hydrogel

Formulations based on MC and CMC were made by hot dispersion of the gellating
agent in a mixture of water and glycerol heated to 80 ◦C for the MC-based formulation and
to 50 ◦C for the CMC-based formulation.

Then, under ambient conditions, polymers were incrementally added to the solution
and stirred until the mixtures were homogeneous (300 rpm). The procedure for obtaining
formulations based on SA was to dissolve it in a mixture of water and glycerol with
200 µL 0.5% solution of calcium chloride (crosslinking agent) at ambient temperature.
Quercetin, after dissolving in dimethyl sulfoxide (DMSO), was introduced into the prepared
formations. The active ingredient solution was mixed with a hydrogel base via mechanical
stirring for 15 min. The obtained hydrogels were placed in the polyethylene containers
and left in a refrigerator for further examination. The compositions of the hydrogels are
presented in Table 1.

2.2.2. Visual and Sensory Inspection of Prepared Formulations

The prepared hydrogel formulations were inspected visually for their color, appear-
ance, uniformity and consistency, stickiness, greasiness and greasing, and adhesion [59].
The method of performing the tests was previously described by Siemiradzka et al. [60].

2.2.3. pH Determination

The pH of the quercetin gels was determined in triplicate using a Seven Compact
S210 calibrated pH meter, (Mettler Toledo, Switzerland) equipped with an InLab Routine
Pro-ISM electrode. Data are presented as mean ± SEM.
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Table 1. The composition of hydrogels with quercetin.

Ingredient (g)

Formulation Designation

F-AA F-CA F-MA F-AB F-CB F-MB

Content (g)

Quercetin 0.4 0.4 0.4 0.7 0.7 0.7

Sodium alginate 4.0 4.0

Methylcellulose - - 4.0 - - 4.0

Sodium carboxymethyl cellulose - 4.0 - - 4.0 -

Glycol 86% 10 10 10 10 10 10

Dimethyl sulfoxide 2 2 2 2 2 2

Purified water up to 100 up to 100 up to 100 up to 100 up to 100 up to 100

F-AA, F-AB—hydrogels based on SA; F-CA, F-CB—hydrogels based on CMC; F-MA, F-MB hydrogels based
on MC.

2.2.4. Spreadability Test

Using a sterile syringe, 1 mL of the prepared hydrogel was applied to the glass plate.
The formulation was covered with a calibrated plate, on the surface of which weights of
increasing mass were placed: 20, 50, 100, 200, 300, 400, 500, 600 g. The radii of the gels
were measured 20 s after placing the next weight. The results obtained allowed the area
occupied by the prepared hydrogels to be calculated according to the following formula:

P = πr2

where P—surface area occupied by the hydrogel (m2); r—radius of the hydrogel (cm).
Spreadability tests of developed hydrogel were carried out in triplicates at room

temperature.

2.2.5. Rheology Measurements

The rheological parameters of the prepared hydrogel formulations were assayed
using a RM 200 Touch rotational rheometer (Lamy Rheology Instruments, Champagne
au Mont d’Or, France) with an MK-CP 2445 measuring system, a parallel plate geometry
(diameter 35 mm, gap 1.0 mm) and a CP-1 Plus laboratory thermostat. The flow and the
viscosity curves were performed in a controlled shear mode in the range 5.0–100.0 s−1

within a time of 100 s. Rheology measurements of hydrogel formulations were carried out
in six repetitions at 32 ± 0.5 ◦C. Using the hysteresis loop test, flow and viscosity curves
were plotted.

2.2.6. Texture Analysis

The texture profile analysis (TPA) and compression properties of hydrogel samples
were measured using a texture analyzer (TX-700, Lamy Rheology Instruments, Champagne
au Mont d’Or, France) equipped with 1/2 spherical probe with a diameter of 8 mm. The
probe was squeezed at a speed of 1 mm/s for a range of 5 mm into the hydrogel and
removed. The pretest and post-test speeds were both 0.1mmm/s, and the force for the
probe to start was 0.05 N. The time interval of 20 was set between the two compression
cycles. The hardness matches the highest force in the first stage of compression, and
cohesiveness, adhesion, and elasticity are defined in Figure 1. Adhesiveness determines the
work required to overcome the forces of attraction between the material being tested and
the probe surface. Cohesiveness expresses the ratio of work performed to compress the
sample during the first and second A2/A1 cycles. Elasticity determines the D2/D1 ratio
between two compression phase distances. Data acquisition and analysis were carried out
using the Rheotex software, version TX-UK01/2019. The measurement temperature was
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25 ◦C. For each of formulation, the test was measured six times. Ts and YM were derived
by applying the formulas below:

TS =
F (N)

A (m2)
(1)

YM =
TS
∆l
l

(2)

where F (N) is the force imposed on the gel, A (m2) reflects the computed cross-sectional
area of the gel, ∆l (m) is the length strain, and l (m) reflects the initial length of the sample.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20 
 

and removed. The pretest and post-test speeds were both 0.1mmm/s, and the force for the 

probe to start was 0.05 N. The time interval of 20 was set between the two compression 

cycles. The hardness matches the highest force in the first stage of compression, and 

cohesiveness, adhesion, and elasticity are defined in Figure 1. Adhesiveness determines 

the work required to overcome the forces of attraction between the material being tested 

and the probe surface. Cohesiveness expresses the ratio of work performed to compress 

the sample during the first and second A2/A1 cycles. Elasticity determines the D2/D1 ratio 

between two compression phase distances. Data acquisition and analysis were carried out 

using the Rheotex software, version TX-UK01/2019. The measurement temperature was 

25 °C. For each of formulation, the test was measured six times. Ts and YM were derived 

by applying the formulas below: 

𝑇𝑆 =  
𝐹 (N)

𝐴 (m2)
  (1) 

𝑌𝑀 =  
𝑇𝑆
Δ𝑙

l

  (2) 

where F (N) is the force imposed on the gel, A (m2) reflects the computed cross-sectional 

area of the gel, Δl (m) is the length strain, and l (m) reflects the initial length of the sample. 

 

Figure 1. Representative picture of data of texture analysis of quercetin hydrogels. 

2.2.7. Stability test 

The six formulations with quercetin were kept in polyethylene boxes at a temperature 

of 2 °C to 8 °C for 28 days. After this time, the hydrogel samples were visually assessed 

for formulation appearance and evaluated for chemical stability (pH, API content) and 

physical stability (color, pH, spreadability, texture, viscosity). 

2.2.8. Ex Vivo Skin Permeation Experiments 

Skin permeation experiments were performed with a handheld Franz Cell diffusion 

apparatus (Perme Gear, Hellertown, PA, USA) using vertical diffusion Franz cells with an 

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 5 10 15 20 25 30 35 40 45 50Fo
rc

e 
(N

)

Time (s)

D1 D2

A A2A3

Fmax1 Fmax2

FMin

Cohesiveness = A2/A1 
Elascticity = D2/D1 
Adhesive strength = A3

Figure 1. Representative picture of data of texture analysis of quercetin hydrogels.

2.2.7. Stability Test

The six formulations with quercetin were kept in polyethylene boxes at a temperature
of 2 ◦C to 8 ◦C for 28 days. After this time, the hydrogel samples were visually assessed
for formulation appearance and evaluated for chemical stability (pH, API content) and
physical stability (color, pH, spreadability, texture, viscosity).

2.2.8. Ex Vivo Skin Permeation Experiments

Skin permeation experiments were performed with a handheld Franz Cell diffusion
apparatus (Perme Gear, Hellertown, PA, USA) using vertical diffusion Franz cells with
an effective permeation diameter of 0.636 cm. Porcine skin samples were obtained from
a local abattoir. Subcutaneous fat and hair were removed from the skin. Skin fragments
measuring 1.1 cm × 1.1 cm were washed with a 0.9% NaCl solution until an absorbance
of A < 0.02 was obtained and then mounted in diffusion cells (temperature 37.0 ± 0.2 ◦C).
Next, a 0.2g hydrogel sample was placed on the skin, facing the stratum corneum into the
donor compartment. A mixture of ethanol (96% v/v) and PBS in a ratio of 40:60 v/v was
used as acceptor fluid in a volume of 5 mL [61]. At predetermined times (after 1, 2, 4, 8,
12, and 24 h), acceptor solution in a volume of 2 mL was taken through the sampling port
of the Franz diffusion cell, and the same volume of fresh acceptor solution was added.
The samples were analyzed for absorbance at a wavelength of 373 nm using the Cecil CE
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3021 UV-VIS spectrophotometer (Cecil Instruments Limited, Cambridge, UK), and the
concentration of quercetin was calculated from the standard curve. Each formulation was
tested six times.

To determine the amount of API remaining in the skin, residual hydrogels were
removed from the skin, washed a few times with 3 mL PBS, and then wiped 4 times with
paper soaked in ethanol and dried with filter paper. After washing, the skin was cut into
small pieces, flooded with 5 mL ethanol, and shaken for 4 h on the Compact Shaker KS15
(Edmund Bühler GmbH, Bodelshausen, Germany) to extract the API residue. A blank of
untreated skin was prepared in the same way as treated skin. In control experiments carried
out previously, in which the quercetin hydrogel preparations were removed immediately
after application and the skin was extracted with ethanol, the validity of such a cleansing
procedure was confirmed.

The concentrations of extracted quercetin were determined spectrophotometrically,
and the data were expressed as the amount of quercetin per area (µg/cm2).

2.2.9. Statistical Analysis

A statistics software (Statistica 13.0, STATSOFT; Statistica, Tulsa, OK, USA) was used
to perform all statistical analyses. Experimental data were expressed as mean (M) with
standard deviation (SD). One-way ANOVA followed by the use of Tukey’s multiple
comparison tests were employed to test the difference between groups; p < 0.05 was
considered significant.

3. Results
3.1. Visual and Sensory Inspection of Prepared Formulations

All the obtained hydrogels were yellow. The different quercetin content of the hydrogel
medium had little effect on the color intensity. However, the use of different types of
gelling agents results in a different smell, consistency, stickiness, and force of adhesion.
Images of freshly prepared hydrogels are given in Figure 2. Sensory evaluation parameters
of formulated hydrogels, namely color, consistency, homogeneity, adhesion, stickiness,
greasiness, greasing, and pillow effect, are presented in Table 2.
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Table 2. Results of the organoleptic tests of the quercetin formulations.

F-AA F-CA F-MA F-AB F-CB F-MB

Color

yellow yellow yellow intensified yellow intensified yellow intensified yellow

Consistency

very gentle
semi-solid

very gentle
semi-solid

very gentle
semi-solid

very gentle
semi-solid soft semi-solid soft semi-solid

Homogeneity

homogenous homogenous homogenous homogenous homogenous homogenous

Adhesion

picks up easily, does
not flow, forms a
persistent typical

cone on the fingertip

more difficult to
pick up no

characteristic cone

picks up easily, does
not flow, forms a
persistent typical

cone on the fingertip

picks up easily, does
not flow, forms a
persistent typical

cone on the fingertip

more difficult to
pick up no

characteristic cone

picks up easily, does
not flow, forms a
persistent typical

cone on the fingertip

Stickiness (0–5)

medium sticky sticky
(3/5)

moderately sticky
(1/5) medium sticky (3/5) Medium sticky (3/5) not sticky (0/5) medium sticky (3/5)

Greasiness and greasing

no oily film
when applied

no oily film
when applied

no oily film
when applied

no oily film
when applied

no oily film
when applied

no oily film
when applied

Pillow effect

slight layer of
formula felt
on fingers

slight layer of
formula felt
on fingers

slight layer of
formula felt
on fingers

slight layer of
formula felt
on fingers

slight layer of
formula felt
on fingers

slight layer of
formula felt
on fingers

F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC, quercetin 0.4%), F-CB (CMC, quercetin 0.7%);
F-MA (MC, quercetin 0.4%); F-MB (MC, quercetin 0.7%).

3.2. pH Determination

The acidic character of the skin plays an important role in skin barrier regeneration
and antimicrobial response [62,63]. The pH of the skin is influenced by many factors of
both exogenous origin (e.g., cosmetics, detergents, dermatological drugs) and endogenous
origin (sweat composition, sebum secretion intensity, sex, age). However, maintaining an
acidic pH is beneficial for the physiology of the epidermis and the skin microflora, and
avoids damaging the lipid barrier and the integrity of the stratum corneum [64].

In the study, the lowest pH values determined for the MC-based formulations were
4.62 ± 0.02 and 4.51 ± 0.04 for F-MA and F-MB, respectively, while the highest values for
CMC-based formulations were 6.40 ± 0.01 and 6.39 ± 0.01 for F-CA and F-CB, respectively
(Table 3). The pH values determined for the formulations prepared ranged from 4.51 to
6.40, which corresponds to the physiological pH of the skin and indicates the formulations
can be applied to the skin without causing irritation during application.

Table 3. Spreadability and pH of prepared quercetin hydrogels.

Formulation Code Spreadability (mm2) pH

F-AA 304.70 ± 6.80 c 5.62 ± 0.02

F-CA 327.30 ± 12.06 a 6.40 ± 0.01

F-MA 273.76 ± 3.15 d 4.62 ± 0.02

F-AB 269.96 ± 0.22 a,e 5.60 ± 0.02

F-CB 295.50 ± 5.93 b 6.39 ± 0.01

F-MB 256.03 ± 5.15 a,f 4.51 ± 0.04
a p ≤ 0.05 as compared to F-AA, F-MA; b p ≤ 0.05 as compared to F-AB, F-MB; c,d p ≤ 0.05 as compared to F-CA,
e,f p ≤ 0.05 as compared to F-CB. F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC, quercetin
0.4%), F-CB (CMC, quercetin 0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC, quercetin 0.7%).
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3.3. Spreadability Test

The even distribution of the product on the skin is influenced by its spreadability. A
measure of this parameter is the increase in surface area of the hydrogel under applied
pressure. The ease of spreading the gel enables patient compliance and facilitates its
even application on the skin. It was found that hydrogels based on CMC had the highest
spreadability (327.30 ± 12.066 F-CA; 295.50 ± 5.93 F-CB) and the ones based on MC had
the lowest (273.76 ± 3.15 F-MA; 256.03 ± 5.15 F-MB) (Table 3).

An increase in the API content in hydrogel formulations caused a significant decrease
(p ≤ 0.05) in their spreadability. With respect to spreadability, the prepared gel formulations
could be grouped in ascending order, as follows: F-CA < F-AA < F-CB < F-MA < F-AB < F-MB.

3.4. Apparent Viscosity

Table 4 shows the results of viscosity measurements (η) of quercetin formulations,
at the following shear rates: 30 s−1, 60 s−1, 100s−1. The viscosity value determined for
the tested formulations at all applied shear rates increased in the following sequence:
F-CA < F-CB < F-AA < F-AB < F-MA < F-MB. It was observed that the MC-based formu-
lations showed significantly higher viscosity than the other formulations. With regard
to the viscosity at a shear rate of 30s−1, for preparations with a lower API content, the
viscosity of F-MA was higher by 47.65% (p ≤ 0.01) and 13.16% (p ≤ 0.01) vs. F-CA and
F-AA, respectively, while for preparations with higher API content, the viscosity of F-MB
was higher by 58.06% (p ≤ 0.01) and 32.97% (p ≤ 0.01) vs. F-CB and F-AB, respectively. In
addition, it was shown that increasing the quercetin concentration in MC-based hydrogel
formulations increased their viscosity significantly (p≤ 0.05). The viscosity curves obtained
for the tested formulations are shown in Figure 3.

Table 4. Apparent viscosity of prepared hydrogels depending on the shear rate (η).

Formulation Code η (30 s−1) η (60 s−1) η (100 s−1)

F-AA 11.68 ± 0.51 8.09 ± 0.23 8.06 ± 0.23

F-CA 7.04 ± 0.42 4.66 ± 0.21 3.86 ± 0.25

F-MA 13.45 ± 0.34 d 10.43 ± 0.36 e 8.47 ± 0.21 f

F-AB 11.97 ± 0.49 9.35 ± 0.41 8.45 ± 0.41

F-CB 7.49 ± 0.41 5.35 ± 0.23 4.35 ± 0.22

F-MB 17.86 ± 0.65 a 11.84 ± 0.20 b 9.55 ± 0.37 c

a,b p ≤ 0.01 as compared to F-CB, F-AB; c p ≤ 0.05 as compared to F-CB, F-AB; d,e p ≤ 0.01 as compared to F-CA,
F-AA; f p ≤ 0.05 as compared to F-CA, F-AA. F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC,
quercetin 0.4%), F-CB (CMC, quercetin 0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC, quercetin 0.7%).

It has been shown that viscosity is dependent on shear rate and shear stress and
decreases as their values increase (Figure 3). Under the influence of the applied shear stress,
the internal structure of the tested samples is destroyed, and the system starts to flow.
Shear thinning was observed in all samples, particularly at low shear rates. The system
shows pseudoplastic flow. Under the influence of increasing shear stress, the polymer
particles arrange themselves in the direction of flow, which lowers the viscosity of the
system. This strong shear thinning with a simultaneous decrease in viscosity throughout
the experimental area confirms the good spreadability shown earlier in the test for the
prepared formulations.
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Figure 3. Viscosity curves for hydrogel: (A) F-AA, F-CA, F-MA; (B) F-AB, F-CB, F-MB. F-AA (SA;
quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC, quercetin 0.4%), F-CB (CMC, quercetin
0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC, quercetin 0.7%).

Figure 4 shows rheograms illustrating flow under increasing and then decreasing
shear stress. As can be seen in the figures, at the time of plotting the descending curve, the
structure of the system is not yet completely reconstructed, so the curves do not coincide in
the rheograms; hysteresis loops are then formed, indicating systems exhibiting thixotropy.

The calculated areas of the hysteresis loop for the prepared formulations were arranged
in ascending order: 4588.51 (F-CB), 5799.10 (F-CA), 7814.95 (F-AA), 9314.87 (F-AB), 11650.96
(F-MB), 14114.72 (F-MA).

Yield strength is an important parameter used to characterize semi-solid formulations.
It usually affects the spreadability and retention of formulations. A high value of yield stress
indicates a reduction in spreadability and an increase in the ability to retain the formulation
at the application site. In a study by Nair et al., the yield stress for the formulation and
control cream of N,N-diethyl-3-methylbenzamide (DEET) was 26.39 and 6.474 Pa, respec-
tively, resulting in better spreadability of the cream than the hydrogel formulation [65]. A
significant yield stress was required to break the microgel network present in the hydrogel,
which contributed to the higher yield stress observed for the hydrogel compared to the
cream. These findings were found to be consistent with the authors’ results, where the MC
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hydrogel had the lowest spreadability and highest yield stress (Figure 4). An increased
retention capacity on the skin compared to SA and CMC hydrogels was observed in the
permeation study of quercetin from F-MA and F-MB hydrogel.
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Figure 4. Flow curves hysteresis for hydrogel: (A) F-AA, F-CA, F-MA; (B) F-AB, F-CB, F-MB F-AA
(SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC, quercetin 0.4%), F-CB (CMC, quercetin
0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC, quercetin 0.7%).

3.5. Texture Analysis Parameters

Texture profile analysis is a means of assessing the mechanical properties of the
polymers examined and their response to external pressure. The texture profile is described
by textural parameters such as hardness, adhesiveness, cohesiveness, compressibility, and
elasticity. Hardness is specified as the strength needed to cause a deformity. Specimens
with greater hardness have poorer spreadability. Adhesiveness expresses the ability of the
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test surface to bond with the probe surface. It allows the length of time the product will
remain at the point of distribution—that is, on the skin—to be predicted [66].

Cohesion is evaluated as the relationship between the areas under the curve obtained
in the first and second compression cycles. This value represents the inherent bond of load
that must be defeated to distribute the product on the skin’s surface. Compressibility is
the work needed to distort the test specimen in the first squeezing cycle and represents
the preservation of the formulation after the compressive load is taken away. Based on
Yilmaz et al. [67], this value is associated with the elasticity of the specimen’s [66]. The
texture profiles and texture profile parameters obtained for the examined samples are
shown in Figure 5 and Table 5.
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Figure 5. Texture profile analysis (TPA) in two compression/extension cycles of prepared hydrogel.
F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC, quercetin 0.4%), F-CB (CMC,
quercetin 0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC, quercetin 0.7%).
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Table 5. Texture profile analysis comparing hardness, cohesiveness, adhesion, and elasticity for the
obtained hydrogels containing different polymers (SA, MC, and CMC) and loaded with quercetin at
two different concentrations; n = 6.

Formulation Code Hardness (N) Cohesiveness Adhesiveness (mJ) Elasticity

F-AA 0.0520 ± 0.001 2.316 ± 0.054 a 0.150 ± 0.050 0.649 ± 0.008 a

F-CA 0.0575 ± 0.001 a 1.314 ± 0.116 a 0.100 ± 0.000 a 0.868 ± 0.065 a

F-MA 0.0505 ± 0.002 2.698 ± 0.073 0.150 ± 0.050 0.583 ± 0.012

F-AB 0.0545 ± 0.001 b 2.127 ± 0.199 0.150 ± 0.050 b 0.665 ± 0.030 b

F-CB 0.0645 ± 0.003 1.306 ± 0.025 b 0.100 ± 0.000 b 0.816 ± 0.034 b

F-MB 0.0640 ± 0.003 2.157 ± 0.140 0.250 ± 0.050 0.580 ± 0.027
a p ≤ 0.05 as compared to F-MA; b p ≤ 0.05 as compared to F-MB. F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin
0.7%), F-CA (CMC, quercetin 0.4%), F-CB (CMC, quercetin 0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC,
quercetin 0.7%).

In addition, it is evident that the type of polymer used in the developed formulation
affected the resistance of the projected hydrogels.

The highest hardness among hydrogels containing a lower concentration of quercetin
was determined for the CMC-based hydrogel to be 0.0575 ± 0.001, while the lowest for the
MC-based hydrogel was 0.0505 ± 0.002. A slightly higher hardness than MC was observed
for the SA-based hydrogel at 0.0520 ± 0.001. For hydrogels containing a higher concen-
tration of quercetin, CMC-based and MC-based hydrogels showed similar hardnesses of
0.0645 ± 0.003 F-CB and 0.0640 ± 0.003 F-MB, respectively, while those based on SA were
about 1.2 times lower (0.0545 ± 0.001). In all formulations, increasing the concentration of
quercetin resulted in an increase in hardness, to the greatest extent for MC—about 1.3 times.
The formulation containing CMC also showed the highest elasticity: 0.868 ± 0.065 (lower
quercetin concentration) and 0.816 ± 0.034 (higher quercetin concentration). Meanwhile,
the formulation containing MC showed the lowest elasticity. In this formulation, quercetin
concentration did not affect the change in elasticity.

Inversely to the hardness at a lower quercetin concentration, the lowest cohesion value
was observed for hydrogels with CMC (1.314 ± 0.116), as well as the lowest adhesion
(0.100 ± 0.000). This confirmed the results obtained from the sensory evaluation of semi-
solid formulations, in which CMC-based hydrogels had the lowest stickiness and adhesion.
MC-containing hydrogels had the highest cohesiveness, although higher concentrations
of quercetin slightly worsened their cohesiveness (by about 1.3-fold). Higher and similar
adhesion was observed in ALG and MC-based formulations, while lower adhesion was
shown for CMC. Increasing the concentration of quercetin significantly increased the
adhesion of the MC-containing hydrogel (by about 1.7-fold), while the adhesion parameter
was not affected in ALG- and CMC-based hydrogels.

Young’s modulus is a criterion of a specimen’s “rigidity” (mechanical responsiveness)—the
capacity of a specimen to recover its initial conformation after distortion—and represents
the amount of and distance between elastic segments [68]. As a result of the analysis, the
values of Young’s modulus (YM) and the stress and strain at failure of the sample were
obtained. The tensile strength and Young’s modulus are presented in Figure 6.

MC-based formulations showed the highest tensile strength: about 1.4-fold higher
than the CMC-based hydrogel and about 1.5-fold higher than the SA-based formulation.
In addition, a higher concentration of quercetin further increased the strength of the MC-
containing hydrogel (by about 1.1-fold). In contrast, in CMC- and ALG-based formulations,
the higher concentration slightly reduced the physical resistance of the formulation. The
high tensile strength of the MC hydrogels showed consistency with the viscosity of these
formulations, as the viscosity of MC-based hydrogels was the highest, and in turn, the
higher concentration of quercetin gave this formulation the best adhesion. As a result, the
F-MB formulation may be the most favorable in terms of adhesion to the skin, allowing the
active ingredient to stay in contact with the skin for a longer period of time and act longer.
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Figure 6. Comparison of: tensile strength profiles for hydrogels loaded with 0.4% quercetin (a) and
hydrogels loaded with 0.7% quercetin (b); Young’s modulus for hydrogels loaded with 0.4% quercetin
(c); and hydrogels loaded with 0.7% quercetin (d). Up speed 1 mm/s, down speed 1 mm/s, distance
10 mm, the duration of experiment was 50 s. F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%),
F-CA (CMC, quercetin 0.4%), F-CB (CMC, quercetin 0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC,
quercetin 0.7%).

In the formulations prepared, the greatest Young’s modulus was noticed for MC as
the hydrogel-forming polymer; the lowest Young’s modulus was noticed for SA, and it was
slightly higher for CMC. Increasing the concentration of quercetin increased the modulus
of stiffness for MC, while the other hydrogels—with ALG and CMC—conversely decreased
the Young’s modulus. The MC-based hydrogel showed the highest tensile strength and the
highest stiffness. Increasing the concentration of quercetin further favorably affected the
strength parameters of the MC-based hydrogel.

3.6. Stability Studies

After one month of storage in the dark at 2 ◦C to 8 ◦C, the prepared gels were stable—no
delamination or organoleptic changes were noted. The determined concentration of
quercetin in the formulations was in accordance with the permissible limit and was above
90% of the initial content [69]. No physico-mechanical changes were found to affect their
properties. Viscosity and texture parameters, determined after 28 days, were not signifi-
cantly different from the values recorded on day 1. The stability data of stored quercetin
preparations after 28 days are reported in Supplementary Materials (Tables S1–S3).
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3.7. Ex Vivo Skin Permeation Studies

The results obtained in the in ex vivo permeation and retention study through porcine
ear skin are shown in Table 6. The study showed that 24 h after hydrogel application to
the skin, the amount of labelled quercetin in the acceptor fluid was low. The percentage of
penetrated quercetin was 0.10%, 0.07%, and 0.16% of the total applied dose for F-AA, F-CA,
and F-MA, respectively. After the application of formulations with higher concentrations
of API in the hydrogel base, an increase of approximately 1.2 times for F-AB, 1.1 for (F-CB),
and 1.2 (for F-MB) in the amount of skin permeation of the active ingredient was observed
compared with F-AA, F-CA, and F-MA, respectively.

Table 6. Quercetin penetration (%) and retention (µg/cm2) into porcine ear skin from hydrogels.

Formulation Code Cumulative Amount
of Flavonoid Permeated (%)

Flavonoid Retention
(µg/cm2) ± SD

F-AA 0.10 ± 0.02 4.21 ± 0.62 c

F-CA 0.07 ± 0.01 2.97 ± 0.26 c

F-MA 0.13 ± 0.02 7.88 ± 0.91 a

F-AB 0.12 ± 0.02 6.48 ± 0.73 d

F-CB 0.08 ± 0.01 4.63 ± 0.73 d

F-MB 0.16 ± 0.04 9.45 ± 0.89 b

a p ≤ 0.01 as compared to F-AA, F-CA; b p ≤ 0.01 as compared to F-AB, F-CB; c p ≤ 0.01 as compared to F-MA,
d p ≤ 0.01 as compared to F-MB. F-AA (SA; quercetin 0.4%), F-AB (SA; quercetin 0.7%), F-CA (CMC, quercetin
0.4%), F-CB (CMC, quercetin 0.7%), F-MA (MC, quercetin 0.4%), F-MB (MC, quercetin 0.7%).

The results showed that quercetin from the F-MA and F-MB formulations was able to
cross the stratum corneum at higher concentrations (p ≤ 0.01) compared to the F-AA, F-AB,
F-CA, and F-CB formulations. The retention of this flavonoid in the skin from MC-based
formulations was significantly higher (p ≤ 0.01) than formulations with lower quercetin
content by 31.4% and 51% compared to F-AA and F-AB, respectively. A similar trend was
observed for formulations with higher API content. Compared to F-AA and F-AB, the
amount of drug retained in the skin reservoir was significantly higher (p ≤ 0.01) for F-MB
by 46.6% and 62.3%, respectively.

4. Discussion

The topic of substances of natural origin, mainly derived from plants, and their use in
dermatological preparations applied to the skin, such as in the form of ointments, creams,
and hydrogels, has recently been increasingly discussed. Particularly noteworthy are
hydrogels, whose semi-solid consistency, spreadability, good mechanical properties, and
other physical characteristics are due to their internal structure. This is a structure that is
a combination of a solid (rigid) phase and a continuous (liquid) phase. Hydrogels are a
three-dimensional network in which the solid phase is formed by suitable polymers and
the liquid phase by water with dissolved substances. Their chemical structure allows for
a gradual release of the API from the hydrogel matrix, which translates into a prolonged
pharmacological effect. Advantageous features of this drug formulation include high
biocompatibility, transparency, and easy wash-off [70]. Unfortunately, when applied to the
skin, it dries quickly and can be irritating as a result. To prevent rapid drying, glycerol or
propylene glycol is added to these bases.

The main barrier to the penetration of the active ingredient is the stratum corneum. In
the case of topical administration, it is important to increase the passage of the API through
the stratum corneum so that it is retained in the inner layers of the skin. The permeation
of medicinal substances through the skin depends on many factors, such as the condition
of the skin, the presence of absorption promoters, the physicochemical characteristics of
the API, and the vehicle used in the dermatological preparation. Unfortunately, quercetin
shows poor water solubility, higher metabolism, and poor bioavailability, which limits its
therapeutic use. A number of works have addressed its topical delivery in the form of
nanocarrier systems [71,72]. Transdermal delivery of quercetin from formulations can be
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improved by the use of penetration enhancers such as dimethylformamide, L-menthol [73],
diethylene glycol monoethyl ether [74], oxymatrine-fatty acid deep eutectic solvents [75],
propylene glycol, and polyethylene glycol 400 [76].

In our study, DMSO was used as a transdermal quercetin transport enhancer. DMSO
is a solvent with low toxicity and documented efficacy in the treatment of various skin
injuries. It is also applied to enhancing the solubility of poorly soluble polar and non-polar
molecules [77]. It is a potent penetrator of cell membranes and biological barriers, so it is
used as a carrier to increase the permeability and absorption of actives substances.

The target site of quercetin action is the epidermis and dermis, where the disease
process is taking place. After application, the drug should be released slowly, and systemic
absorption should be zero or minimized. Our ex vivo permeation and retention results
showed that quercetin from CMC-based formulations crossed the stratum corneum to
a significantly higher degree (p < 0.01) compared to ALC- and MC-based formulations.
Furthermore, the higher API content of the hydrogel substrate correlated with increased
accumulation in the skin layers.

Kant et al. studied the influence of applying various doses of quercetin of 0.03, 0.1,
and 0.3% on wound contraction in rats. Quercetin dissolved in DMSO (75%) was applied
topically once a day for 20 days to wounds; the control group received DMSO alone. The
application of the natural flavonoid at a dose of 0.3% was shown to be more beneficial
in accelerating cutaneous wound healing. During the first week of treatment, increased
levels of proliferating PCNA-positive cells, decreased TNF-α levels, and increased IL-10
expression were observed in the 0.3% quercetin-treated group compared to the 0.03%, 0.1%
quercetin, and control groups, which, as a result, had a beneficial effect on the synthesis of
collagen hydroxyproline and pro-alpha I chain [78].

A test by Dyja and Jankowski evaluated the influence of two solvents—propylene
glycol and polyethylene glycol (PEG 400)—on the skin retention of quercetin. Propylene
glycol was shown to be a more effective promoter of absorption than PEG 400. The amount
of the flavonoid found in the skin was 1.47 times higher when propylene glycol was added
to the semisolid base than PEG 400. No correlation was found between the kind of delivery
systems used (gel, cream) and the dermal accumulation of quercetin [76].

In a study conducted on fresh Caucasian human skin, good penetration and retention
of epigallocatechin-3-gallate and quercetin from green tea and G. biloba extracts contained
in skin care preparations were found. The findings revealed that the flavonoids tested
penetrated the skin while not reaching the receptor compartment. The highest amount of
quercetin was determined in the viable epidermis (0.23 µg/cm2) [79].

To study the penetration/retention of quercetin through porcine ear skin, Schwingel
et al. incorporated this natural flavonoid into hydroxypropyl methylcellulose (HPMC) or
chitosan (CS) hydrogels. The retention of quercetin in the skin layers of chitosan hydrogels
has been shown to be more than twice that of HPMC. After 8 h, flavonoid retention in
pig ear skin was 0.57 µg/cm2 for HPMC and 1.42 µg/cm2 for CS. It was noted that when
5% β-CD was added to the hydrogels, API penetration/retention rose to 1.95 µg/cm2 for
HPMC and 2.21 µg/cm2 for CS. The authors did not detect this flavonoid in the receptor
fluid [61].

Silva et al. investigated the antimicrobial efficacy of hydrogel membranes containing
red propolis extract (RPE). The made hydrogels were based on 5% CMC and additionally
with 0.5% and 1.0% citric acid. CMC was found to have a favorable effect on the release
of phenolic compounds compared to the highly cross-linked 1% citric acid matrix. CMC
with 0.5% citric acid as a membrane provided higher efficacy against Staphylococcus aureus
and Staphylococcus epidermidis compared to the 1% citric acid cross-linked membrane. RPE-
containing hydrogel membranes proved to be a stronger barrier to microorganisms that
cause skin infections and can be used in the treatment of injured tissue [80].
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5. Conclusions

The selection of raw materials forming the polymer matrix of a formulation is an
important stage in the development of a dermatological formulation, determining their
sensorial properties, rheological parameters, and texture profile. In the present study, we
prepared hydrogels using different gelling agents (MC, CMC, and SA) containing quercetin
and showed their good physico-mechanical properties and stability. MC-based formu-
lations were selected as optimal in terms of mechanical properties—these formulations
were characterized by higher textural parameters, except for elasticity. Ex vivo permeation
and retention studies revealed that after 24 h, the highest amount of quercetin retained in
the porcine skin reservoir was found for the MC-based formulation, followed by the SA-
based and CMC-based formulations. For the MC-based formulations applied to the skin,
containing a higher concentration of quercetin, its amount was 2.04 and 2.6 times higher
compared to CMC-based and SA-based hydrogels, respectively. The formulation with MC
as a gelling agent allows for longer contact of the active substance with the skin and thus
better penetration. Thus, for formulations made with this carrier, a better therapeutic effect
can be expected when applied to the affected skin.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app13137826/s1. Table S1: Spreadability and pH of pre-
pared quercetin hydrogels after one month of storage.; Table S2: Apparent viscosity prepared hydro-
gels depending on the shear rate (η) after one month of storage.; Table S3: Texture profile analysis
comparing hardness, cohesiveness, adhesion and elasticity for the obtained hydrogels containing
different polymers: SA, MC and CMC and loaded with quercetin at two different concentrations after
one month of storage; n = 6.
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