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Abstract: Phase mask optimization is one of the critical steps in designing a wavefront coding
system to extend the depth of field (DoF). As a classical phase mask, a cubic phase mask was
taken as an example. An improved particle swarm optimization (PSO) algorithm was applied to
calculate the parameters of the cubic phase mask by introducing the modulation transfer function
as the optimization criterion and a threshold as a constraint. The quality of the subsequent image
restoration is guaranteed on the premise of the extended DoF. Finally, the improved PSO was proved
to be faster, more efficient, and more accurate compared to the simulated annealing algorithm and
the traditional PSO. The experimental results verify that the cubic phase mask optimized by the
improved PSO can achieve DoF extension in the wavefront coding system. The improved PSO can
also be applied to other phase masks of wavefront coding systems.

Keywords: wavefront coding; phase mask; particle swarm optimization; depth of field extension

1. Introduction

Wavefront coding technology [1] has been proposed to extend the depth of field (DoF)
without sacrificing resolution or luminous flux. This technology has been widely used in
various optical systems, such as miniature optical endoscopes [2], microscopes [3], and
conformal domes [4].

The phase mask plays a key role in the image quality of wavefront coding systems.
Many optimization algorithms were applied to obtain an optimal phase mask, such as
simulated annealing (SA) [5] and genetic algorithm (GA) [6]. These algorithms have
achieved good results in DoF extension. However, the optimal solution and calculation
time of SA are related to the cooling rate, number of temperature iterations, and temperature
range. These parameter settings are very complicated, and it takes many attempts to obtain
the right value. Otherwise, it is easy to fall into the local optimal solution. GA requires
sufficient mutations. Otherwise, GA will fall into a local optimal solution. However,
sufficient mutations will prolong the optimization time.

People constantly pursue a fast, simple optimization algorithm that does not easily
fall into the local optimal solution. Therefore, an improved particle swarm optimization
(PSO) is proposed here as an optimization algorithm for optimizing phase masks in the
design of wavefront coding systems. Based on PSO [7,8], we cancel the velocity range
in PSO and introduce the restriction conditions, which not only restrict the optimization
range of the phase mask parameter but also guarantee the quality of image recovery in
the later stage. The improved PSO is simple to use, and only the number of iterations and
the population of particles need to be set. The improved PSO can effectively jump out of
the local optimal solution while guaranteeing the convergence speed and improving the
optimization efficiency of the optical design process.

This paper is organized as follows. Section 2 provides the theoretical analysis of the
wavefront coding technology, PSO, and phase mask parameter optimization based on
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improved PSO. Section 3 shows the simulation results and analyzes the performance of
the improved PSO based on the simulation results, as well as a comparison with SA and
traditional PSO. Section 4 shows the experimental results, which verify that the cubic phase
mask optimized by the improved PSO can achieve DoF extension in the wavefront coding
system. The conclusions are given in Section 5.

2. Methods
2.1. Theoretical Analysis of Wavefront Coding Systems

The DoF in object space corresponds to the depth of focus in image space. Conse-
quently, a wavefront coding system that extends DoF in the object space is insensitive to the
defocus in the image space. A cubic phase mask is a classic example applied in wavefront
coding systems to extend the DoF. The one-dimensional cubic phase mask f (x) is analyzed
as an example for simplicity, which can be described as

f (x) = αx3, (1)

where x, in the range of −1 to 1, is the coordinate of the phase mask and α is the cubic
parameter of the phase mask. The pupil function, which ignores all optical aberrations but
defocus, can be described as

p(x) = exp[j( f (x) + φx2)] (2)

where φ is the defocus aberration and j is the imaginary unit. The modulation transfer
function (MTF), an image quality evaluation method, is used to evaluate the defocus
insensitivity [9] of wavefront coding systems. MTF curves with different defocus aber-
rations will be coincident if the wavefront coding system is ideally defocus-insensitive.
Consequently, the coincidence of MTF curves with different defocus aberrations is used as
a merit function to evaluate the defocus insensitivity of the system.

s(α) = min
x

[MTF(α, u, φ)−MTF(α, u, φ0)]
2dudφ (3)

where u is the spatial frequency and φ0 is zero. However, wavefront coding systems suffer
from a trade-off between defocus insensitivity and imaging quality [10]. To ensure imaging
quality, the system should satisfy

t =
x

MTF(α, u, φ0)dudφ ≥ T (4)

where the threshold T is 0.15 in this study [11].

2.2. Theoretical Analysis of PSO

Particle swarm optimization (PSO) [7,8] was proposed as a nonlinear optimization
algorithm. With the rapid development of artificial intelligence and deep learning, PSO has
a wide range of applications in many fields, such as the design of semiconductor lasers [12],
intelligence-bearing fault diagnosis [13], and water quality monitoring [14].

PSO was applied to optimize the cubic phase mask of the wavefront coding system
in this study. In this article, PSO is based on the standard “GBEST” version, which is the
original form of PSO. The population of particles D is the sum of particles. The parameter
of cubic phase mask parameter in Equation (1) is denoted as αd, representing the position
of the dth particle in the particles. Then, the position of the current particles can be denoted
as an array

A = [α1, α2, α3, . . . , αd, . . . , αD]

Array A is updated with each iteration. I denotes the number of iterations in PSO.
αglobal is the best location obtained so far by any particle in the population.

The fitness s(αd), the distance between the desired solution and the dth particle, is the
coincidence consistency of the MTF curves in Equation (3). Ideally, s(αd) is equal to zero
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when the dth particle is the desired solution. Equation (4) is the constraint on the solution
space. The fitness of the current particles can be denoted as array

S = [s(α1), s(α2), s(α3), . . . , s(αd), . . . , s(αD)]

Velocity is an important parameter of PSO. vd is described as the dth particle velocity.
The velocity represents the particle’s ability to explore the solution space. The velocity of
the current particles can be denoted as array

V = [v1, v2, v3, . . . , vd, . . . , vD].

The local optimal solution αlocal
d is the best location of the dth particle so far. The local

optimal solution of the current particles can be denoted as the array

Alocal = [αlocal
1 , αlocal

2 , αlocal
3 , . . . , αlocal

d , . . . , αlocal
D ].

In a similar way, the local optimal fitness of the current particles can be denoted as
the array

Slocal = [s(αlocal
1 ), s(αlocal

2 ), s(αlocal
3 ), . . . , s(αlocal

d ), . . . , s(αlocal
D )].

The global optimal fitness is s(αglobal).
The locations and velocities are related to the experience, which is determined by the

locations and velocities of all particles before their last move. They are updated after each
iteration by these formulas [7,15]:

vd = vd + c1·rand·(αlocal
d − αd) + c2·rand·(αglobal − αd) (5)

αd = αlocal
d + vd (6)

where rand is a function of generating a random number between 0 and 1, setting the
acceleration constants c1 = 2 and c2 = 2 [7,15].

2.3. Phase Mask Design Based on Improved Particle Swarm Optimization

If the range of velocity is too high, particles might fly past good solutions. If the value
range of velocity is too small, particles may not explore sufficiently beyond locally good
regions [15]. In brief, an inappropriate range of velocity is the factor that causes PSO to fall
into a locally optimal solution. It is necessary to repeatedly test different velocity ranges to
obtain the ideal optimal solution, which will greatly reduce the optimization efficiency of
the algorithm.

In order to improve the optimization efficiency of the algorithm, this paper cancels the
setting of the velocity range in PSO and introduces the threshold T of Equation (4).

The cubic phase mask parameter is limited by the threshold T in the optimization
process. This measure can effectively prevent PSO from falling into the local optimal
solution and ensure the quality of image restoration.

Combined with the characteristics of PSO and the cubic phase mask optimization
problem, the phase mask optimization algorithm flow based on improved PSO is shown
in Figure 1.

As shown in Figure 1, the specific process of the algorithm is as follows:
Assign the population of particles D and the number of iterations I.
Initialize the initial position A of particles and the corresponding fitness S. The initial

αd is assigned to a random number, and the initial αd must satisfy Equation (4). Otherwise,
the initial αd needs to be reinitialized until it satisfies Equation (4). s(αd), the fitness of αd,
is computed by Equation (3).
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Initialize the initial velocity V of particles. The initial vd is assigned to a random number.
Initialize the initial local optimal solution Alocal of particles and the corresponding

local optimal fitness Slocal. Before the algorithm iteration begins, the local optimal solution
αlocal

d is equal to the initial αd of step 2. Therefore, Alocal = A and Slocal = S.
Initialize the initial global optimal solution αglobal of particles and the corresponding

global optimal fitness s(αlocal). The initial global optimal solution αglobal is equal to αlocal
d ,

which corresponds to the minimum initial fitness s(αd). The global optimal fitness s(αglobal)
is equal to the minimum initial fitness s(αd).

For each iteration, Equations (5) and (6) are used to update αd and vd, and then
threshold T is used to evaluate whether αd is reasonable. Take the location αd of the dth
particle as an example. αd should not be less than zero, and it should satisfy Equation (4).
If αd < 0, then αd = 0. If αd does not satisfy Equation (4), this αd remains unchanged until
it is updated next time using Equations (5) and (6).

Update the local optimal solution αlocal
d and the corresponding local optimal fitness

s(αlocal
d ). Replace αlocal

d with αd only if s(αd) of the current iteration number is less than the
previous one s(αlocal

d ). Meanwhile, the arrays of Alocal and αlocal
d will be updated.
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Update the global optimal αglobal and the global optimal fitness s(αglobal). Replace
αglobal and s(αglobal) with αlocal

d and s(αlocal
d ), respectively, only if the current s(αlocal

d ) is less
than the previous s(αglobal).

The global optimum cubic parameter αglobal will be obtained after I iterations.

3. Simulation Results and Analysis

All the simulation experiments in this article were run on an AMD Ryzen 5 4600H.
The threshold T was set 0.15. The defocus aberration φ was set as 0, 15, and 30, respectively,
in all the simulation experiments.

Each group of parameters was calculated 100 times to verify the robustness of the
improved PSO. The mean value of the global optimal solution αglobal, the variance of the
global optimal solution αglobal, and the average computing time in the 100-times calculation
results were used as the criteria to evaluate the robustness of this algorithm. The smaller
the variance, the more stable the optimal solution. In this paper, a variance below 0.01 was
used as the standard to evaluate the stability of variance.

In all tables included in this paper, avg is the mean value of the global optimal solution
αglobal, and var is the variance in the global optimal solution αglobal.

3.1. Influence of the Number of Iterations and the Population of Particles on the Improved PSO

Tables 1 and 2 show the influence of the population of particles D and the number of
iterations I, respectively, on the improved PSO.

Table 1. Influence of the population of particles on the improved PSO.

Population of Particles Avg Var Average Time/s

D = 1 51.94 7.37 × 102 0.19
D = 10 90.06 7.15 × 10−2 2.05
D = 20 90.20 1.15 × 10−2 3.86
D = 30 90.23 7.40 × 10−3 5.90
D = 40 90.25 5.61 × 10−3 7.71

The data in Table 1 are based on the number of iterations I = 100.

Table 2. Influence of the number of iterations on the improved PSO.

Number of Iterations Avg Var Average Time/s

I = 10 89.35 0.76 0.63
I = 50 90.16 2.79 × 10−2 2.91
I = 100 90.23 7.40 × 10−3 5.90
I = 150 90.25 4.34 × 10−3 8.82
I = 200 90.27 1.41 × 10−3 11.60

The data in Table 2 are based on the population of particles D = 30.

As shown in Tables 1 and 2, the larger the population of particles D and the number
of iterations I, the more stable the optimal solution will be, and the less likely it is that the
improved PSO will fall into the local optimal solution. However, the optimization process
takes more time. Therefore, it is necessary to select a balance between computational
efficiency and optimal solution stability, which can be easily found in the data in the fourth
row of Table 2: the average value of the cubic phase mask parameter is 90.23 when the
number of particles D = 30 and the number of iterations I = 100, and the variance is
7.40 × 10−3; the calculation time is only 5.90 s.

Figure 2 shows the MTF curve of an ideal optical system at a different defocus aberra-
tion φ. As shown in Figure 2, the system establishes a clear image at the defocus aberration
φ = 0. With the increase in defocus aberration, the MTF curve of the system changes more
obviously, the MTF value drops more rapidly, and a result of zero occurs, leading to losses
of image information.
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Figure 2. The MTF curve of an ideal optical system before adding the cubic phase mask.

The optimized result 90.23 in the fourth row of Table 2 was taken as the cubic phase
mask parameter, and this cubic phase mask was added to the ideal optical system in
Figure 2. As shown in Figure 3, after optimizing the phase mask parameter obtained by
the improved PSO, the MTF curves of the wavefront coding system under the different
defocus aberrations are almost the same, and there are no zero points. This proves that the
current system can achieve defocus insensitivity under different defocus aberrations, that
is, realize the DoF extension of the current system. This also proves that the improved PSO
can optimize a reasonable cubic phase mask parameter.
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3.2. Comparison of Improved PSO and Traditional PSO

Table 3 shows a comparison of improved PSO and traditional PSO. In Table 3, vmax
represents the maximum velocity, and vmin represents the minimum velocity. For the
convenience of comparison, some parameters of improved PSO and traditional PSO were
set as the same: the number of particles D = 30 and the number of iterations I = 100. In
Table 3, the data from rows 2 to 5 are the traditional PSO with different velocity ranges and
without threshold T. The data in row 6 are the improved PSO when cancelling the setting
of velocity ranges and using threshold T = 0.15.

Table 3. Comparison of improved PSO and traditional PSO.

Parameter Avg Var Average Time/s References

vmax = 0.7; vmin = −0.7 70.71 0.27 5.96 [8]
vmax = 0.8; vmin = −0.8 80.70 0.23 5.94 [8]
vmax = 0.9; vmax = −0.9 90.58 0.53 5.98 [8]
vmax = 1.0; vmax = −1.0 100.77 0.19 6.08 [8]

T = 0.15 90.23 7.40 × 10−3 5.90 this work

It can be seen from Table 3 that when using traditional PSO, the range of velocity has
a great influence on the optimal solution. A large or small range of velocity will cause
PSO to fall into the local optimal solution. Therefore, it is necessary to repeatedly try
different velocity value ranges to obtain a more appropriate cubic phase mask parameter.
However, the improved PSO does not need to set the velocity ranges, and furthermore, a
threshold is introduced to ensure the quality of image restoration and improve the stability
of optimization.

The improved PSO avoids the disadvantages of the traditional PSO, which requires
multiple tests to obtain the appropriate range of velocity. Therefore, the improved PSO
avoids the problem of falling into the local optimal solution in the optimization process,
and its robustness is significantly improved.

3.3. Comparison between Improved PSO and SA

The simulated annealing algorithm (SA) [5], one of the most widely used optimization
algorithms, is applied for comparison to demonstrate the efficiency and robustness of PSO.

In SA, Tmax represents the maximum temperature, Tmin represents the minimum temper-
ature, r represents the cooling rate, and K represents the number of temperature iterations.

During the process of finding the optimal solution, SA accepts not only the current
optimal solution but also the bad solution with a certain probability. This strategy is the
key to causing SA to jump out of the local optimal solution. However, due to the many
parameters of SA, the improper setting of these parameters will cause SA to fall into local
optimal solutions or take more time to obtain a stable optimal solution.

To facilitate comparison, Equation (3) was used for both the improved PSO and SA as
the evaluation function when defocusing the insensitivity of the current wavefront coding
system, and threshold T was introduced into SA.

Tables 4 and 5 show the influence of all parameters on SA. For details of the phase
mask design based on SA, please refer to Appendix A.

Table 4. Influence of the cooling rate and the number of temperature iterations on SA.

Parameter Avg Var Average Time/s

r = 0.90; K = 100 89.77 0.17 57.97
r = 0.90; K = 10 86.31 9.41 5.53

r = 0.60; K = 100 88.08 4.93 11.44
r = 0.30; K = 100 86.57 9.13 5.02
r = 0.30; K = 10 66.75 2.44 × 102 0.45

The data in Table 4 are based on Tmax = 103 and Tmin = 10−12. This method is based on reference [5].
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Table 5. Influence of the maximum temperature and the minimum temperature on SA.

Parameter Avg Var Average Time/s

Tmax = 102; Tmin = 10−12 89.89 0.16 58.67
Tmax = 10; Tmin = 10−12 89.81 0.26 58.86
Tmax = 103; Tmin = 10−1 18.16 2.72 × 102 8.29
Tmax = 103; Tmin = 10−6 88.22 3.67 31.74
Tmax = 10; Tmin = 10−1 16.96 2.53 8.27

The data in Table 5 are based on r = 0.9 and K = 100. This method is based on reference [5].

In Table 4, with the decrease in cooling rate r and the number of temperature iterations
K, the solution easily falls into the local optimal solution when the maximum temperature
Tmax and the minimum temperature Tmin are constants. If the cooling rate r and the number
of temperature iterations K are increased, the optimization time will be increased.

In Table 5, Tmin has a greater influence on the optimization result than Tmax. SA easily
falls into the local optimal solution when Tmin increases. Additionally, the program runtime
will increase when Tmin decreases.

In contrast, the improved PSO is robust and easy to use. For the optimization of the
cubic phase mask, the runtime of the improved PSO is only related to the population of
particles D and the number of iterations I. Table 6 shows the influence of the population
of particles and the number of iterations on the improved PSO. With the appropriate
population of particles and number of iterations, the algorithm can obtain a stable optimal
solution within a short time. As shown in the data in row 5 of Table 6, when D = 30 and
I = 100, the average value of the cubic phase mask optimized by the improved PSO is
90.23, the variance is only 7.40 × 10−3, and the average time is only 5.90 s.

Table 6. The influence of the population of particles and the number of iterations on the improved PSO.

Parameter Avg Var Average Time/s

D = 20; I = 100 90.19 2.14 × 10−2 3.97
D = 10; I = 100 90.07 6.61 × 10−2 1.97
D = 30; I = 10 89.42 1.00 0.64
D = 30; I = 100 90.23 7.40 × 10−3 5.900
D = 10; I = 10 87.64 7.73 0.22

4. Experimental Results

To verify the correctness of the improved particle swarm optimization results, the
optimized cubic phase mask is used in an actual wavefront coding system for DoF extension
experiments. The optimized result 90.23 is taken as the cubic phase mask parameter in
the experiment. Note that the cubic phase mask parameter is optimized in normalized
coordinates. Taking 90.23 as an example, the maximum phase modulation at the edge of
the pupil, i.e., x = ±1, is 90.23 according to Equation (1). A spatial light modulator (SLM)
is used to generate a cubic phase mask with a size of 15.36 mm× 8.64 mm. Assuming that
the maximum phase modulation at the long edge remains unchanged, the cubic phase
mask parameter of the actual system can be converted to 0.20, which is the actual phase
mask parameter used in the experiment. The two-dimensional cubic phase mask f (x, y)
can be described as

f (x, y) = α
(

x3 + y3
)

(7)

where x and y are the coordinates of the phase mask. Let the center of the cubic phase mask be
the origin of the coordinates, then the range of values of x and y are−7.68 mm ≤ x ≤ 7.68 mm
and −4.32 mm ≤ y ≤ 4.32 mm, respectively. The pupil function, which ignores all optical
aberrations but defocus, can be described as

p(x, y) = exp
[
j
(

f (x, y) + φ
(

x2 + y2
))]

(8)
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where φ is the defocus aberration and j is the imaginary unit. Figure 4a shows a three-
dimensional plot of the actual cubic phase mask, with the x and y axes corresponding to
the spatial coordinates, respectively, and the z axis indicating the phase. Its corresponding
contour map of the surface of the cubic phase mask is shown in Figure 4b.
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Figure 5 shows a DoF extended wavefront encoding system, where the light diffusely
reflected from the object passes through the polarizer (P) and arrives at the spatial light
modulator (SLM) after being reflected by the beam splitter (BS). The light, which is modu-
lated by the SLM, passes through the BS and is imaged on the camera by the lens. P works
in conjunction with SLM to achieve cubic phase modulation. A tilted ruler is used as a
large DoF object, as shown as the object of Figure 5.
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with focal length 200 mm; and camera (Camera).

The measured PSFs are almost identical at defocus amounts of 0, 15, and 30, and the
focused PSF is given in Figure 6.
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Figure 6. PSF of wavefront coding system.

Since the PSFs are consistent for different defocus amounts, the wavefront encoding
system has the same degree of blurring for different defocus objects. This makes it possible
to use the same PSF for image recovery in later stages.

To demonstrate the DoF extension effect of the wavefront encoding system, a con-
ventional imaging system is built to image objects with a large DoF for comparison. The
conventional imaging results for a tilted scale are shown in Figure 7a, where the object
is clearly imaged at the focus (0~1 mm), but the object is gradually blurred at the front
defocus (shown in the green box) and the back defocus (shown in the red box). The mag-
nified images of the front defocus and back defocus parts are shown in Figures 8 and 9,
respectively, which show that the objects are gradually blurred or even indistinguishable
as the defocus amount increases.
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Figure 8. Magnified image at the front defocus (green box in Figure 7). (a) Image of the conventional
imaging system. (b) Intermediate image of the wavefront coded imaging system. (c) Decoded image
of the wavefront coded system.
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Figure 9. Magnified image at the back defocus (red box in Figure 7). (a) Image of the conventional
imaging system. (b) Intermediate image of the wavefront coded imaging system. (c) Decoded image
of the wavefront coded system.

The imaging results of the wavefront coding system modulated by the cubic phase
mask are shown in Figure 7b. Although there is some blurring at the focus, the blurring
degree at the front and back defocus is improved compared with the conventional imaging
system, and the blurring degree is thought to be consistent at different positions. The PSF
shown in Figure 6 is used as the convolution kernel, and the Wiener filter [16] is used as the
decoding method. The decoded image is shown in Figure 7c. Like Figure 7a, we zoomed in
to show the front defocus (shown in the green box) and back defocus (shown in the red box)
of the intermediate image shown in Figure 7b and the decoded image shown in Figure 7c.
Figure 8a–c show the image of the conventional optical system, the intermediate image,
and the decoded image of the wavefront coding system at the front defocus, respectively.
Figure 9a–c show the image of the conventional optical system, the intermediate image, and
the decoded image of the wavefront coding system at the back defocus, respectively. The
wavefront coding system distinguishes details that cannot be resolved by the conventional
imaging optical imaging system at the front and back defocus.

The experimental results indicate that the phase mask optimized by the improved
particle swarm algorithm achieved the DoF extension in the wavefront coding system.

5. Conclusions

The phase mask design proposed in this paper is based on the improved PSO. The
improved PSO uses the coincidence of MTF curves under different defocus aberrations to
evaluate the defocus insensitivity of MTF. At the same time, the value range of velocity is
cancelled, the threshold is introduced, and the cubic phase mask parameter is successfully
optimized. The improved PSO eliminates the influence of the velocity value range and has
better robustness. After a simple adjustment of the population of particles and the number
of iterations, the optimal solution of the cubic phase mask parameter can be quickly and
effectively obtained. The experimental results verify that the cubic phase mask optimized
by the improved particle swarm algorithm can achieve DoF extension in the wavefront
coding system. In this study, a one-dimensional simplified analysis of cubic phase masks
was carried out, and the method can be extended to two-dimensional phase masks, as well
as to the optimization problems of other types of phase masks, such as logarithmic phase
masks, sinusoidal phase masks, tangent phase masks, and exponential phase masks.
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Figure A1. Flow diagram of phase mask design based on SA.

As shown in Figure A1, the specific process of phase mask design based on SA is
as follows:

1. Assign the cooling rate r, number of temperature iterations K, the maximum tempera-
ture Tmax, and the minimum temperature Tmin. Let the initial temperature T be equal
to Tmax.

2. The cubic phase mask parameter α is set as a random value and substituted into
Equation (3) to calculate the evaluation function s(α).

3. Let k = 0, and optimize the current cubic phase mask parameter α based on the
current temperature T.

4. Another cubic phase mask parameter α′ is set as a random value and as the current
solution, and the evaluation function s(α′) is calculated.

5. Evaluate whether the cubic phase mask parameter α′ meets Equation (4). If yes,
proceed to step 6; if no, return to step 9.

6. Evaluate whether s(α) is less than s(α′). If yes, the current solution α′ is the bad
solution and proceed to step 7; if no, proceed to step 8s.

7. Calculate the acceptance probability and evaluate whether to accept the current bad
solution according to the acceptance probability.

8. Let α be equal to α′.
9. Check whether k reaches the number of temperature iterations K. If yes, proceed to

step 10; if no, k = k + 1 and return to step 4.
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10. Use the cooling rate r to reduce the temperature T = rT.
11. Check whether the temperature T reaches the minimum temperature Tmin. If yes,

the current α is the optimal solution of the cubic phase mask parameter; if no, return
to step 3.
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