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Featured Application: This work presents an AI-based second reader application tailored for
computed tomography (CT) scans in Radiology. Its primary objective is to detect overlooked
potential malignant cases in the vertebral body during routine radiological reporting.

Abstract: Incidental spinal bone lesions, potential indicators of malignancies, are frequently underre-
ported in abdominal and thoracic CT imaging due to scan focus and diagnostic bias towards patient
complaints. Here, we evaluate a deep-learning algorithm (DLA) designed to support radiologists’ re-
porting of incidental lesions during routine clinical practice. The present study is structured into two
phases: unaided and AI-assisted. A total of 32 scans from multiple radiology centers were selected
randomly and independently annotated by two experts. The U-Net-like architecture-based DLA used
for the AI-assisted phase showed a sensitivity of 75.0% in identifying potentially malignant spinal
bone lesions. Six radiologists of varying experience levels participated in this observational study.
During routine reporting, the DLA helped improve the radiologists’ sensitivity by 20.8 percentage
points. Notably, DLA-generated false-positive predictions did not significantly bias radiologists in
their final diagnosis. These observations clearly indicate that using a suitable DLA improves the
detection of otherwise missed potentially malignant spinal cases. Our results further emphasize the
potential of artificial intelligence as a second reader in the clinical setting.

Keywords: deep learning; computed tomography; malignancies; AI detection; second reader; spine;
vertebral lesions

1. Introduction

Discrepancies in radiology are a long-known issue and—due to the extended workload
and limited evaluation time—have remained the same despite continuously improving
imaging techniques over the last decades [1,2]. A perceptual error, or false negative, is an
abnormality present in a diagnostic image but not described by the interpreter. Such over-
looked findings constitute the vast majority of human error in image interpretation [2–4].

Spinal bone lesions that present themselves as a conglomerate are frequently an
indicator of malignancy, with the vertebrae being the most prevalent hotspot for bone
metastasis [5]. On the other side of the spectrum, solitary lesions are more challenging and
can indicate both malignant and benign processes [6,7], creating uncertainty within the
diagnostic procedure, which may require further investigation [8]. In this case, if missed or
initially overlooked (perceptual error), they can exhibit major negative consequences on a
patient’s quality of life and, subsequently, their morbidity and mortality [9,10].
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With CT being a reliable imaging modality for assessing osseous involvement and
the destruction degree of spine abnormalities [6,11], the past years have shown a rising
interest in automatizing the detection and classification of spinal lesions to a large ex-
tent [12–14]. Artificial intelligence (AI) is now an active part of various medical diagnostic
procedures within real-life hospital workflows, with deep-learning (DL)-based analysis of
radiologic images as one of its key applications. AI as a screening tool or a second reader
for abnormality detection already shows promising results in various fields, such as chest
X-ray reporting and lung nodule detection [15,16]. However, reliable deep-learning-based
algorithms for spinal lesion detection are still sparse as their development has proven
to be more challenging, mostly due to the overlapping image features of degenerative
and neoplastic events [6]. To our knowledge, there are currently no EU MDR-certified
or FDA-approved AI second reader software that detect incidental spinal lesions in CT
scans of unrelated indications. A reliable algorithm with such capacities could assist the
reporting physician with accurate supplementary information, reduce the rate of missed
potentially malignant lesions, and streamline the diagnostic pathway.

This work examines the clinical impact of a deep-learning algorithm (DLA) that
assists radiologists in their day-to-day workflow within a simulated hospital setting. The
algorithm was developed to detect potentially malignant cases within the vertebrae and
act as a second reader, using native and contrast-enhanced abdomen and thoracic CT
imaging sequences. Its clinical efficacy was evaluated in an observational cross-over study
design, where the algorithm’s performance and the effect on the decision-making of six
subspecialty radiologists with and without the intervention of the DLA were assessed.
The distinct feature of this study design is its emphasis on reducing incidental findings
during the reporting of other main underlying diseases that the patient has. This approach,
further accentuated by limiting the scope to only CT abdomen and thoracic scans, shifts
the focus away from solely detecting vertebral malignancy as the primary objective of the
responsible radiologist. Such “background acting” tools open new avenues in how one
can correctly integrate AI in the medical sector and underline the crucial role of human
involvement in the overall process.

2. Materials and Methods

This section details the materials and methods used for the study.

2.1. Data Acquisition

All clinical and imaging information was obtained retrospectively from multiple
outpatient radiology centers in Germany. The data selection process is detailed in Figure 1.

We included studies of native or contrast-enhanced thoracic and abdominal CT ex-
aminations with multiplanar bone and soft tissue reconstructions. Incomplete or broken
studies, individuals with prior spinal surgery, and individuals under 18 were excluded
from the cohort. Once the data was filtered based on the chosen inclusion criteria, 32 ran-
domly sampled studies were picked. Data contracts are signed with the data providers,
and the studies were anonymized before being included in the study. Additionally, the data
is retrospective, with CT scans from a multicenter data provider collected over 12 months
from January 2022 until January 2023. Due to these factors, the need for informed consent is
waived. The anonymization process strips away all identifying tags such as name, contact
details, and address. Demographic details such as sex are preserved, and age is rounded to
the nearest whole number.

2.2. Establishment of the Ground Truth

Images were pre-processed and stored in a Digital Imaging and Communications in
Medicine (DICOM) format before the expert annotation. The ground truth labels were then
established via manual segmentation by two board-certified radiologists with expertise in
the field (MK: Associate Professor, 14 years of experience; and RR: Senior Lecturer, ten years
of experience). The studies were annotated on an object level by drawing bounding boxes
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around all regions of interest (ROIs) and subsequently classified as positive or negative.
We consider a positive case in which at least one finding is indicative of a potentially
malignant vertebral lesion (lytic, sclerotic, or mixed with a circumscribed boundary) and
has been manually segmented and evaluated by our two experts. This labeling process was
performed on the Encord platform (© 2022 Encord), and a consensus was reached in case
of divergent opinions.
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2.3. AI Algorithm Development

The deep-learning algorithm used in this study was developed using native and
contrast-enhanced CT studies of the spine, abdomen, and thorax. It is meant to be used
as a medical device in a clinical setting. The DLA consists of two deep-learning models
that work together. One model uses a U-Net-like segmentation approach coupled with
volumetric analysis to determine the presence of potentially malignant lesions in the spinal
vertebrae. The second model employs a vertebral localization component that enables the
proper selection of the region of interest. It is trained using a training set of 224 cases and
tested on 735 cases. Additionally, the DLA is evaluated on an external dataset of 420 cases.
Statistical analysis of the datasets was performed to verify the demographic distribution of
the data.

2.4. Experimental Setup

In this study, our primary goal was to investigate the effectiveness of a deep-learning
algorithm (DLA) in assisting radiologists in identifying previously overlooked potentially
malignant cases in the spine through abdomen and thoracic CT imaging. A total of
32 studies were selected from our data pool which contained both positive and negative
cases in equal numbers. Details of the selection process are given in Figure 1.

The study consisted of two phases. In the first phase, six radiologists independently
reviewed the 32 studies without DLA assistance, following their routine reading process. In
this case, a routine reading process is defined as the reading of the radiological images by
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the radiologist based on the patient’s complaint. This phase aimed to establish a baseline
for their diagnostic performance.

The six radiologists (participants) we recruited have varying experience levels, ranging
from 1 to 11 years. Each participant received the same set of 32 studies but presented in
random order. The participants were blinded to the gold standard and any patient-specific
information to ensure unbiased assessments, except for a brief description of the patient’s
complaint. These complaints were not focused on spine-related issues but were general
complaints of the patients who visited the clinics. The details of this information can be
found in Supplementary Table S1.

After a break of 10 days, the second phase was conducted. In this phase, the par-
ticipants reevaluated the same set of studies, but this time, they had access to the DLA
predictions to assist them in their evaluations. The DLA provided predictions about the
presence or absence of abnormalities in the spinal vertebrae in the CT scans.

To ensure accurate documentation of their assessments, the participants were asked
to use screen-recording software [17] to capture their computer screens. They were also
instructed to describe their findings verbally while indicating them with their mouse. A
DICOM visualization tool [18] was made available to aid in interpreting the scans and the
predictions of the DLA.

To evaluate the effectiveness of the AI intervention, the results obtained during the
reading sessions were manually compared to the gold standard. This comparison enabled
the determination of the accuracy of the participants’ diagnoses with and without the
DLA’s assistance.

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism v8.4.2. The primary mea-
sured outcome was based on assessing case and object level (per-patient and per-lesion)
sensitivity, specificity, and average false positive (AvgFP). Because of the infinite number of
possible locations for a spinal lesion, we could not define the true negative and thus did
not calculate the per-lesion specificity. To assess the significance between the two reading
sessions, we conducted the McNemar test in Python (statsmodels v 0.14.0).

3. Results
3.1. Demographics of the Dataset and Spinal Lesion Assessment in the Reference Standard

No significant differences or inhomogeneities were noted concerning the demographic
qualities of our cohort. Supplementary Table S1 shows the background information of the
32 patients involved in this study, including patient demographics (sex, age). 53.1% of the
patients are female. The average age was noted to be 56.6 years. An overview of the scan
conditions and other image acquisition details can be found in Supplementary Table S2.
As per the gold standard, there were 16 positive and 16 negative scans. There were a
total of 27 annotated suspicious lesions. The annotators exhibited a mutual agreement for
75.0% of the cases while determining the gold standard. Both annotators initially disagreed
on the remaining 25.0%, but these conflicts were resolved through discussions leading to
a consensus.

3.2. Algorithm Performance

Figure 2 exemplifies two true-positive predictions on different vertebral sites for lytic
(Figure 2a,b) and sclerotic (Figure 2c,d) lesions. The deep-learning algorithm (DLA) for
spinal lesion detection was tested on the same patient studies and correctly detected 12
out of 27 lesions in 16 patients. It also falsely indicated 13 spinal findings (false positives)
that were not considered true findings following the gold standard. The overall outcome of
the DLA for the established dataset is shown in Table 1. On a case level, compared to the
gold standard, the DLA performance had a sensitivity and specificity of 75.0% and 56.3%,
respectively. Regarding the results on an object level, the sensitivity was 44.4%, as shown
in Table 2.



Appl. Sci. 2023, 13, 8140 5 of 11

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 11 
 

out of 27 lesions in 16 patients. It also falsely indicated 13 spinal findings (false positives) 
that were not considered true findings following the gold standard. The overall outcome 
of the DLA for the established dataset is shown in Table 1. On a case level, compared to 
the gold standard, the DLA performance had a sensitivity and specificity of 75.0% and 
56.3%, respectively. Regarding the results on an object level, the sensitivity was 44.4%, as 
shown in Table 2. 

Table 1. Algorithm performance in comparison to the gold standard (count). 

 Positive 
Cases 

Total Number 
of Detected 

Objects 

Number of 
Detected 

Spinal Lesions 
(TP) 

Number of 
Undetected 

Spinal Lesions 
(FN) 

Number of 
Falsely Detected 
Spinal Lesions 

(FP) 
Gold 

Standard 16 27 27 N/A N/A 

DLA 11 40 12 15 13 

Table 2. Algorithm performance in comparison to the gold standard (metrics). 

Sensitivity (TP Rate) Specificity (TN Rate) Accuracy 
Case Level Object Level Case Level  Object Level Case Level Object Level 

75.00% 44.44% 56.25% N/A 65.63% N/A 

 
Figure 2. DLA predictions of osteolytic (a) and oseoblastic (c) lesions are shown in corresponding 
images (b,d). 

3.3. Intra-observer Agreement without and with the Aid of the DLA 
The observers’ performance results are summarized in Table 3, with visual exempli-

fication in Figure 3 showcasing sensitivity, specificity, and the true-positive rate on a case 
level. 

Considering that the participants were asked to perform routine reporting based on 
general complaints (such as acute abdominal pain or elevated liver enzymes), only one 
out of six radiologists did not include spinal findings in the first round (without DLA). 
Another radiologist solely identified degenerative changes without detecting any signifi-
cant or suspicious findings that aligned with the ground truth. The participant with the 

Figure 2. DLA predictions of osteolytic (a) and oseoblastic (c) lesions are shown in corresponding
images (b,d).

Table 1. Algorithm performance in comparison to the gold standard (count).

Positive
Cases

Total
Number of
Detected
Objects

Number of
Detected

Spinal
Lesions (TP)

Number of
Undetected

Spinal
Lesions (FN)

Number of
Falsely Detected

Spinal
Lesions (FP)

Gold
Standard 16 27 27 N/A N/A

DLA 11 40 12 15 13

Table 2. Algorithm performance in comparison to the gold standard (metrics).

Sensitivity (TP Rate) Specificity (TN Rate) Accuracy

Case Level Object Level Case Level Object Level Case Level Object Level

75.00% 44.44% 56.25% N/A 65.63% N/A

3.3. Intra-Observer Agreement without and with the Aid of the DLA

The observers’ performance results are summarized in Table 3, with visual exem-
plification in Figure 3 showcasing sensitivity, specificity, and the true-positive rate on a
case level.

Considering that the participants were asked to perform routine reporting based on
general complaints (such as acute abdominal pain or elevated liver enzymes), only one out
of six radiologists did not include spinal findings in the first round (without DLA). Another
radiologist solely identified degenerative changes without detecting any significant or
suspicious findings that aligned with the ground truth. The participant with the highest
experience level (11 years) initially reported two true positives in the first round. However,
when aided by the DLA, this number increased to 14 true-positive and two false-positive
findings. The two least experienced radiologists (one year) did not report any spinal
findings without relying on the algorithm. Following the predictions in round 2, only one
included spinal findings in the report.



Appl. Sci. 2023, 13, 8140 6 of 11

Considering a potential maximum of 162 true positives (27 lesions multiplied by
6 participants), the radiologists reported 11 true-positive objects alone. However, when
assisted by the DLA, this number increased to more than three times that value, with
35 true-positive findings in the study’s second phase.

The DLA predicted 13 false-positive objects. When interpreting these predictions, on
average, the radiologists included less than one false positive in the report, resulting in
four false-positive reports across all participants.

Table 3. Intra-observer agreement depicted for the two study phases according to the gold standard
(phase 1—without the DLA and phase 2—with the DLA support).

Participants

1 2 3 4 5 6

Experience
(years) 6 7 5 1 11 1

Phase 1—no support from DLA Mean

Suspicious
lesions

reported (n)
2.00 4.00 3.00 0.00 2.00 0.00 1.83

False
positives (n) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sensitivity
(case level) 12.50% 25.00% 18.75% 0.00% 12.50% 0.00% 11.46%

Sensitivity
(object level) 7.41% 14.81% 11.11% 0.00% 7.41% 0.00% 6.79%

Specificity
(case level) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Accuracy
(case level) 56.25% 62.50% 59.38% 50.00% 56.25% 50.00% 55.73%

Accuracy
(object level) 53.70% 57.41% 55.56% 50.00% 53.70% 50.00% 53.40%

False positive
rate 0.00% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

Phase 2—with support from DLA Mean

Suspicious
lesions

reported (n)
5.00 5.00 8.00 0.00 14.00 3.00 5.83

False
positives (n) 1.00 0.00 1.00 0.00 2.00 1.00 0.83

Sensitivity
(case level) 31.25% 31.25% 43.75% 0.00% 75.00% 12.50% 32.29%

Sensitivity
(object level) 14.81% 18.52% 25.93% 0.00% 44.44% 7.41% 18.52%

Specificity
(case level) 93.75% 100.00% 93.75% 100.00% 87.50% 93.75% 94.79%

Accuracy
(case level) 62.25% 65.62% 68.75% 50.00% 81.25% 53.12% 63.54%

Accuracy
(object level) 55.56% 59.26% 68.12% 50.00% 68.52% 51.85% 58.89%

False-positive
rate 3.70% 0.00% 3.57% 0.00% 7.41% 3.70% 3.06%
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Figure 3. Performance metrics of the six participants on case level, with each participant color
coordinated; (a) Sensitivity and specificity of reporting potentially malignant spinal lesions without
(−) and with (+) the aid of an AI tool as a second reader; (b) Number of reported true-positive
findings without (−) and with (+) the aid of an AI tool as a second reader.

Based on the AI’s indication of true-positive spinal conditions, four participants felt
requesting further follow-up or diagnostic tests was necessary. These requests were made
to investigate potential abnormalities or conditions related to the spine, as suggested by the
AI. None of the participants requested additional examinations due to possible FP findings.

On a case level, participants’ average sensitivity in detecting spinal lesion(s) (which
translates into reporting at least one correct lesion in a positive case) increased from 11.5%
to 32.3% (20.08 percentage points) when using the DLA tool. The sensitivity increased from
6.8% to 18.5% (11.70 percentage points) on an object level. The average FP rate increased
from 0.0% (no primarily reported false spinal findings) to 3.1% on a case and object level.
The mean accuracy value increased from 55.7% to 63.5% on a case level and from 53.4% to
58.9% on an object level.

There was no clear trend that could link the participants’ clinical experience and their
responsiveness to the AI predictions, with both junior and more experienced radiologists
having heterogeneous behaviors toward the presented algorithm results. It should be
noted that, in less-experienced participants, we observed changes in their reports between
reading sessions unrelated to the AI findings.

4. Discussion

A complete and comprehensive review of a CT scan is crucial for a patient’s health and
has a significant impact on decision-making. CT imaging can assess spinal bone metastatic
lesions up to 6 months before plain radiographs [19]. However, smaller lesions or those
that do not have significant cortical destruction are often underreported or missed during
CT image reporting [20]. In a systematic review, Bartalena et al. reported that radiologists’
recognition of incidental vertebral findings (in this case, fractures) was low, with a mean
reporting rate of just 27.4% [21]. A major fraction of false negatives are significant bone
lesions that could indicate potential malignancy [3]. J Donald et al. showed in an internal
department analysis that these types of spinal lesions were most frequently misinterpreted
on CT images, with 14 out of 16 missed findings being metastatic [22].

False-negative cases are the most common perceptual errors [4], with CT imaging
being especially susceptible [22]. Errors made in previous radiology reports can lead to
the tendency of radiologists to replicate the error in subsequent reports, which is referred
to as ‘alliterative bias’ [23]. This concept reiterates the importance of some confirmation
protocols in medical practice. While double-reading practices significantly impact the
quality of radiological reports, clinical workload and staff shortages make a routine human
double-reader scheme hard to implement [24,25].

Computer-aided detection (CAD) systems have supported radiologists in their work-
flow even before the era of deep-learning tools, with some of the best examples being
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small functions and add-ons for DICOM viewers, such as contrast enhancers or manual
annotation support. With the use of AI increasing rapidly in the fields of medicine, with
radiology as a leading candidate, future deep-learning-based CAD systems will not only
optimize the users’ workflow and improve their diagnostic abilities but also weigh in on
their medical judgment and decision-making process. CTs are not just a series of images;
they contain extensive information about the pathology in question that sometimes can-
not be interpreted by the bare human eye [26]. There are models developed for almost
every disease that can be assessed radiologically. More specifically, detection systems have
shown an emerging potential in reducing missed radiological spinal lesions as a second
reader [13,27–30].

In our study, we investigated the effects of a DLA when implemented in a routine CT
reporting process performed by six radiologists having different experience levels. Our
results show that DL-based spinal lesion detection can improve inter-observer agreement
and overall increase performance in detecting these radiological findings, regardless of the
training level of our participants. The case level sensitivity increased by 20.83 percentage
points when the participants were aided by the DLA. However, this improvement should
only be interpreted in the context of a rather low baseline of reported spinal findings in the
first round. Another observational study by Noguchi et al. [13] showed that the sensitivity
of radiologists in detecting bone metastases could be elevated with the help of a DLA by
15.3 percentage points. In a similar study, Kato et al. [31] reported an improvement in the
performance of less-experienced radiologists in brain metastasis detection by 4.90 percent-
age points. Like our own study, Kato et al. observed no significant increase in false-positive
findings when utilizing a CAD system. While these previous studies have primarily fo-
cused on DLAs improving performance in explicit detection tasks, our study provides a
novel perspective by highlighting the potential benefits of a tool for reducing incidental
findings during routine reporting. This observation helps to explain the relatively lower
baseline performance of participants in our study. Since a complete radiological report
includes information regarding all body parts that can be seen on the scan, we expected
insights on all findings that the six radiologists encountered while analyzing the images.
Our findings support the already existing issue of missed spinal findings in clinical practice,
which might rely on the aforementioned reasons for perceptual errors in radiology. It
is worth noting that the sensitivities and specificities are calculated only for potentially
malignant spinal lesion findings and not findings for all other organs (lungs, liver, kidneys).
Hence, the lowered sensitivities and specificities due to many spinal lesions being missed
during the initial diagnostic process without the assistance of the DLA.

Indeed, the DLA reported false-positive findings. It is important to mention that the
radiologists’ assessments were not solely based on the AI’s predictions for false-positive le-
sions. They considered various factors, including other findings identified as true positives
by the AI. Furthermore, based on the AI’s indication of true-positive spinal conditions, four
participants requested further follow-up or diagnostic tests. These requests were made
to investigate potential abnormalities or conditions related to the spine, as suggested by
the AI.

Several studies have already investigated the potential of deep-learning systems
for pathology assessment of the spine [13,28,32–35]. Although deep-learning algorithms
(DLAs) can demonstrate accuracy in lesion detection on par with radiologists, it is crucial
to consider their real-world implementation in datasets that differ significantly from the
training data. DLAs may face challenges in such scenarios and are more prone to producing
incorrect results. However, by addressing these challenges through ongoing research and
fine-tuning, we can further optimize the effectiveness of DLAs in practical settings. It is,
therefore, crucial to focus on the effects and performance of the human reader when in
conjunction with this emerging technology. While our DLA’s performance may not have
demonstrated superiority over expert human radiologists, there is potential for radiologists
of all experience levels to benefit from its second reader function. It is essential to conduct
future studies with larger cohorts and greater sample sizes to validate any hypothetical
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benefits and potential risks associated with AI. These studies will ensure the safe and
effective integration of machine learning software into the clinical setting.

This study has several limitations. Since the allocated time between the two reading
sessions was set for only ten days, one could argue that the first reading could have biased
the participants’ performance in the second session. We conducted the McNemar test to
assess significance. The test (p = 0.25) confirmed that the study did not yield statistically
significant results (p > 0.05). This outcome is linked to the small number of radiologist
participants used for this study and probably could not prove generalizable effects. How-
ever, it is important to note that this finding presents an opportunity for improvement in
future studies. The number of patient studies investigated by the participants was also
small and should be increased for further studies. Moreover, the training that radiologists
receive, their reporting style, and thus their attention to detail differ between countries and
subspecialties.

5. Conclusions

We show that the implementation of a DLA as a second reader in routine reporting
of CT scans can increase radiologists’ true-positive rate for spinal lesion detection while
at the same time having close to no impact on the false-positive rate. These findings
showcase the potential that an AI-based technology could have in the hospital setting,
particularly in detecting missed potential malignancies during routine reporting. However,
it is important to consider that the impact of AI in medical imaging may vary depending on
the interpreter’s background and training. While current trends and discoveries indicate
improvements in diagnostic performance, further comprehensive studies are needed to
validate these results on a larger scale and gain a deeper understanding of the implications
this technology may have in the clinical setting. Nevertheless, the enhanced metrics
observed in this study provide evidence of AI’s prospect as a valuable detection tool.
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