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Abstract: Lung diseases have a significant impact on respiratory health, causing various symptoms
and posing challenges in diagnosis and treatment. This research presents a methodology for clas-
sifying lung diseases using chest X-ray images, specifically focusing on COVID-19, pneumonia,
and normal cases. The study introduces an optimal architecture for convolutional neural network
(CNN) and long short-term memory (LSTM) models, considering evaluation metrics and training
efficiency. Furthermore, the issue of imbalanced datasets is addressed through the application of
some image augmentation techniques to enhance model performance. The most effective model
comprises five convolutional blocks, two LSTM layers, and no augmentation, achieving an impressive
F1 score of 0.9887 with a training duration of 91 s per epoch. Misclassifications primarily occurred
in normal cases, accounting for only 3.05% of COVID-19 data. The pneumonia class demonstrated
excellent precision, while the normal class exhibited high recall and an F1 score. Comparatively,
the CNN-LSTM model outperformed the CNN model in accurately classifying chest X-ray images
and identifying infected lungs. This research provides valuable insights for improving lung disease
diagnosis, enabling timely and accurate identification of lung diseases, and ultimately enhancing
patients’ outcomes.

Keywords: lung diseases; COVID-19; pneumonia; X-ray; convolutional neural networks; long
short-term memory

1. Introduction

Lung diseases encompass a wide range of disorders that are prevalent and linked
to significant morbidity and mortality [1]. These disorders can significantly impact the
respiratory system, including the lungs, airways, and pulmonary blood vessels. As critical
organs responsible for the respiration process, the lungs play an essential role in providing
oxygen to the body and eliminating carbon dioxide. However, lung diseases can interrupt
this vital process, causing uncomfortable symptoms, such as fatigue, shortness of breath,
wheezing, coughing, and chest pain. Diagnosing and treating lung diseases can be chal-
lenging due to the wide range of possible causes and symptoms [2]. Nevertheless, it is
critical to identify and treat them early to enhance patient outcomes and lessen the burden
of these conditions on society. With ongoing research and advances in technology, there is
optimism for improving our understanding and management of various lung diseases.

One of the most widely discussed topics in the field of lung diseases today is COVID-
19. The global impact of COVID-19 on lung health has been significant, resulting in a
large number of hospitalizations and fatalities worldwide. COVID-19 has served as a
painful reminder of the importance of respiratory health and the need for continued study,
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preparation, and cooperation to successfully handle lung diseases. The global response
to the COVID-19 pandemic has stressed the interconnectedness between lung health and
public health, pressing on the importance of ongoing study and joint efforts in the field
of lung diseases. It is worth mentioning that many people who died from COVID-19 had
severe chest congestion and a consequent large decrease in oxygen levels, which raised the
risk of massive heart attacks [3]. On another note, pneumonia is also a type of lung disease
characterized by inflammation in the small air sacs within the lungs. It can be caused by
different pathogens, including bacteria, viruses, or fungi [4]. Interestingly, the signs and
symptoms of pneumonia have similarities with COVID-19 [5]. Given this similarity and the
fact that different diseases require different treatments [6], it becomes crucial to accurately
identify specific diseases. This ensures that appropriate and distinct treatment approaches
can be employed based on the specific lung disease. Because of that, this research aims to
identify the classes as COVID-19, pneumonia, and normal.

Radiological images of the lungs provide an alternative approach to diagnosing lung
infections. Clinical diagnostic tools, such as X-rays and computed tomography (CT), can
effectively assess and describe the condition of the lungs. Although CT scans offer better
detection sensitivity, X-ray radiography is more commonly utilized in clinical settings due
to its advantages and conveniences, including lower cost and widespread availability in
general hospitals [7]. Thus, X-ray radiography is preferred in many cases, serving as a
practical and efficient method for diagnosing lung infections.

Detecting and classifying lung diseases using chest X-ray images is a challenging and
complex task. To aid radiologists and accelerate the identification process, researchers have
developed deep-learning models [8–10]. These models utilize advanced machine learning
algorithms and neural networks to analyze and categorize X-ray images based on distinct
patterns and features associated with various lung diseases. Furthermore, the emergence
of COVID-19 has significantly increased the patient load, placing additional demands on
radiologists to accurately identify and diagnose cases. This surge in cases has necessitated
more time and energy from radiologists, highlighting the need for efficient and effective
diagnostic tools. Deep learning is hoped to be a valuable tool in this context, enabling
radiologists to handle the growing workload.

The goal of this study is to create an image classification model that uses deep-learning
techniques to speed up the identification of lung diseases, thereby reducing the effort and
time involved in the diagnostic process. This model will aid in effectively identifying
patients exposed to COVID-19 and those with pneumonia. The major objective is to reduce
mistakes and misdiagnoses in lung disease treatment, thereby improving patient care
and outcomes. By enhancing the accuracy and efficiency of disease detection, this study
endeavors to contribute to the overall optimization of lung disease management and reduce
the potential for mishandling of such conditions.

The main contributions of this research are two-fold:

1. Implementation and selection of the optimal architecture of convolutional neural
network (CNN) and long short-term memory (LSTM) deep-learning models for the
classification of lung diseases using chest X-ray images. The selection process is based
on evaluation metrics and training time, ensuring that the models are efficient and
effective in accurately identifying different lung diseases;

2. Addressing the challenge of an imbalanced dataset by applying various image aug-
mentation techniques. Imbalanced datasets, where certain classes have significantly
fewer samples than others, can pose challenges in model training. By employing
appropriate image augmentation methods, this research aims to improve the perfor-
mance of the deep-learning models by artificially expanding the dataset and creating
a more balanced representation of different lung diseases.

The remainder of this paper is structured as follows. Section 2 provides a comprehen-
sive review of the existing scientific literature related to this research. Section 3 outlines the
methodology employed in this research, including the collection and splitting of the dataset.
Section 4 presents the results obtained from the experiments conducted in this study. Sec-
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tion 5 offers a comprehensive discussion of the findings, conclusions, and recommendations
for future research.

2. The Literature Review

Tekerek and Al-Rawe [11] introduced a classification method based on deep learning
to identify lung diseases from chest X-ray images, with a specific emphasis on detecting
COVID-19. This approach aims to categorize chest X-ray images into three groups: normal;
COVID-19; and viral pneumonia. It employs an eight-layer convolutional neural network
that combines MobileNet [12] and DenseNet [13] models. The research findings indicate a
precision value of 1.00 for COVID-19 and normal cases while achieving a precision of 0.79
for viral pneumonia. The recall values are 1.00 for normal and viral pneumonia and 0.69
for COVID-19. The F1 score is found to be 1.00 for normal, 0.79 for COVID-19, and 0.85 for
viral pneumonia. The proposed method achieves an impressive accuracy of 96% and a ROC
AUC score of 0.94. These outcomes showcase the remarkable accuracy of the proposed
approach in diagnosing and classifying chest X-ray images, surpassing the performance of
traditional CNN and MobileNet methods. The method’s high precision and F1 score are
particularly important for minimizing false negatives, thereby aiding in the prevention of
disease transmission.

Gupta et al. [14] presented a method that uses deep-learning models, pre-processing
techniques, and lung segmentation to improve the precision of COVID-19 detection in chest
X-ray images. The study uses InceptionV3 [15] and U-Net [16], which are deep-learning
models, to process and identify chest X-ray images as either COVID-19-negative or positive.
By adding lung segmentation during pre-processing, this study aims to remove irrelevant
surrounding information that could introduce bias and create inaccurate results. The results
of this study show an amazing accuracy rate of approximately 99% for the most effective
models in spotting COVID-19. However, this study also shows the effect of visual noise on
model bias and underscores the value of lung segmentation in reducing bias and ensuring
more consistent results. This study admits that the current models strongly rely on visible
abnormalities in the lungs as signs of COVID-19, and further improvements are necessary
to address this weakness.

Badrahadipura et al. [17] conducted a study utilizing the Inception ResNet-v2 [18] ar-
chitecture and transfer learning to classify chest X-ray images into three categories: normal;
viral pneumonia; and COVID-19. The dataset consisted of 3616 COVID-19 cases, 10,192
of normal cases, and 1345 cases of viral pneumonia. The model underwent two rounds of
training. Initially, the Inception ResNet-v2 layers were frozen, preserving the weights and
biases learned from the ImageNet dataset. Only the additional layers were added after the
Inception ResNet-v2 was trained. In the second training phase, all layers were unfrozen,
allowing for further fine-tuning of the entire model. This research highlighted that the
model performed better in classifying images belonging to viral pneumonia and normal
classes compared to the COVID-19 class, as indicated by higher precision, recall, and F1
scores. The overall accuracy of the model was reported to be 0.966, with an F1 score of
0.97. These findings demonstrate the potential of using the Inception ResNet-v2 architec-
ture and transfer learning for accurate classification of chest X-ray images, particularly in
distinguishing between viral pneumonia, normal, and COVID-19 cases, contributing to
advancements in medical imaging and healthcare applications.

Abbas et al. [19] conducted a study to investigate the application of transfer learn-
ing using the DeTraC (Decompose, Transfer, and Compose) deep CNN architecture for
COVID-19 chest X-ray classification. DeTraC incorporates a class decomposition mecha-
nism to address irregularities presented in the image dataset. This study demonstrates the
effectiveness of DeTraC in accurately classifying COVID-19 cases while also showcasing
its robustness in handling data irregularities and the limited availability of training im-
ages. Through validation experiments with various pre-trained CNN models, VGG19 [20]
emerged as the most successful model within the DeTraC framework. The experimental
results highlight the impressive performance of DeTraC in detecting COVID-19 cases,
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achieving an accuracy of 93.1% with a sensitivity of 100% in accurately distinguishing
COVID-19 X-ray images from both normal and severe acute respiratory syndrome cases.

Goyal and Singh [5] proposed a framework for detecting COVID-19 and pneumonia
in chest X-ray images. The framework is divided into multiple steps, which include dataset
gathering, picture quality improvement, ROI estimation, feature extraction, and illness
classification. Two publicly accessible chest X-ray datasets are used, and picture quality
is improved by utilizing such techniques as median filtering and histogram equalization.
Various characteristics, such as visual, shape, texture, and intensity, are retrieved and nor-
malized from each ROI picture. Soft computing approaches, such as ANN [21], SVM [22],
KNN [23], ensemble classifiers [24], and a deep-learning classifier dubbed F-RNN-LSTM,
are used for classification. The F-RNN-LSTM deep-learning architecture combines RNN
and LSTM for enhanced disease categorization. Experiment findings show that the sug-
gested framework is successful. When compared to previous approaches, the F-RNN-LSTM
model achieves an accuracy of roughly 95% while requiring less computing effort.

Demir [25] introduced an innovative method for detecting COVID-19 from X-ray
images by utilizing a deep LSTM model. The model is developed from scratch, offering
a unique architecture specifically designed for this purpose. To enhance the model’s
performance, the study incorporates such pre-processing techniques as the Sobel gradient
and marker-controlled watershed segmentation. This research conducts experiments on
a combined public dataset consisting of 361 COVID-19, 500 pneumonia, and 200 normal
chest X-ray images. The dataset is divided randomly into training and testing sets, with
different ratios tested. The most favorable results are obtained when using an 80% training
and 20% testing split. Impressively, the proposed model achieves a perfect 100% success
rate across all performance metrics, including accuracy, sensitivity, specificity, and F-score.
These findings are particularly remarkable considering the small size of the dataset used in
the study.

Pustokhin et al. [26] introduced the RCAL-BiLSTM model, which combines ResNet [27],
a class attention layer (CAL) [28], and a Bi-LSTM. The model comprises several stages,
including preprocessing, using bilateral filtering [29], feature extraction, using RCAL-
BiLSTM, and classification employing SoftMax. Feature extraction involves ResNet for
extracting features, CAL for capturing discriminative class-based features, and Bi-LSTM for
modeling class dependencies in both directions. The SoftMax layer is then used to classify
the feature vectors into their respective feature maps. Experimental validation is performed
on a dataset of chest X-ray images, and the results illustrate the superior performance of the
RCAL-BiLSTM model. It achieves high sensitivity (93.28%), specificity (94.61%), precision
(94.90%), accuracy (94.88%), F-score (93.10%), and kappa value (91.40%), highlighting the
effectiveness of the proposed model for COVID-19 diagnosis.

Hamza et al. [30] proposed a CNN-LSTM architecture combined with an improved
optimization algorithm to address the challenges of multisource fusion and redundant
features. The dataset consisted of four classes: COVID-19; normal, viral pneumonia, and
lung opacity. The framework includes contrast enhancement and data augmentation to
improve the quality and quantity of training samples. Deep transfer learning is utilized
in training a CNN-LSTM model and fine-tuning an EfficientNet [31] model for feature
extraction. The overall accuracy achieved was 98.5%.

Fachrel et al. [32] compared two deep-learning models, namely, convolutional neural
networks (CNN) and a combination of CNN and long short-term memory (LSTM). The
dataset consists of 4095 CXR images (1400 of normal conditions, 1350 of COVID-19, and
1345 of pneumonia). Both CNN and CNN-LSTM models are evaluated using a confusion
matrix and compared in terms of performance. The experimental results demonstrate that
the CNN-LSTM model outperforms the CNN model, achieving an overall accuracy of
approximately 98.78%. It also exhibits high precision and recall, reaching 99% and 98%,
respectively. These findings suggest that the proposed CNN-LSTM model can contribute
to fast and accurate COVID-19 detection.
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The previous studies primarily focused on the development of deep-learning algo-
rithms and certain preprocessing methods to classify lung diseases. Furthermore, the
utilization of LSTM networks has been recognized as an effective approach to achieving
higher performance scores [5,25,26,30,32]. To the best of our knowledge, the problem of
imbalanced datasets has been given limited consideration in these studies. Therefore, our
research aims to address this gap by focusing on selecting the optimal architecture for the
CNN-LSTM model and tackling the challenges associated with imbalanced datasets. We
plan to employ various image augmentation techniques to improve the model’s perfor-
mance and enhance its ability to handle imbalanced data.

3. Materials and Methods

In this section, we will provide a description of the dataset utilized, the models em-
ployed, the experimental setup, and the evaluation metrics used to assess the performance
of the models.

3.1. Dataset

This study used a dataset from Kaggle [33,34] that contained three classes (COVID-19,
normal, and pneumonia) shown in Figure 1. A total of 15,153 images (10,912 normal;
3616 COVID-19; and 1345 pneumonia) were used in this study, with 90% used for training
and 10% used for validation. The proportion of splitting data can be seen in Table 1.
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Table 1. Separating training and test data for each class.

Normal COVID-19 Pneumonia Total

Training 9173 3255 1211 13,639
Validation 1019 361 134 1514

Total 10,912 3616 1345 15,153

3.2. Convolutional and Recurrent Networks: CNN and LSTM

The convolutional neural network (CNN) is a widely used algorithm for processing
image data. It employs mathematical operations to learn from a network called a “convolu-
tion” [35]. The convolution layer, which is a crucial component of CNN, plays a vital role
in feature extraction by utilizing local connections and shared characteristic weights [36].
It consists of linear and non-linear operations that work together to extract meaningful
patterns from the input data [37]. The convolution layer’s ability to extract important
features is a key reason why CNN is well-suited for image data. Multiple filters within the
convolution layer learn distinct features through a variety of weights [38]. These filters
can be represented mathematically as n × n matrices, where each element corresponds to a
weight. The filtering process is illustrated in Figure 2, where each pair of elements in the
filter is multiplied and added to generate a single output value. This process is repeated
for each filter, resulting in a “feature map” that highlights specific features in the input
data. By employing multiple filters with different weights, the convolution layer effectively
learns a diverse set of features, enabling it to identify and differentiate various objects or
patterns in the input data.
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LSTM, a type of recurrent neural network (RNN), can effectively retain information
over long periods and learn from inputs that are widely separated in time [40]. Unlike
traditional RNNs, LSTM overcomes the problem of vanishing gradients and captures long-
term dependencies by employing memory cells with specialized gating mechanisms [41].
Figure 3 illustrates the architecture of LSTM, where each memory cell consists of three
types of gates (forget, input, and output) that control the information flow. The forget
gate filters out small values, the input gate determines new information to be added to the
memory, and the output gate determines whether to output the stored value. Additionally,
each memory cell incorporates three sigmoid activation functions and one tanh activation
function [42]. The tanh function maintains values within the range from −1 to 1, while the
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sigmoid function transforms the range from −1 to 1 to 0 to 1, preventing zero values from
entering the memory cells. For a more detailed explanation of LSTM, refer to [43].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20 

to the memory, and the output gate determines whether to output the stored value. Ad-
ditionally, each memory cell incorporates three sigmoid activation functions and one tanh 
activation function [42]. The tanh function maintains values within the range from −1 to 1, 
while the sigmoid function transforms the range from −1 to 1 to 0 to 1, preventing zero 
values from entering the memory cells. For a more detailed explanation of LSTM, refer to 
[43]. 

Figure 3. The architecture of the long short-term memory (LSTM) (modified from [44]) 

3.3. CNN-LSTM Architecture 
In the CNN-LSTM architecture, CNN is used to extract important features from an 

image, while LSTM replaces the fully connected role, which is to classify based on the 
features that have been extracted by CNN. By combining CNN and LSTM networks in 
this way, the CNN-LSTM architecture can handle both spatial and temporal information 
in an image, making it useful for classification. Figure 4 shows the architecture of the 
CNN-LSTM, where the LSTM layer is placed after the convolution layer and receives the 
output value from the last convolution layer for further classification. 

In a fully connected layer, the connections between nodes in different layers are not 
specific to any particular sequence of inputs, and each node can only process one input at 
a time. On the other hand, the nodes in an LSTM layer are connected along the sequence 
of inputs, allowing the network to capture dependencies between elements in the se-
quence [45]. Additionally, LSTM employs a gating mechanism that enables it to selectively 
recall or forget information from previous time steps, allowing it to simulate long-term 
dependencies in the input sequence effectively. Furthermore, because of its ability to man-
age the problem of vanishing gradients (gradients that become very small during back-
propagation), LSTM is more easily optimized than typical fully-connected networks [46]. 

Figure 3. The architecture of the long short-term memory (LSTM) (modified from [44]).

3.3. CNN-LSTM Architecture

In the CNN-LSTM architecture, CNN is used to extract important features from an
image, while LSTM replaces the fully connected role, which is to classify based on the
features that have been extracted by CNN. By combining CNN and LSTM networks in
this way, the CNN-LSTM architecture can handle both spatial and temporal information
in an image, making it useful for classification. Figure 4 shows the architecture of the
CNN-LSTM, where the LSTM layer is placed after the convolution layer and receives the
output value from the last convolution layer for further classification.
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In a fully connected layer, the connections between nodes in different layers are
not specific to any particular sequence of inputs, and each node can only process one
input at a time. On the other hand, the nodes in an LSTM layer are connected along the
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sequence of inputs, allowing the network to capture dependencies between elements in
the sequence [45]. Additionally, LSTM employs a gating mechanism that enables it to
selectively recall or forget information from previous time steps, allowing it to simulate
long-term dependencies in the input sequence effectively. Furthermore, because of its
ability to manage the problem of vanishing gradients (gradients that become very small
during backpropagation), LSTM is more easily optimized than typical fully-connected
networks [46].

3.4. Evaluation
3.4.1. Confusion Matrix

Confusion matrix is a method for evaluating the performance of a classification model
in making predictions [47]. The confusion matrix generates scores for accuracy, precision,
recall, and F1 score. This score is used to assess the model’s performance. Predicted and
actual classifications are shown in a n × n confusion matrix, where n is the number of
classes [48]. There were three classes employed in this study: normal, COVID-19, and
pneumonia. The form of the confusion matrix for the three classes can be seen in Table 2.

Table 2. Confusion matrix for three classes.

Actual
Predict

A B C

A TAA FBA FCA

B FAB TBB FCB

C FAC FBC TCC

In the three-class confusion matrix, there is a slight difference in calculating true
positive, true negative, false positive, and false negative. In the context of class A in Table 2,
the calculations for those values are as follows:

True Positive = TAA (1)

True Negative = TBB + TCC + FBC + FCB (2)

False Positive = FAB + FAC (3)

False Negative = FBA + FCA (4)

From the confusion matrix, we can calculate the evaluation metric as follows:

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F1 score = 2 × precision × recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

(7)

In this case, we did not use accuracy because, when dealing with imbalanced data,
where one class has significantly fewer instances than the others, accuracy can be mis-
leading. In such cases, the F1 score is a more suitable evaluation metric as it takes into
account both precision and recall. The F1 score is particularly useful in cases of unbalanced
data. This is because the F1 score considers both false positives and false negatives, which
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are crucial in such cases to identify the model’s performance in correctly predicting the
minority class [49].

3.4.2. K-Fold Cross-Validation

K-fold cross-validation means performing data splits repeatedly k times. In this
method, the data is first partitioned into k segments. Then k training iterations were carried
out, and validation was carried out in such a way that in each iteration, there were k
different test data conditions [50]. An illustration of the k-fold cross-validation process can
be seen in Figure 5.
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3.5. Experimental Setup

As shown in Figure 6, this study consists of several steps, including pre-processing,
dataset splitting, selecting an appropriate architecture, and evaluating the best architecture.
To ensure accurate and reliable predictions from a machine learning model, it is crucial to
perform data pre-processing before training the model. This process involves transforming
the data into a format suitable for the machine learning model. In this specific research,
the images are resized to 224 × 224 pixels, and the pixel values are normalized by dividing
them by 255. This transformation converts the range from 0–255 to 0–1, preparing the data
for the model.

This research aims to explain the process of training a model to achieve accurate
classification of X-ray images. The training will be conducted in two phases:

1. Determining the optimal number of deep-learning layers;
2. Applying image augmentation techniques.

To select the optimal method for achieving high classification accuracy, both stages
will be evaluated using the F1-score metric. The experiment will maintain the same
setup as presented in Table 3, with 65 epochs and a batch size of 32, ensuring consistency.
Additionally, the Adam optimizer will be used with an initial learning rate of 5 × 10−6.
These hyperparameters were chosen based on previous experimentation and have been
found to be effective for the task at hand [32]. By maintaining consistent hyperparameters
across experiments, the obtained results can be easily compared and evaluated, leading to
more reliable and accurate conclusions.
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Table 3. Hyperparameters Setup.

Hyperparameters

Batch Size 32

Optimizer Adam

Learning rate 5 × 10−6

Epochs 65

In the first stage, experiments with various layer configurations will be conducted
to establish the ideal number of deep-learning layers. This will involve building models
with different numbers of layers. To increase the diversity of the training data, image
augmentation techniques will be applied in the second step to the X-ray images. This
will include transformations, such as rotation, flipping, and cropping, to generate new
versions of the images for the model to learn from. The best augmentation techniques
will be selected for use in the final model. Our aim is to develop a highly accurate model
for X-ray image classification that can support medical diagnosis by incorporating the
outcomes of both training phases.

4. Results and Discussion
4.1. Determining the Optimal Number of Deep-Learning Layers

In this section, there are two processes, determining the number of convolutional
blocks and the number of LSTM layers. Two training scenarios were employed to determine
the optimal number of convolutional blocks: one with four convolutional blocks and
another with five convolutional blocks. Each convolutional block in this study consisted of
two convolutional layers with a kernel size of 3 × 3. Following the convolution-al layers,
there was one layer of batch normalization and, subsequently, a layer of max pooling with
a pool size of 2 × 2. Additionally, a dropout layer with a parameter of 0.5 was added to the
output layer in both scenarios.

Figure 7 illustrates the architecture consisting of four convolutional blocks, with each
block employing a distinct number of convolutional filters. Specifically, the convolutional
filters used were 64, 128, 256, and 512 for the corresponding blocks. Figure 8 illustrates the
architecture with five convolutional blocks. This architecture is similar to the one with four
convolutional blocks, with the addition of an extra block that has a convolutional filter size
of 512.
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From Table 4, it can be concluded that the second scenario, which utilizes a convolu-
tional neural network with five convolutional blocks, achieves better performance than
scenario 1, with an F1 score of 0.97. This indicates that increasing the number of convo-
lutional blocks in the model allows for deeper and more comprehensive learning of the
input data, resulting in improved performance. As the best scenario involves using five
convolutional blocks, for the next step, which is determining the number of LSTM layers,
we will proceed with the five convolutional layers in the model.

Table 4. Results for the Number of Convolution Blocks.

Scenario F1 Score

4 convolutional blocks 0.96

5 convolutional blocks 0.97

The next step involves determining the optimal number of LSTM layers. Two scenarios
are conducted, one with one LSTM layer and another with two LSTM layers. Since the
LSTM layer accepts two-dimensional input while the output of the convolutional layer is
three-dimensional, we need to reshape the convolutional output value to match the input
shape required by the LSTM layer. The output value of the initial convolution, which is
(2, 2, 512), is reshaped (4, 512) to serve as the input for the LSTM layer.

Figure 9 presents the architecture of the CNN-LSTM model with one layer of LSTM.
This architecture utilizes five convolutional blocks and incorporates an additional layer of
LSTM with a unit size of 100. Consequently, the output shape of this model will be (100).
Figure 10 presents the architecture with two layers of LSTM. This architecture is similar to
the one with one layer of LSTM but includes an additional LSTM layer with a unit size of
50. As a result, the output shape will be (50).
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Based on the findings presented in Table 5, it can be concluded that using two layers of
LSTM leads to improved performance compared to using only one layer. The model with
two LSTM layers achieves an F1 score of 0.99, indicating its effectiveness. This suggests
that the deeper architecture with two layers of LSTM enables the model to capture more
complex patterns and dependencies in the data, resulting in higher accuracy in classifying
lung diseases. The additional layer allows for a more comprehensive analysis of sequential
information and enhances the model’s ability to make accurate predictions. Therefore, at
this stage, it can be inferred that the optimal model utilizes five convolutional blocks and
two LSTM layers.

Table 5. Results for the Number of LSTM layers.

Scenario F1 Score

1 layer of LSTM 0.96

2 layers of LSTM 0.99

4.2. Applying Image Augmentation Techniques

This stage will involve model training by applying image augmentation techniques.
Image augmentation is a method used to perform oversampling, which helps address
imbalanced datasets by resampling the imbalanced classes [51]. In this study, the following
three types of augmentations will be applied: rotation; shifting; and zooming.
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The test results were obtained by applying image augmentation techniques, as shown
in Table 6. Three augmentations yielded the best results. Firstly, a rotation of five degrees
achieved an F1 score of 0.98. Secondly, a height shift, which involves vertically moving the
image with a range of 0.1 (10% of the size of the image height), resulted in an F1 score of
0.98. Thirdly, a width shift, which involves horizontally shifting the image with a range of
0.1 (10% of the size of the image width), yielded an F1 score value of 0.98.

Table 6. Image augmentation test results.

Augmentation F1 Score

Without augmentation 0.99

Rotate (5) 0.98

Rotate (10) 0.97

Rotate (15) 0.97

Zoom (0.1) 0.95

Zoom (0.2) 0.91

Heigh Shift (0.1) 0.98

Width Shift (0.1) 0.98

After obtaining the best augmentation results, we attempted to combine the three
augmentations and recorded the results in Table 7. Surprisingly, the model without aug-
mentation yielded better results than the augmented model, with an F1 score of 0.99. This
could be attributed to the fact that the augmented model requires more training to achieve
high accuracy. By examining the training process depicted in Figures 11 and 12, it is evident
that the model without augmentation achieved higher accuracy and lower loss within the
same number of epochs. On the other hand, the augmented model shows potential for
improved results if trained for a greater number of epochs.

Table 7. Result of combined augmentation.

Augmentation F1 Score

Without augmentation 0.99

Rotate (5)
0.92Heigh Shift (0.1)

Width Shift (0.1)
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To further investigate this, an experiment was conducted by training the augmented
model for 85 epochs. The findings, illustrated in Figure 13, indicate that increasing the
number of epochs only benefits the training data, as the loss consistently decreases while
accuracy steadily increases. However, there is no significant difference observed in the
validation data when compared to the 65-epoch model. The graph of the validation data
exhibits fluctuations and even shows signs of overfitting around the 80th epoch. This
observation may be attributed to the lack of variation in the dataset and the standardized
format of many X-ray datasets, rendering augmentation unnecessary.
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Models with augmentation also require a longer training time. Table 8 presents a
comparison of the training process time using the same machine on Kaggle and the GPU
P100 accelerator. It turns out that the model without augmentation has the fastest training
process, with a duration of 91 s per epoch.

The most optimal model, based on the findings of stages 1 and 2, consists of five
convolutional blocks and two layers of LSTM. Interestingly, this model achieves outstanding
accuracy and also boasts the fastest training process.
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Table 8. Comparison of model training time.

Augmentation F1 Score Training Time (s/Epoch)

Without augmentation 0.99 91

Rotate (5) 0.98 199

Heigh Shift (0.1) 0.98 199

Width Shift (0.1) 0.98 199

Rotate (5)
0.92 202Heigh Shift (0.1)

Width Shift (0.1)

4.3. Evaluation

An evaluation was conducted to assess the performance of the optimal model. The
model was validated using a dataset of 1514 observations, including 361 for the COVID-
19 class, 1019 for the normal class, and 134 for the pneumonia class. The classification
results are presented in Table 9, demonstrating that the model performs well in accurately
classifying X-ray images, with a significant number of correct classifications. Out of the
total 1514 images, 1497 were classified correctly, resulting in an overall accuracy of 98.88%
(1497/1514). However, some errors were observed in the COVID-19 class, with 11 images
misclassified as normal. Figure 14 displays the misclassified images for the COVID-19 class,
highlighting that some of these images do not meet the required standards, such as being
too small, leading to their misclassification.

Table 9. Confusion matrix.

Actual
Predict

COVID-19 Normal Pneumonia

COVID-19 350 11 0

Normal 2 1017 0

Pneumonia 0 4 130
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The classification report is presented in Table 10, revealing that the CNN-LSTM
model effectively classifies X-ray images of the lungs with an overall F1 score of 0.99. The
precision score for the pneumonia class was found to be the highest at 1.00, indicating a
low probability of misclassifying COVID-19 or normal images as pneumonia. On the other
hand, the recall score for the normal class was the highest at 1.00, indicating a low error rate
in misclassifying normal images into other classes. The F1 score for the normal class was
also the highest at 0.99, demonstrating that the CNN-LSTM model performs exceptionally
well in predicting the normal class compared to the other two classes. These findings
suggest that the CNN-LSTM model exhibits a high level of accuracy in classifying X-ray
images of the lungs, which could potentially assist medical professionals in diagnosing
respiratory diseases.

Table 10. Classification report.

Precision Recall F1 Score

COVID-19 0.99 0.97 0.98

Normal 0.99 1.00 0.99

Pneumonia 1.00 0.97 0.98

Accuracy 0.99

To validate the performance of the constructed model architecture, the k-fold cross-
validation method will be employed. This method aims to assess the model’s performance
when tested with different datasets. In this study, the test was conducted 10 times using
10 different validation data sets. The results, as presented in Table 11, indicate an average
precision value of 0.97, a recall value of 0.96, and an F1 score of 0.9776.

Table 11. Results using k-fold cross-validation.

Fold Precision Recall F1 Score

1 0.99 0.97 0.9887

2 0.96 0.95 0.9788

3 0.95 0.99 0.9808

4 0.99 0.96 0.9854

5 0.98 0.94 0.9739

6 0.94 0.98 0.9764

7 0.99 0.96 0.9874

8 0.96 0.98 0.9835

9 0.97 0.96 0.9614

10 0.99 0.92 0.9592

Average 0.97 0.96 0.9776

To assess the performance of our proposed model, we conducted a thorough comparison
with other existing models using the same dataset. Table 12 presents a comparison of different
architectures for the classification of lung diseases using chest X-ray images. Our proposed
architecture (CNN-LSTM) outperforms the other architectures with an impressive F1 score
of 0.9887. Despite having a similar training time of 91 s per epoch, the CNN-LSTM model
demonstrates superior classification performance in accurately identifying lung diseases.
These results highlight the potential of deep-learning models, particularly CNN-LSTM, in
improving the accuracy of lung disease classification. The findings of this research emphasize
the importance of selecting appropriate architectures for specific tasks and underscore the
benefits of utilizing CNN-LSTM models in the field of medical image analysis.
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Table 12. Comparison of the proposed architectures with existing architectures.

Architectures F1 Score Training Time (s/Epoch)

Inception-ResNet-v2 [18] 0.8687 147

ResNet-50 [27] 0.9485 82

VGG16 [20] 0.9728 93

VGG19 [20] 0.9679 109

CNN (5 convolutional blocks) 0.9721 92

Proposed architectures (CNN-LSTM) 0.9887 91

5. Conclusions

The analysis of chest X-ray images for COVID-19, pneumonia, and normal cases
was conducted using a combination of convolutional neural network (CNN) and long
short-term memory (LSTM) models. These findings highlight the significant potential of
deep-learning models, particularly the CNN-LSTM architecture, in greatly enhancing the
accuracy of lung disease classification. This research emphasizes the critical importance of
selecting appropriate architectures tailored to specific tasks and underscores the numerous
advantages of employing CNN-LSTM models in medical image analysis.

Among the evaluated models, the one with five convolutional blocks, two LSTM
layers, and no augmentation emerged as the most effective, achieving an impressive F1
score of 0.9887 with a training duration of 91 s per epoch. It is worth noting that the main
source of misclassifications was observed in 11 COVID-19 datasets mistakenly labeled as
normal, accounting for 3.05% of the COVID-19 data. The pneumonia class demonstrated
the highest precision (1.00), while the normal class exhibited the highest recall (1.00) and F1
score (0.99). Through k-fold cross-validation with 10 folds, the average precision, recall, and
F1 score were calculated to be 0.97, 0.96, and 0.9776, respectively. Overall, incorporating
an LSTM layer into the CNN model can improve the classification of chest X-ray images
and effectively identify infected lungs. The addition of the LSTM layer allows the model to
capture temporal dependencies and effectively model sequential information present in the
images. By considering both spatial and temporal information, the CNN-LSTM architecture
enhances the accuracy and robustness of the classification task. This combination of CNN
and LSTM networks proves to be valuable in medical image analysis, particularly for the
detection and diagnosis of lung diseases.

The results of this research provide valuable insights for future studies. To improve
the accuracy and reliability of the model, it is recommended that the next study focus on
cleaning and organizing the data prior to modeling. This step can help reduce misclassifi-
cation and enhance the model’s performance. Additionally, for further development and to
broaden the scope of the study, it is suggested to include more types of lung data, such as
lung cancer and tuberculosis. This would enable the model to identify a wider range of
lung diseases and provide more comprehensive and accurate results.
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