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Abstract: Pan-sharpening aims to create high-resolution spectrum images by fusing low-resolution
hyperspectral (HS) images with high-resolution panchromatic (PAN) images. Inspired by the Swin
transformer used in image classification tasks, this research constructs a three-stream pan-sharpening
network based on the Swin transformer and a multi-scale feature extraction module. Unlike the
traditional convolutional neural network (CNN) pan-sharpening model, we use the Swin transformer
to establish global connections with the image and combine it with a multi-scale feature extraction
module to extract local features of different sizes. The model combines the advantages of the Swin
transformer and CNN, enabling fused images to maintain good local detail and global linkage by
mitigating distortion in hyperspectral images. In order to verify the effectiveness of the method, this
paper evaluates fused images with subjective visual and quantitative indicators. Experimental results
show that the method proposed in this paper can better preserve the spatial and spectral information
of images compared to the classical and latest models.

Keywords: pan-sharpening; Swin transformer; multi-scale residuals and dense blocks; residual
feature fusion block

1. Introduction

Recent years have seen specific advancements in the field of remote image processing.
Maccone and Ren’s (2020) [1] and Marghany’s (2022) [2] work contains the original theories
for this purpose (2022). They also presented a brand-new theory of quantum image
processing. In this view, with the development of imaging systems and remote sensing
technologies, the types of sensors used in remote sensing have become diverse, allowing
for the acquisition of an increasing number of types of data, most commonly hyperspectral
and panchromatic images [3]. Panchromatic images have high resolution but lack spectral
information, which is not conducive to the classification of ground cover. Hyperspectral
images contain both spatial and spectral information, making them useful for various
applications, including environmental monitoring and image classification. However,
obtaining hyperspectral images with high spatial resolution is challenging due to hardware
limitations. Currently, most sensors can only capture high-resolution panchromatic (PAN)
images and low-resolution hyperspectral (LRHS) images. In order to make full use of the
multi-source information from remote sensing images and to obtain multi-spectral images
with high spatial resolution, the pan-sharpening technique was developed. Pan-sharpening
fuses hyperspectral and panchromatic image data from the same scene to produce a
new image with a higher spatial resolution than hyperspectral images [4]. It can help
researchers acquire higher-quality hyperspectral data, thus enhancing the effectiveness of
practical applications. Traditional pan-sharpening methods fall into three main categories:
component replacement, multi-scale decomposition, and sparse representation.

The component replacement method is the most primitive pan-sharpening method
and is generally implemented in three steps as follows: (i) first, transfer the hyperspectral
image into another space to obtain the various components of the hyperspectral image;
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(ii) then, replace one of the components with a panchromatic image; and (iii) finally, ob-
tain the fused image using the corresponding inverse transformation. The main classical
component replacement methods are principal component analysis (PCA) [5,6], GS trans-
formation [7], HIS [8,9], etc. The component substitution method is only applicable when
the hyperspectral image and the panchromatic image are highly correlated; otherwise, it is
prone to spectral distortion, although it must be noted that many scholars have improved
the algorithm to address this shortcoming. Rahmani et al. [10] extended the traditional
IHS approach by proposing an adaptive IHS (AIHS) to adapt the coefficients of the IHS to
preserve spectral information. Choi et al. [11] proposed partial replacement adaptive com-
ponent substitution (prs), which uses partial substitution to generate synthetic component
images and then injects high-frequency information based on statistical scaling.

The multi-scale decomposition-based image fusion method consists of three main
steps: (i) first, multi-scale decomposition of multiple source images; (ii) then, fusion of
the decomposition coefficients of different source images; and (iii) finally, multi-scale
inversion on the fusion coefficients to obtain the fused image. Commonly used multi-scale
decomposition methods include the Laplace pyramid [12], generalized Laplace pyramid
(GLP) [13], discrete wavelet transform [14], etc. Imani et al. [15] combined a multi-scale
decomposition model with a free distribution model to better preserve spectral features.
Compared with the component replacement method, the multi-scale decomposition method
can better preserve the spectral information of the fused image and effectively solve
the problem of spectral distortion, but due to the fusion strategy, the problem of spatial
information loss will occur.

Along with multi-scale decomposition and component substitution, another area of
intense attention among academics is sparse representation theory-based null-spectrum
fusion. The sparse representation method combines the image by using the sparseness of the
image block representation in the overcomplete dictionary. Li et al. [16] proposed a remote
sensing image pan-sharpening method from the perspective of compression perception as
well as a remote sensing image fusion method based on local adaptive sparse representation.
Yin et al. [17] proposed a pan-sharpening model based on a sparse representation injection
model, which uses the ARSIS concept instead of compressed sensory reconstruction to
create fused images through detail injection.

With the development of computer technology, deep learning has been widely used in
pan-sharpening. Unlike traditional methods, deep learning-based spatial-spectral fusion
networks use hyperspectral images and panchromatic images as input data, allowing the
network to perform image data extraction and fusion autonomously, thus avoiding errors
arising from manual feature extraction. Jian et al. [18] proposed a multi-scale and multi-
stream fusion network that can extract spatial and spectral information at different scales.
Liu et al. [19] proposed a multi-scale nonlocal-attention network that focuses on enhancing
multi-scale targets in the scene, thereby improving image resolution. Iftene et al. [20]
were the first to integrate deep learning with pan-sharpening, and the SRCNN model
proposed by them had decent fusion but no end-to-end mapping procedure. Yang et al. [21]
proposed a deep network model using a residual network structure (PanNet), which
propagates spectral information directly into the reconstructed image by adding an up-
sampled hyperspectral image to the network output. Peng et al. [22] proposed an end-
to-end pan-sharpening method based on multi-scale dense networks and designed a
multi-scale dense block to extract shallow features in the network. Zheng et al. [23]
proposed a residual structure-based pan-sharpening network that learns the residuals
between the input and output and improves the convergence speed of the model. The
above models have achieved good fusion results, but there are still the following three
problems: (i) Due to the influence of the convolutional kernel reception field, the models
can only extract local spatial and spectral features, resulting in poor global connectivity of
the reconstructed images, and it is difficult to adjust local features according to the global
spectral spatial details of the images. (ii) The size of features in remote sensing images
varies, and the existing algorithm selects a single-sized convolution kernel, which cannot
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achieve feature extraction for features of different sizes. (iii) The loss of feature information
caused by the change in image channels in the fusion stage is not considered. To address
the aforementioned issues, this paper combines the benefits of the CNN and the Swin
transformer and proposes a three-stream pan-sharpening network based on a multi-scale
residual dense block (MRDB) and the Swin transformer, with the goal of improving the
model’s ability to extract global and local features. Our contributions are as follows:

1. A pan-sharpening network with three feature extraction branches was designed to
extract and combine valuable information from the various input branches.

2. The Swin transformer feature extraction module was designed to extract global fea-
tures from panchromatic and hyperspectral images.

3. Multi-scale residuals and dense blocks were added to the network to extract multi-
scale local features from hyperspectral images in the image.

4. The residual fusion module was used to reconstruct the retrieved features in order to
decrease feature loss during fusion.

2. Methods
2.1. Existing Methods

There are various existing pan-sharpening models with fusion strategies based on
different algorithms. In this section, several of the most widely used models are described
in detail and selected as comparison models to evaluate the superiority of the proposed
Swin–MRDB method. Table 1 briefly describes the comparison algorithms.

Among the traditional fusion methods, principal component analysis (PCA) [24] is
widely used. PCA is an orthogonal linear change based on the amount of information, and
the algorithm uses a linear transformation method to project the data into new spatial coor-
dinates, transforming the massive spectral data into a small number of several components
to retain the maximum information of the original data while reducing dimensionality. The
pan-sharpening process of PCA is to first find the feature components of the covariance
matrix between the bands of the hyperspectral image, followed by matching the histogram
of the panchromatic image to the first principal component, and then replacing the first
principal component of the covariance matrix with the panchromatic image. Finally, the
fused result is transformed back using PCA inverse transform to obtain the final fused
image. The Gram–Schmidt (GS) [25] fusion method can avoid the inconsistency of the spec-
tral response range caused by the traditional fusion methods and maintain the consistency
of the spectral information of the image before and after the fusion using the statistical
analysis method for the optimal matching of each band involved in the fusion. The GS
algorithm performs pan-sharpening fusion in four steps. First, a low-resolution band is
replicated to create a panchromatic band. Second, a Cram–Schmidt transformation is used
on both the panchromatic and multiband. Third, the high spatial resolution panchromatic
band replaces the transformed first band. Lastly, the fusion map is obtained through the
application of the Cram–Schmidt inverse transform. The IHS [26] algorithm is one of the
widely used algorithms in the field of image fusion, which first resamples hyperspectral
images and converts them from RGB to HIS (brightness, hue, saturation) space, then re-
places the I component with a panchromatic image, and finally obtains the fused image via
inverse conversion.

Table 1. An abbreviated description of the comparison algorithm.

Algorithm Technology Algorithm Type Reference

PCA Band replacement traditional method [20]
GS Band replacement traditional method [21]
IHS Spatial transformation traditional method [26]

PNN Two-stage network deep learning [23]
TFNET Two-stream network deep learning [24]

MSDCNN Two-stream network deep learning [25]
SRPPNN Characteristic injection network deep learning [26]
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With the continuous development of deep learning, the technique has become the
mainstream pan-sharpening method, and more and more scholars have proposed different
feature extraction and fusion strategies to fuse panchromatic and spectral images. The con-
volutional neural network (CNN) is a popular deep learning model. It excels at processing
multi-dimensional data by keeping the input and output in the same dimension. CNNs
comprise three layers: convolutional, activation function, and pooling. Each layer has a
specific function for processing data, and multiple layers can create a nonlinear transfor-
mation to map input and output data. This makes CNNs an essential tool in the field of
pan-sharpening. In this paper, a few of the most typical models are selected for a detailed
explanation, and these are chosen as the comparison models in this paper. PNN [27] is the
first model to apply convolutional neural networks to the field of pan-sharpening, which is
achieved by a simple and efficient convolutional architecture with three layers. TFNet [28]
is a typical two-stream convolutional pan-sharpening network. The model consists of two
feature extraction branches, which extract features of panchromatic and spectral images,
respectively, and finally, the extracted features are fused by convolutional layers. MSD-
CNN [29] is also a typical dual-stream pan-sharpening network, differing from TFNet in
that the network incorporates multi-scale feature extraction blocks for extracting feature
information to different scales. SRPPNN [30] is a progressive feature injection network that
injects features from panchromatic images into spectral images through high-pass residual
modules to improve image spatial resolution.

2.2. The Proposed Methods

Inspired by the application of the Swin transformer and CNN in computer vision
(CV), this paper designs a three-stream pan-sharpening model for fusing hyperspectral
and panchromatic images. A Swin transformer module, a multi-scale residual and dense
block (MRDB), and a residual feature fusion module make up the proposed network,
which is shown in Figure 1. For ease of description, we use P for Pan images; HS for
multi-spectral images; HS↑ for multi-spectral images after up-sampling; HRHS to represent
the reconstructed image; and L for images of HS↑ and Pan concat. This paper uses the
bicubic algorithm for up-sampling HS images, with this algorithm producing the best and
most accurate interpolated graphics. In the feature extraction stage, the global features of L
are obtained using the Swin transformer feature extraction branch. Furthermore, we utilize
the multi-scale feature extraction branch of the CNN architecture to extract local features
from both HS and P images. In the fusion stage, we choose the residual fusion block to fuse
the features extracted from the three branches, a process discussed in detail below for the
Swin–MRDB method.

2.2.1. Swin Transformer Feature Extraction Branch

This feature branch consists of four Swin transformer blocks and convolutional layers
to extract deep features from the data. The following sections of this section describe the
Swin transformer algorithm and its network architecture in detail.

Swin Transformer Algorithm

The CNN model, a classical deep learning architecture, effectively extracts informative
features from images using a convolutional kernel. During model creation, the size of the
convolution kernel can be adjusted to extract features at varying scales. Unlike CNNs, a
transformer [31] discards the traditional method of convolutional feature extraction and
extracts features via a self-attentive mechanism. The Swin transformer connects every pixel
in an image to extract the overall features. The self-attention in the transformer is calculated
as in Equation (1) and is schematically shown in Figure 2.

Attention(Q, K, V) = SoftMax

(
QKT
√

D
+ B

)
V (1)
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where Q, K, V ∈ RM2×d are the query, key and value matrices, D is the query/key dimen-
sion, M2 is number of patches in a window, and B is a positional parameter.
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Figure 2. Self-attentive calculation process.

From the formula and the schematic, it can be seen that as long as the image size is fixed,
the computational complexity of self-attention is also fixed, and the total computational
complexity increases linearly with the image size, which greatly increases the computational
cost. To solve this problem, the researchers proposed a vision transformer [32], a model that
attempts to split the image into multiple windows and then computes the self-attention
in each window. Although the vision transformer reduces the amount of computation
by virtue of this operation, it also isolates the exchange of information between different
windows. To address the shortcomings of the transformer, Liu et al. [33] proposed the
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Swin transformer, which is a transformer model with a layered design. This model adds a
moving window interaction mechanism to the vision transformer, which splits the image
into several non-overlapping windows. For example, if the input image size is H ×W × C,
the Swin transformer will patch partition the image size to HW

M2 ×M2 × C, where HW
M2 is the

number of windows and M2 is the window size. The Swin transformer will first calculate
the self-attention in each window and then interact with the information of different
windows through the operation of moving windows, solving the problem of not being
able to interact with the information of different windows while reducing the amount
of calculation.

Swin Transformer Extracts Branches

To generate input features for the Swin transformer, we simulate hyperspectral and
panchromatic images as Q, K, and V feature vectors. Using Q and K, we calculate weight
coefficients, which we then apply to V to obtain the weighted input features. As shown in
Figure 3, L first goes through a convolutional layer to extract shallow features, followed by
deep feature extraction through the Swin transformer feature extraction block. The Swin
transformer feature extraction block is made up of four Swin transformer blocks, each of
which has six Swin transformer layers and one convolutional layer. The feature received
by the ith Swin transformer block is labeled Fi,0, and the features produced after the six
Swin transformer layers are labeled Fi,1, Fi,2, Fi,3, Fi,4, Fi,5, and Fi,6 in the sequence stated in
Equation (2).

Fi,j = HSTLi,j

(
Fi,j−1

)
, j = 1 , 2 , . . . , 6, (2)

where HSTLi,j is the jth layer in the ith Swin transformer block, Fi,j−1 is the output of the
j-1st layer in the ith Swin transformer block, and Fi,j is the output of the jth layer in the ith
Swin transformer block.
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Once we complete six Swin transformer layers, we obtain the extracted features Fi,6
from that section. Following this, Fi,6 is then inputted into the convolutional layer and
residual structure. The model deterioration issue is resolved using the residual structure,
and the translation invariance is improved using the convolutional layer. This structure is
shown in Equation (3).

Fi,out = Hconvi (Fi,6) + Fi,0 (3)

where Fi,out is the output of the ith Swin transformer block, Fi,L represents the output of the
last layer in the ith Swin transformer block, Hconvi represents the convolution operation of
the swin transformer block, and Fi,0 represents the input of the ith layer.
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Once we have gone through four Swin transformer blocks, we receive F4,out, which we
then utilize as an input for the following model. The format of this part is comparable to
Equation (3). We choose a convolutional structure to process the extracted deep features
and add them to the features extracted using the shallow feature module, as shown in
Equation (4).

Swinms−pan = Hconv(F4,out) + L1,0 (4)

where Hconv represents the convolution operation in the Swin transformer feature extraction
block, F4,out represents the output of the fourth swin transformer block, L1,0 represents the
output of the shallow feature extraction block, and Swinms−pan represents the output of the
Swin transformer branch.

2.2.2. Multi-Scale Residuals and Dense Blocks

Satellite remote sensing images contain feature compositions of different sizes, which
may result in missing feature information if features are extracted using a single-scale
convolution kernel. To address this problem, we refer to Guan’s [34] design and introduce
multi-scale convolution to extract feature information of different sizes. The multi-scale
feature extraction block uses a CNN implementation that utilizes parallel connections of
multiple-scale convolutional kernels. This allows for the extraction of features at different
scales. As shown in Figure 4, the multi-scale residual and dense block contains four
different sizes of convolutional kernels, and the underlying branch extracts small-scale
features using multiple 3 × 3 convolutional kernels, which reduce the losses incurred in
feature extraction through the residual structure. Convolutional kernels of different sizes
are chosen for each of the three upper feature branches to extract feature information of
different sizes. This design allows the network to retain local information of different sizes.
The structure of multi-scale residuals and dense blocks is shown in Equation (5).

top = Conv9×9(HS/pan)
upper middle = Conv7×7(HS/PAN)
lower middle = Conv5×5(HS/pan)

bottom = DRB3×3(HS/PAN)
MRDBhs/pan = Conv1×1(Concat(top, upper middle, lower middle, bottom))

(5)

where top, upper middle, and lower middle represent the top three feature extraction
branches, respectively; Conv9×9, Conv7×7, Conv5×5, and Conv1×1 represent the size of the
convolution kernel, respectively; DRB3×3 represents the dense residual block at the bottom;
and MRDBhs/pan represents the output of the multi-scale feature extraction block.
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2.2.3. Residual Feature Fusion Block

Once the feature extraction phase is complete, we obtain features MRDBhs, MRDBpan,
and swinhs−pan. To effectively combine these features, we designed a feature fusion module,
which will be discussed in this section. In the feature reconstruction stage, this paper selects
the residual fusion block to reconstruct the features extracted from the three branches
to reduce the feature loss caused during fusion. The residual fusion block consists of a
1 × 1, a 3 × 3 convolutional, and a ReLU layer, the exact structure of which is shown in
Figure 5. CNN is utilized to extract fused features, and the ReLU layer is employed to
enhance nonlinearities and improve the model’s representation. The fusion process starts
by concatenating the features extracted from the three branches, after which the image
channels are converted to be consistent with HS using a convolution layer, as shown in
Equation (6).

Ft = Hres

(
concat

(
MRDBhs, MRDBpan, Swinhs−pan

))
(6)

where MRDBhs denotes Hs features extracted using the MRDB, MRDBpan denotes PAN
features extracted using the MRDB branch, Swinhs−pan denotes HS and PAN features
extracted by the Swin transformer branch, Ft represents the output of the three-stream
feature extraction module, and Hres denotes the residual feature fusion operation.
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After the residual fusion block, we obtain a high-resolution hyperspectral image Ft that
is consistent with the hyperspectral image band. To keep the original spectral information
after multi-level fusion, we sum the Hs↑ and fusion characteristics, as shown in Equation (7).

Xt = Ft + Hs ↑ (7)

where Ft represents the output of the residual fusion block, Hs↑ represents the up-sampled
Hs, and Xt represents the final output of the network.

2.2.4. Loss Function

This paper contrasts the effects of two widely employed loss functions, L1 and L2, on
the reconstructed images and analyzes the benefits and drawbacks of the two loss functions
through ablation experiments in Section 3.5.
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The L1 loss function is the most common loss function for network training in deep
learning and usually refers to the mean absolute error loss; the equation is shown in (8).

L1 =
1
N

N

∑
i=1

∥∥Hgt−Xt
∥∥

1 (8)

The L2 loss function is often used in regression tasks, and the equation is shown in (9):

L2 =
1
N

N

∑
i=1

(
Hgt−Xt

)2 (9)

where Xt represents HR-HS, Hgt represents ground truth images, and N represents the
number of training sessions.

2.2.5. Algorithm Overview

Algorithm 1 gives the overall framework and training process of Swin–MRDB. Specifi-
cally, in the data preparation stage, the number of model iterations M is read first, and then
hyperspectral and panchromatic images are randomly read from the training sets Htrain and
Ptrain (Line4–5). In the feature extraction phase, image features Swinhs-pan, MRDRhs, and
MRDBpan are extracted based on the Swin transformer and multi-scale feature extraction
block (Line7–9). In the feature fusion stage, features Swinhs-pan, MRDRhs, and MRDBpan
are fused using the residual feature fusion block to obtain a high-resolution hyperspectral
image D (Line11). During the parameter calculation stage, a formula is utilized to deter-
mine the disparity between G and D, resulting in the objective evaluation indicator V’s
calculation (Line3). Define the value of Vbest as 0. If the V obtained by some epoch is greater
than Vbest, the value of V is used instead of the value of Vbest (Line14–17).

Algorithm 1: Swin–MRDB

Input: hyperspectral training set Htrain, panchromatic image training set Ptrain, hyperspectral test set
Htest, panchromatic image test set Ptest, ground truth image G, number of iterations M.
Output: Objective evaluation indicator Vbest.
1 % Data preparation
2 Vbest ← 0
3 Read epoch value M
4 For m = 1. . .. . .M do
5 Randomly obtain image data H, P from Htrain and Ptrain.
6 % feature extraction stage

7
The Swin Transform feature extraction block was utilized to extract the feature Swinhs-pan of the
hyperspectral and panchromatic images.

8
The multi-scale feature extraction block was utilized to extract the feature MRDRhs of the
hyperspectral images.

9
The multi-scale feature extraction block was utilized to extract the feature MRDBpan of the
panchromatic images.

10 % feature fusion stage

11
The high-resolution hyperspectral image D is obtained by extracting Swinhs-pan, MRDBhs and
MRDBpan based on the residual feature fusion block.

12 % Parameter calculation stage

13
The difference between the ground truth image G and D is calculated according to the formula to
obtain the objective evaluation index V

14 IF V > Vbest then
15 Vbest ← V
16 End
17 Return Vbest
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3. Experiments
3.1. Datasets

We conducted experiments on three open-source hyperspectral datasets (Pavia, Botswana,
and Chikusei), and since there is no ideal fusion result for labeling, this paper produces datasets
according to the Wald protocol [35]. The original HS is used as the ideal fusion image, the
down-sampled and then up-sampled HS is used as the HS of the network input, and the down-
sampled PAN is used as the PAN of the network input, so that the relationship between the
network input HS, PAN, and the ideal fusion image is consistent with the real fusion relationship.
The dataset is described in detail as follows:

(1) Pavia dataset [36]: The Pavia University data are part of the hyperspectral data from
the German airborne reflectance optical spectral imager image of the city of Pavia,
Italy, in 2003. The spectral imager continuously images 115 bands in the wavelength
range of 0.43–0.86 µm with a spatial resolution of 1.3 m. In total, 12 of these bands are
removed due to noise, so the remaining 103 spectral bands are generally used. The
size of the data is 610 × 340, containing a total of 2,207,400 pixels, but they contain a
large number of background pixels, and only 42,776 pixels in total containing features.
Nine types of features are included in these pixels, including trees, asphalt roads,
bricks, meadows, etc. We partition HS into a size of 40 × 40 × 103 and Pan into a size
of 160 × 160 × 1 size to make training and testing sets for training the network model.

(2) Botswana dataset [37]: The Botswana dataset was acquired using the NASA EO-
1 satellite in the Okavango Delta, Botswana, in May 2001, with an image size of
1476 × 256. The wavelength range of the sensor on EO-1 is 400–2500 nm, with a
spatial resolution of about 20 m. Removing 107 noise bands, the actual bands used for
training are 145. We partition HS into a size of 30 × 30 × 145 and Pan into a size of
120 × 120 × 1 to make training and testing sets for training the network model.

(3) Chikusei dataset [38]: The Chikusei dataset was captured using the Headwall Hyperspec-
VNIR-C sensor in Tsukishi, Japan. These data contain 128 bands in the range of 343–1018 nm,
with a size of 2517× 2335 and a spatial resolution of 2.5 m. These data were made public by
Dr. Naoto Yokoya and Prof. Akira Iwasaki of the University of Tokyo. We partition HS into
a size of 64× 64× 128 and Pan into a size of 256× 256× 1 to make training and testing
sets for training the network model.

3.2. Evaluation Parameters

The subjective visual evaluation is to judge the fusion effect by observing the details
of the image, such as sharpness, color, and contour. The subjective visual evaluation will
vary from person to person and can only represent some people’s viewpoints, which can
be one-sided, so some objective indicators are also needed to judge the quality of the fused
image. In order to evaluate the fused images more objectively, the correlation coefficient
(CC) [39], spectral angle mapping (SAM) [40], root mean square error (RMSE) [41], and
Errur Relative Globale Adimensionnelle Desynthese (ERAGS) [42] are chosen in this paper
to evaluate the fused images objectively. These evaluation metrics have been widely used
to evaluate fusion images, and they are described in detail below.

The CC reflects the linear correlation between the fused image and the reference image,
which is defined as shown in Equation (10).

CC(Xt, HGt) =
∑m

i=1 ∑n
i=1 [Xt(i, j)− ut][HGT(i, j)− uGt]√

∑m
i=1 ∑n

i=1 [Xt(i, j)− ut]
2∑m

i=1 ∑n
i=1
[
HGt(i, j)− ugt

]2 (10)

where Xt represents the fused image, HGt represents the reference image, m and n rep-
resent the image sizes of Xt and HGt, ut represents the mean value of the fused image
Xt, ut represents the mean value of the reference image HGt, represents the covariance
between Xt and HGt, ∑m

i=1 ∑n
i=1[Xt(i, j)− ut]

2 represents the standard deviation of Xt, and
∑m

i=1 ∑n
i=1 [Xt(i, j)− ut][H(i, j)− uGt] represents the standard deviation of HGt. When the
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CC is closer to 1, it represents a stronger linear correlation between fusion Xt and HGt,
corresponding to a better fusion effect.

The RMSE reflects the degree of pixel difference between the fused image and the
reference image, which is defined as shown in Equation (11).

RMSE(Xt, HGt) =

√
1

mn∑m
i=1 ∑n

i=1[Xt(i, j)− HGt(i, j)]2 (11)

where M and N represent the image sizes of xt and GGt. RMSE reflects the degree of
difference between images, so the smaller the RMSE value, the smaller the difference
between the fused image and the reference image.

SAM reflects the similarity of the spectral data between the fused and reference images,
which is defined as shown in Equation (12):

SAM(Xt, HGt) = cos−1 〈Xv, Hv〉
‖Xv‖2‖Hv‖2

(12)

where Hv represents the spectral vector of the reference image and xv represents the spectral
vector of the fused image. The smaller the SAM value, the smaller the spectral difference
between the reference image and the fused image, indicating that the degree of spectral
distortion during the fusion process is smaller.

The ERGAS reflects the degree of spectral distortion of the fused image, which is
defined as shown in Equation (13):

ERGAS = 100
Tx

Th

√
1
N ∑N

i=1
RMSE2(i)

u2
i

(13)

where N represents the number of bands of the image, Tx and Th are the resolutions of the
PAN image and the HS image, respectively, RMSE2(i) is the root mean square error of the
ith band of the fused image and the reference image, and ui represents the value of the ith
band of the reference image. The smaller the value of ERGAS, the smaller the degree of
spectral distortion.

3.3. Training Setup

This paper aims to confirm the effectiveness of the proposed method by comparing it
to seven other algorithms. Three traditional algorithms (PCA, GS, and IHS) and four deep
learning algorithms (PNN, TFNET, MSDCNN, and SRPPNN) were chosen for this purpose.
In order to guarantee the impartiality of the experiments, all models were tested under
identical conditions. The PyTorch 1.13.1 framework was employed along with a 24G RTX
3090 GPU. To train the deep learning models, we configured the batch size to 2 and set the
epoch to 4000. Additionally, we utilized the Adam optimization algorithm with an initial
learning rate of 0.0001. Table 2 shows the training platform parameters.

Table 2. Experimental environment setup.

Experimental Environment Edition

Deep learning frameworks Pytorch 1.13.1
Compilers Python 3.8

Operating system Window11
GPU RTX3090
CPU Intel(R) Xeon(R) Gold 6330 CPU

3.4. Results

To verify the validity of the models in this paper, we selected three traditional pan-
sharpening methods and four more widely used deep learning pan-sharpening methods as
comparison models. The traditional methods are PCA, GS, and IHS, respectively. The deep
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learning-based pan-sharpening algorithms are PNN, TFNET, MSDCNN, and SRPPNN,
respectively. The reconstruction results of different algorithms on the Pavia, Botswana, and
Chikusei datasets are shown in Figures 6–8. In the figures, (a) denotes the ground truth
reference image; (b) denotes the up-sampled MS image; and the reconstruction results of
the PCA [5], GS [25], HIS [10], PNN [27], TFNet [28], MSDCNN [29], and SRPPNN [30]
models are (c–g). In addition, the reconstructed images of the three datasets were evaluated
objectively, and the comparison of objective evaluation metrics for each algorithm is shown
in Tables 3–5. In the following sections, we analyze the reconstruction results of the
Swin–MRDB method on each dataset.
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Table 3. Quantitative evaluation of the Pavia dataset.

Models
Indicators

CC SAM RMSE ERGAS

PCA [24] 0.651 16.445 6.432 9.71
GS [25] 0.964 8.924 4.432 7.56
IHS [26] 0.468 8.994 4.681 7.74
PNN [27] 0.978 5.132 1.522 3.96
TFNET [28] 0.980 4.797 1.388 3.26
MSDCNN [29] 0.980 4.867 1.361 3.12
SRPPNN [30] 0.979 5.085 1.452 3.85
ours 0.984 4.394 1.180 2.64

Higher values of CC, and lower values of SAM, RMSE, and ERGAS indicate good performance. The units of
RMSE are 10−2.

Table 4. Quantitative evaluation of the Botswana dataset.

Models
Indicators

CC SAM RMSE ERGAS

PCA [24] 0.800 2.717 5.92 7.74
GS [21] 0.958 3.251 9.08 13.55
his [22] 0.754 1.839 6.19 8.17
PNN [23] 0.961 1.814 1.278 2.25
TFNET [24] 0.962 1.727 1.226 2.12
MSDCNN [25] 0.941 2.350 1.949 2.88
SRPPNN [26] 0.960 1.819 1.322 2.16
ours 0.977 1.483 1.074 1.93

Higher values of CC, and lower values of SAM, RMSE, and ERGAS indicate good performance. The units of
RMSE are 10−2.

Table 5. Quantitative evaluation of the Chikusei dataset.

Models
Indicators

CC SAM RMSE ERGAS

PCA [24] 0.548 26.513 8.28 18.52
GS [21] 0.658 26.178 6.71 13.41
IHS [22] 0.672 26.566 6.75 13.64
PNN [23] 0.970 2.778 1.523 4.41
TFNET [24] 0.978 2.252 1.224 4.11
MSDCNN [25] 0.964 3.094 1.704 5.41
SRPPNN [26] 0.977 2.341 1.292 3.98
ours 0.981 2.219 1.223 3.85

Higher values of CC, and lower values of SAM, RMSE, and ERGAS indicate good performance. The units of
RMSE are 10−2.

3.4.1. Results for the Pavia Dataset

Urban buildings make up the majority of Pavia’s characteristics; thus, we compare
the pan-sharpening results mostly in terms of the architectural aspect. To demonstrate the
advancement and novelty of this study, we choose PCA, GS, HIS, PNN, TFNET, MSDCNN,
and SRPPNN models as comparison algorithms, respectively. The reconstruction outcomes
for the various models are shown in Figure 6. To demonstrate the model’s influence on
reconstruction, the ground truth picture, the up-sampled MS image, and the fused image
are contrasted in the visual resolution. The visual analysis shows that although each of the
three machine learning techniques enhance the spatial resolution of MS pictures, they all
cause some degree of spectral information loss. The PCA algorithm is the worst, resulting
in extreme discoloration of the reconstructed picture; the GS and IHS algorithms have
comparable visual consequences, both of which result in certain portions of the fused
image being too bright. In contrast, both deep learning methods effectively preserve the
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original colors in the MS image. The MSDCNN algorithm’s reconstructed pictures are on
the bright side, indicating a significant loss of spectral information; TFNET, SRPPNN, and
PNN’s reconstructed images are blurry, while effectively keeping spectral information. As
can be seen from the enlarged figure, our proposed algorithm reduces the loss of spectral
information while ensuring spatial resolution.

In terms of objective evaluation, a quantitative of the performance of different models
on the Pavia dataset is presented in this paper, and the results are shown in Table 3.
Data analysis reveals that deep learning-based pan-sharpening algorithms outperform
conventional pan-sharpening methods. When the processing outcomes of the four deep
learning algorithms are compared, the four deep learning methods obtain comparable
results in CC metrics. The proposed model performs best compared with the other models.
Specifically, the fused images produced by the Swin–MRDB method are significantly higher
in SAM, RMSE, and ERGAS than other models, proving that the model can better retain
spatial and spectral information. Compared with the best-performing comparative model
in the objective evaluation index, the proposed model achieves an 8.4% improvement in
SAM, a 13.3% improvement in RMSE, and a 15.3% improvement in ERGAS.

3.4.2. Results for the Botswana Dataset

To evaluate the reconstruction effect of our model on the Botswana dataset, we chose
to compare it with seven comparison models, as shown in Table 3, respectively. The visual
analysis of the reconstructed images from the Botswana dataset revealed that, among the
machine learning algorithms, the IHS algorithm was the best; the PCA algorithm was
the second best; and the GS algorithm reconstructed the most distorted images, losing a
large amount of spectral information. Among the deep learning algorithms, the MSDCNN
algorithm reconstructs images with the lowest spatial resolution, and the PNN and SRPNN
reconstructed images show local detail distortion. Due to the Swin transformer’s global
self-attentive process, the proposed Swin–MRDB method maintains both local and global
features of the reconstructed images, and no local distortion is produced.

The objective evaluation parameters for the fusion results of the Botswana dataset
are shown in Table 4. With essentially the same results as with the Pavia dataset, the deep
learning approach still has better reconstructions, but it is worth noting that GS maintains
high CC values on both the Pavia and Botswana datasets, demonstrating that the images
reconstructed using the GS algorithm have a high linear correlation with the reference image.
In terms of deep learning algorithms, MSDCNN fared the poorest; PNN, SRPPNN, and
TFNET achieved similar reconstruction results, while the Swin–MRDB method proposed in
this paper outperformed the other algorithms in all evaluation metrics. The most significant
improvement in the evaluation metric is SAM, where the results of other deep learning
models are distributed between 1.72 and 2.35, while our proposed model achieves a final
result of 1.483, which is a 13.7% improvement compared to the best-performing model.
Next was RMSE, which received a 12.4% boost, followed by ERGAS, which received an
8.9% boost. The metric with the smallest improvement was CC, which gained 1.6%, 1.5%,
3.8%, and 1.7% over PNN, TFNET, MSDCNN, and SRPPNN, respectively.

3.4.3. Results for the Chikusei Dataset

The Chikusei dataset contains both urban and rural areas, with arable land making
up the majority. Since we have already evaluated the reconstruction of urban images on
the Pavia dataset, we evaluated the reconstruction of cultivated land images by using
the Swin–MRDB on the Chikusei dataset. To assess the reconstruction effect in a more
objective manner, we selected the following models for comparison: PCA, GS, HIS, PNN,
TFNET, MSDCNN, and SRPPNN. As shown in Figure 8, the images fused using the PCA,
GS, and IHS algorithms are overall brighter, resulting in a significant loss of spectral
information. All of the deep learning techniques perform well in terms of preserving
spectral information; however, they all exhibit variable degrees of texture discontinuity,
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most notably in MSDCNN reconstructed pictures. It is clear from Figure 8 that our Swin–
MRDB reconstruction results are most similar to the ground truth reference image.

This section also shows the pan-sharpening effect of our model on the Chikusei dataset
using objective metrics. As can be seen in Table 5, our Swin–MRDB method achieves the best
results for CC, SAM, RMSE, and ERGAS, indicating that our method retains more spatial
detail and spectral information. Among them, ERGAS showed significant improvement,
with 12.6%, 6.3%, 28%, and 3.2% improvement compared to PNN, TFNet, MSDCNN, and
SRPPNN, respectively. The performance on SAM is also outstanding, with 20%, 1.4%, 28%,
and 15.2% improvement compared to PNN, TFNet, MSDCNN, and SRPPNN, respectively.
For the RMSE, compared to PNN, TFNet, MSDCNN, and SRPPNN, the improvement is
19.6%, 0.1%, 28%, and 5.3%, respectively. For the CC, compared to PNN, TFNet, MSDCNN,
and SRPPNN, the improvement is 1.1%, 0.3%, 1.7%, and 0.4%, respectively.

3.5. Ablation Experiments

To investigate the influence of alternative loss functions on the model, the ADAM
optimizer is used to train the Swin–MRDB model with L1 and L2 loss functions on the
Botswana dataset. In this experiment, the CC, SAM, RMSE, and ERGAS were selected
for objective evaluation of the results, and the detailed results are shown in Table 6. The
comparison shows that the model based on the L1 loss function achieves better results,
preserving the spatial details of the fused images and reducing the loss of spectral infor-
mation. Compared with the L2 loss function, when the model is trained with the L1 loss
function, all metrics are improved significantly, including the CC (by 9.5%), SAM (by 65%),
RMSE (by 44%), and ERGAS (by 75%), so we finally choose to train the model with the L1
loss function.

Table 6. Ablation test results.

Model L1 L2
RMDB-

pan
RMDB-

MS CC SAM RMSE ERGAS

Swin–
MRDB

√
×

√ √
0.977 1.483 1.074 1.93

×
√ √ √

0.892 2.461 1.942 3.38√
×

√
× 0.965 1.533 1.214 2.19√

× ×
√

0.962 1.634 1.245 2.25

The units of RMSE are 10−2.

In addition, this section compares the effects of different multi-scale residuals and
dense feature extraction branches on the model. The addition of a multi-scale feature
extraction branch to the Swin transformer can effectively improve the performance of the
model and help reconstruct higher-quality remote sensing images. As can be seen from
Table 6, the addition of two multi-scale feature extraction branches significantly improves
the objective evaluation metrics. When adding multi-scale feature extraction blocks for
PAN images, the CC, SAM, RMSE, and ERGAS are improved by 1.5%, 9.2%, 13.7%, and
14.2%, respectively. When adding multi-scale feature extraction blocks for HS images, the
CC, SAM, RMSE, and ERGAS are improved by 1.2%, 3.2%, 11.5%, and 14%, respectively.

In order to evaluate the impact of the number of residual blocks in the reconstruction
module on the Swin–MRDB model, this paper selects Botswana as the experimental dataset
and compares the impact of different numbers of residual blocks on objective evaluation
metrics. The detailed results are shown in Figure 9. The horizontal coordinate is the number
of residual blocks, and it can be seen that increasing the number of residual blocks results
in better performance for the Swin–MRDB model, but there is no significant change in
model ability as the number of residual blocks increases. Considering that more residual
fusion blocks will affect the speed of the model, we finally choose one residual block to
fuse the extracted features.
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4. Discussion

Most of the current pan-sharpening tasks are implemented based on CNN architecture.
CNN can extract features containing more local details, but the global connectivity of these
features is poor [42,42]. In recent years, the Swin transformer has attracted the attention of
many scholars due to its excellent performance in the field of machine vision. The Swin
transformer can establish the connection between individual pixel points of an image and
possesses strong global feature extraction, but the model is poor in perceiving the details
of an image [43]. Therefore, we propose a Swin–MRDB pan-sharpening model, which
employs CNN and the Swin transformer to extract shallow feature information and deep
feature information of the image, respectively. Then, the features are fused by residual
blocks to obtain a hyperspectral image with high resolution.

In this section, we further discuss the effectiveness of the Swin–MRDB model. First, in
order to demonstrate the advantages of the model, experiments are designed to compare the
proposed model with the most current state-of-the-art models (PCA, GS, IHS, PNN, TFNet,
SRPPNN, and MSDCNN), and three widely used datasets are selected for simulation
experiments to reduce the experimental errors caused by the datasets. In order to show
the effect of fusion, the fused images generated by different models are put into the text in
this paper to better show the gap between the fused images and the ground truth images,
and the effect is shown in Figures 6–8. Compared with traditional methods, deep learning
methods can preserve spatial and spectral information better, and our proposed method is
the closest to the ground truth image. In addition, to reduce the bias caused by subjective
evaluation, we choose the four most commonly used image evaluation metrics (CC, SAM,
RMSE, and ERGAS) to evaluate the fusion results objectively. As shown in Tables 3–5, the
proposed model achieved the best results in all three datasets, with the most significant
improvement in the Pavia dataset, where SAM, RMSE, and ERGAS obtained 8.4%, 13.3%,
and 15.3% improvement, respectively.
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In addition to the objective and subjective evaluation of the fused images, we per-
formed ablation experiments to evaluate the effect of different modules on the fusion
results. Specifically, the CC, SAM, RMSE, and ERGAS obtained 1.5%, 9.2%, 13.7%, and
14.2% improvement, respectively, after adding the Pan image multi-scale feature extraction
branch. With the addition of the Hs image multi-scale feature extraction branch, the above
metrics were improved by 1.2%, 3.2%, 11.5%, and 14%, respectively.

5. Conclusions

This paper proposes a three-stream feature fusion network called Swin–MRDB for the
pan-sharpening of remote sensing images. In the feature extraction phase, the proposed
Swin–MRDB model contains three separate feature extraction branches to extract PAN
and HS features, where the Swin transformer branch is used to capture the long-range
dependencies between PAN and HS, and the multi-scale residual feature extraction branch
is used to extract local features at different scales. In the feature fusion section, we propose
residual fusion blocks to reduce feature loss in order to retain more spatial and spectral
information. Compared to the existing methods, the model proposed in this paper shows
greater performance.
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