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Nanomedicine is a cutting-edge field at the intersection of nanotechnology and
medicine that has experienced significant advancements in recent decades [1,2]. Vari-
ous nanosystems, such as polymeric, lipid, and inorganic nanoparticles, have been applied
in drug delivery and wound healing applications. They show great promise in enhancing
the efficacy, safety, and stability of conventional dosage forms [3]. Polymeric nanoparticles
are constructed from biocompatible and biodegradable polymers, such as poly(lactic-co-
glycolic acid) and chitosan. They can encapsulate various drugs, offering controlled drug
release, enhancing drug stability and bioavailability, and reducing side effects [4]. More-
over, their nanosize facilitates improved tissue penetration, enabling targeted delivery to
specific cells or tissues, thereby minimizing systemic toxicity and maximizing therapeutic
efficacy [5]. Lipid nanoparticles, which are formulated from biocompatible lipids, play
a pivotal role in nanomedicine [6]. They include liposomes, nanoemulsions, solid lipid
nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and other modified lipid-based
nanoparticles. Lipid nanoparticles exhibit enhanced encapsulation capacity and efficient
transport of both hydrophilic and hydrophobic drugs to targeted sites [7]. Inorganic
nanoparticles, including gold and silica nanoparticles, offer tunable physicochemical prop-
erties and straightforward surface functionalization. They can enable precise drug delivery
and promote wound healing by stimulating cellular regeneration and tissue repair [8,9].
Gold nanoparticles have been explored for their ability to promote tissue regeneration and
enhance wound healing [10,11]. Silica nanoparticles have a high surface area and can be
loaded with various drugs for wound dressings and drug delivery [12,13].

Surface modifications in nanomedicine play a pivotal role in enhancing the properties
and optimizing the performance of nanoparticles for drug delivery and wound healing
applications [14]. Tailoring the surface characteristics of nanoparticles can improve their
biocompatibility. Surface modifications with suitable polymers can enhance the stability of
nanoparticles in physiological environments, preventing their aggregation and degradation
and prolonging their circulation time in the bloodstream [15]. Coating the nanoparticles
with biocompatible polymers, such as polyethylene glycol (PEG), can improve stability
and reduce immune recognition and clearance by the reticuloendothelial system, thereby
increasing their circulation time and enhancing drug delivery to the target site [16]. Fol-
lowing polymer coating, additional ligands, antibodies, or peptides can be attached to the
nanoparticle surface, which helps them selectively bind to specific receptors overexpressed
on the surface of target cells or tissues. In cancer treatment, nanoparticles functionalized
with tumor-targeting ligands can selectively accumulate in tumor tissues, increasing drug
concentrations within the tumor and improving cancer cell killing while minimizing dam-
age to healthy tissues [17,18]. Surface modifications also enable the controlled release of
drugs, where drug release can be triggered in response to environmental factors such as
pH, temperature, or enzyme concentrations [19]. The surface modification of nanoparti-
cles can alter the surface charge, thereby enhancing mucoadhesion and drug absorption.
Positively charged nanoparticles can adhere to negatively charged mucosal surfaces, pro-
moting mucoadhesion and prolonging the residence time at the target site [20]. Changing
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the surface charge of nanocarriers from negative to positive can increase the electrostatic
attraction between them and mucus [21]. Chitosan coating of ferulic acid-loaded SLNs
increases mucoadhesive strength, drug accumulation in the brain, and cognitive ability
in Alzheimer’s disease-induced rats [22]. The surface modification of asenapine-loaded
NLCs with glycol chitosan improves drug accumulation in the brain and enhances phar-
macokinetics [23]. In addition, surface modifications can improve the cellular uptake of
nanoparticles. The surface-modified polymers can trigger the opening of tight junctions
between epithelial cells to enhance drug transport [24]. They can also interact with cellular
membranes, facilitating endocytosis or transcytosis.

Although surface modifications of nanoparticles have shown great potential for en-
hancing stability, controlled drug release, and active targeting, further comprehensive
studies are essential to thoroughly investigate their safety and efficacy. The interactions
between surface-modified nanoparticles and the body should be studied to assess their
biocompatibility, potential toxicity, and long-term effects. In addition, the fate of these
nanoparticles in the body, such as their biodistribution, metabolism, and clearance mecha-
nisms, must be thoroughly elucidated to ensure their controlled and safe delivery to target
tissues and organs [25,26]. The stability of surface-modified nanoparticles under various
physiological conditions should be assessed to guarantee their integrity during storage,
administration, and circulation [27]. Furthermore, potential immunogenic responses or
adverse reactions arising from the surface modifications must also be thoroughly evalu-
ated [28]. The potential of surface-modified nanoparticles for drug delivery and wound
healing has been demonstrated in various studies. More comprehensive studies are re-
quired to assess the safety and efficacy of these nanoparticles, paving the way for their
successful translation from the laboratory to clinical applications. Considering these, the
Special Issue “Polymer Surface Treatments for Drug Delivery and Wound Healing” pub-
lishes original research involving the development of polymer-based surface-modified
drug delivery systems for different administration routes and diseases, the applications
of polymer surface treatment for wound healing, and the utilization of polymer surface
treatment to improve the properties of nanoparticles. In addition, this Special Issue collects
comprehensive reviews on the recent development and applications of polymer surface
treatments for drug delivery and wound healing.
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