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Abstract: The Hypertext Transfer Protocol (HTTP) is a common target of distributed denial-of-service
(DDoS) attacks in today’s cloud computing environment (CCE). However, most existing datasets for
Intrusion Detection System (IDS) evaluations are not suitable for CCEs. They are either self-generated
or are not representative of CCEs, leading to high false alarm rates when used in real CCEs. Moreover,
many datasets are inaccessible due to privacy and copyright issues. Therefore, we propose a publicly
available benchmark dataset of HTTP-GET flood DDoS attacks on CCEs based on an actual private
CCE. The proposed dataset has two advantages: (1) it uses CCE-based features, and (2) it meets the
criteria for trustworthy and valid datasets. These advantages enable reliable IDS evaluations, tuning,
and comparisons. Furthermore, the dataset includes both internal and external HTTP-GET flood
DDoS attacks on CCEs. This dataset can facilitate research in the field and enhance CCE security
against DDoS attacks.

Keywords: cybersecurity; intrusion detection; dataset generation; cloud computing environment
(CCE); distributed denial-of-service (DDoS) attacks; HTTP-GET; flood DDoS attacks; application-layer
attacks

1. Introduction

Cloud computing environments (CCEs) have transformed how information is con-
sumed and shared in recent years, especially through online services [1]. For example, these
services rely on the Hypertext Transfer Protocol (HTTP), an application-layer protocol,
to retrieve resources like HTML documents. The HTTP often uses TLS-encrypted TCP
connections and serves as the foundation for all data exchanges on the Internet.

The HTTP follows a client–server model, meaning requests are initiated by the end
user, usually via a web browser. When a user requests a resource, the browser sends
an HTTP request to the server, specifying the resource’s location. The server sends the
requested resource back to the client in an HTTP response message. Figure 1 visualizes
various HTTP data exchanges via the Internet [2].

HTTP/1.0 [3] defines the GET, HEAD, and POST request methods. The more recent
HTTP/1.1 [3] adds OPTIONS, PUT, DELETE, TRACE, and CONNECT request methods to
the existing ones. GET and POST are the two most commonly used request messages in
HTTP/1.1, with GET being more prevalent in deploying services.

As CCEs continue to gain popularity to deploy client services, they become increas-
ingly vulnerable to distributed denial-of-service (DDoS) attacks [4]. In 2015, the number of
DDoS attack incidents rose by 25% due to the increased use of CCE services and global In-
ternet traffic. Furthermore, these attacks are expected to increase to 17 million by the end of
2020 [5]. Within CCEs, DDoS attacks can take many forms, such as HX-DDoS, XML-based
DDoS, and HTTP flood attacks [5]. Figure 2 illustrates the most common protocols targeted
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by application-layer attacks [6]. HTTP flood DDoS attacks are particularly concerning since
they focus on specific web services and exploit vulnerabilities to prevent web servers from
serving websites to users. This attack depletes the CCE’s resources and services, making it
a popular attack vector for malicious actors [7].

Figure 1. Data exchange through HTTP on the web.

The accuracy of many approaches at detecting attacks targeting CCEs has been prob-
lematic. The problem lies in the existing datasets used in IDS experiments, as they still
cause various obstacles and limitations when testing the current approaches. Some of
these issues include being outdated, lacking proper labeling, not encompassing all attack
types, insufficient attack scenarios, varying environments, data format incompatibility,
and inadequate dataset representation.

To overcome these obstacles and meet the new challenges in DDoS detection, it is
crucial to employ a new dataset. By doing so, we can achieve higher accuracy when
detecting DDoS attacks in future research [8–11].

Figure 2. Most common protocols targeted by application-layer attacks.

1.1. HTTP Flood Attack

Users access CCE services through a web browser by using the GET or POST request
method, which is handled by an HTTP server [1]. HTTP flood attacks are DDoS attacks that
target the services, applications, or protocols within the OSI model’s application layer (layer
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7), such as their web services, web servers, and HTTP. Since the HTTP is the foundation of
web-based requests and data exchange, these attacks can quickly deplete CCE resources
and services. These attacks are particularly difficult to detect because the malicious requests
are indistinguishable from normal ones.

HTTP flood attacks are typically carried out via botnets or malware-infected devices
to send out multiple attack requests, resulting in a denial of service. There are two primary
types of HTTP flood attacks: HTTP-GET and HTTP-POST.

• HTTP-GET Attack: An HTTP-GET attack involves multiple computing devices sending
HTTP-GET requests for resources, such as documents or pictures, to a targeted web
server (WS) until it is overwhelmed and stops responding to all requests, including
legitimate ones.

• HTTP-POST Attack: An HTTP-POST attack targets web applications that use the HTTP-
POST method to handle user-submitted data. The attacker floods the server with fake
HTTP-POST requests, overwhelming its resources and causing it to crash or become
unresponsive. This can disrupt legitimate traffic, making the website inaccessible and
causing potential damage. These attacks are often automated and difficult to detect,
making them a significant threat to online businesses and organizations.

The HTTP-GET flood DDoS attacks pose a significant security threat in the CCE.
They have been identified as the most common form of application-layer attack [12]. It is
essential to protect against these attacks to maintain the availability and reliability of web
applications and services.

Figure 3 shows that HTTP-GET DDoS attacks are the most frequent application DDoS-
layer attacks [12].

Figure 3. Majority of HTTP-GET DDoS attacks on application layer.

1.2. HTTP-GET Flood DDoS Attack in Cloud Computing Environment

In CCEs, attackers can target hosted cloud services in a structured or unstructured
way, depending on the attacker’s experience level and the attack’s severity. In addition,
the attacker’s origin determines the CCE attack type as internal or external.

• An internal attack involves insiders, such as users misusing cloud resources or CSP em-
ployees with authorized CCE access, who know the organization’s policies, network
access, and cloud system security, making it easy for them to carry out attacks. They
can steal and modify important data, deactivate specific processes, and deny CCE
services. Installing internal Intrusion Detection Systems (IDSs) can help to identify
and prevent these attacks.

• An external attack is carried out by outsiders, not members of the CCEs. The CCE
administrators team is responsible for detecting and preventing these attacks, typically
by using IDSs or firewalls.

These attacks deplete the resources of WSs and the hosting environment (the CCE),
causing the services to go down. In other words, HTTP-GET flood DDoS attacks impact the
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accessibility of CCE services, especially on WSs, affecting CCE-hosted services. Moreover,
this attack affects the CCE resources themselves [5] because of the CCE’s characteristics
and nature, such as its elasticity, virtualization, and multitenancy (being on demand); this
is because the resources are depleted due to more resources being exploited during the
execution of the attack [13]. Such circumstances emerge when many clients simultaneously
enter WSs or criminals bring the services down by utilizing attacks such as DDoS attacks
against WSs on CCEs [13].

Among the attacks on the application layer, the HTTP-GET method attack stands
out as the most prevalent, as it makes up the highest percentage of attacks. When a
user or attacker generates an HTTP-GET request, it passes through the WS, where it is
recorded along with its status and request code (representing the status of the requester’s
transactions). Defending against such attacks is crucial, and IDSs play a significant role
in detecting them. However, the IDSs in CCEs face limitations, primarily due to the
issue of evaluating classifiers trained on nonrealistic datasets from different environments,
which lack essential features specific to CCEs. Furthermore, one of the most significant
challenges in evaluating anomaly detection systems is the availability of appropriate public
CCE-specific datasets [14,15].

The limitations mentioned earlier have served as a motivation to propose a new CCE-
specific dataset that considers the unique characteristics of CCEs. This dataset is intended
to be used to evaluate, test, and train IDSs, with a specific focus on HTTP-GET flood attacks
at the application layer.

By developing this new dataset, we aim to address the deficiencies in the exist-
ing datasets, which often lack relevance and realism when applied to CCE scenarios.
The dataset will be curated to reflect the specific challenges and intricacies of the CCE,
making it more suitable to accurately evaluate the performance of IDSs at detecting and
countering HTTP-GET flood attacks.

This paper is structured as follows: Section 2 presents the importance of a CCE’s
dataset and log files and compares the available dataset representations. Section 3 provides
a literature review of the related datasets, along with some observations that motivated our
work. Section 4 elaborates on the dataset design principles and significance. Additionally,
Section 5 presents the requirements of an effective dataset, while Section 6 explains the
proposed methodology to generate, formulate, and prepare the evaluation processes of the
proposed dataset. The results and discussion are presented in Section 7. The final section,
Section 8, concludes this paper and proposes several future research directions.

2. Background

A CCE is a model that boosts availability and offers characteristics unlike the tradi-
tional environment, including resource pooling, on-demand self-service, broad network
access, measured services, elasticity, and security, to its users on demand, with minimal
human intervention between the cloud service provider and the beneficiary of the ser-
vice. Despite the capability and performance of CCE security, the CCE still succumbed to
DDoS attacks in some situations, causing the target services used by the CCE servers to
become unavailable.

The scarcity of datasets on HTTP-GET flood DDoS attacks on CCEs makes it difficult
to compare and accurately evaluate new detection systems designed to identify new attacks.
IDSs [16] are assessed and compared by using real labeled datasets with a comprehensive
set of all conceivable attack scenarios before being deployed in a real CCE. As a result, the
HTTP-GET flood DDoS attacks on CCE [17] security technology such as IDSs are limited
to self-generated datasets, whose coverage (comprehensiveness), integrity, appropriate-
ness, wholeness, and validity are not assured because of their inability to meet the strict
requirements of benchmark datasets.
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2.1. Cloud Computing Environment (CCE)

A CCE is a popular and promising concept that realizes the vision of computing as
utility [1,13]. The CCE enables users to access services anytime, anywhere, and from any
device through the Internet, thanks to its low cost and easy-to-use deployment services for
applications on CCEs.

New applications with strict requirements have driven improved CCE models to
deliver services. The CCE model consists of three main categories of services [18]:

• Software as a service (SaaS), where clients can use CSP’s applications hosted on a CCE
infrastructure.

• Platform as a service (PaaS), where developers can create and deploy applications by
using the development platform provided by CSP.

• Infrastructure as a service (IaaS), where users can rent storage units, networks, virtual
machines (VMs), and other computing resources on demand [19].

Many businesses adopt the CCE model to enhance their operations due to its scalability,
reliability, and cost effectiveness. The CCE services can be deployed in four different
modes [19]: (i) private, (ii) public, (iii) community, and (iv) hybrid.

Virtualization is the key feature of the CCE that enables autoscaling and elasticity,
where VMs can acquire more resources when needed and release unused resources when
idle. Thus, a VM in the CCE can avoid a resource shortage as abundant resources are
available on demand.

2.2. Virtual-Machine-Based Apache Web Server

Virtualization is the key feature of CCEs that enables the deployment and management
of large-scale VM infrastructure. Any service, such as a WS, can run on single or multiple
VMs. A WS is an HTTP server that provides web services to clients. One of the most
popular open-sourced WS is Apache by the Apache Software Foundation, which provides
secure and reliable web services that comply with current HTTP standards. Apache
can also customize its functionality with a large public library of modules. Apache can
support access to various databases, programming languages, scripts, and authentication
mechanisms. To the user, a WS may look like a single unit but it may be a cluster of VMs
that share and distribute the load of requests on resources, such as RAM and CPU.

2.3. Logging and Log Files

Logging is a common practice in computing as most software produces some logs.
A log is a file that records the events that occur while an OS or other program is running
(such as servers, applications, systems, etc.). Logs can also reveal application-layer attacks
by analyzing the input patterns in various log sources, such as the WS’s access log, CCE
logs, and VM resources log. However, finding, understanding, and collecting (gathering
relevant data on) these logs is a major challenge.

2.3.1. Logs of Web Server Access

Each WS has an access log that stores the elaborate information of each request
submitted by users through web browsers or other applications to the WS in chronological
order. Thus, each HTTP/s request to the website will be logged inside the access log.
The access log file, the server log file, is created on the server side to collect the HTTP
information on the user’s requests. When any user requests a website from a WS, all parties
responsible for communication from beginning to end, such as the PC, server, and network,
will submit a few data to the WS; thus, the access log will save them.

The information is usually collected, such as the IP address of the user/s, the date of
the request/s and time, the requested page/s, the status code of the request/s, and the size
served measured by bytes. The other information collected includes the browsers and OSs
used by the users to access the website and the site that referred visitors to your site or that
was accessed directly by the user [20].
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Two fundamental access log formats are usually used [21]. First, the common log
format (CLF) encompasses the IP_address, client_identity, user_ID, time_stamp, request,
status_code, and response_size. Second, a combined log format is the same as the first but
has two additional parameters: referer and user_agent.

2.3.2. Logs of Cloud Computing Environment Logs

The CCE generates various activity logs due to the activities of the VMs, the hosts
themselves, or other components such as the storage units throughout their lifetime as long
as they work correctly. The activity logs in the CCE include helpful information. In these
logs, data generation depends on the VM activities that serve the service, such as a web
service needing more resources, cloning, migration, and more events.

2.3.3. Logs of Virtual Machine Resources

The different configurations, components, and activities of the OS in each machine
produce logs of various kinds and formats. RAM and CPU are the two key hardware
resources of a VM that run the VM and record useful information in the logs. The CPU and
RAM are virtual resources that simulate the functions of the physical CPU and physical
RAM in the virtualization environment of the CCE. They can be allocated to different VMs
as needed. The CPU and RAM in any VM appear as the physical CPU and physical RAM
to the VM users.

2.4. Dataset Representations

The IDS can use three main types of input datasets. The first type, a network-traffic-
based representation, including flow-based and packet-based forms. The second type is a
log-based representation, which records events from various sources. The third type is a
hybrid-based representation, which combines web-log and system-log-based data. In the
network-traffic-based representation, the packet-based form comprises the entire packet
captured from the network, which contains both the header and the payload.

2.4.1. Network-Traffic-Based Representation

Detection systems that use network-traffic-based datasets can identify various types
of attacks, particularly those dependent on the payload content. Despite this, these systems
suffer from heavyweight characteristics because of the large volume of traffic that needs to
be inspected, and they tend to be slow. As a result, they are not well suited to represent the
traffic generated by modern high-speed CCEs, as the resulting datasets can be quite large.
For instance, researchers who conducted experiments on a realistic 1G-BaseX network
generated 6GB of traffic per minute and 8TB of packets per day [22].

As a result, a detection system that uses network-traffic-based datasets needs to handle
a large volume of traffic, such as processing and analysis, resulting in an increased system
runtime and complexity. Additionally, owing to the potentially sensitive or private data in
the packet, anonymization is mainly used to prevent the leakage of such data by removing
IP addresses, incurring additional computing costs and perhaps data loss. More often than
not, errors in data usually occur after the anonymization process.

A network-traffic-based representation captures all packets transmitted across the
network, without filtering, by accessing incoming and outgoing packets at the network
boundary. Packet-based datasets contain raw data from all OSI layers, including layers 2 to
7. Each packet contains a header and a payload, where the header has information such
as the source and destination addresses, protocol type, and packet length. The payload
contains the data transmitted or received, such as email messages, web pages, or files.
Wireshark and TcpDump are software tools commonly used to capture packet-based data.

Unlike a packet-based representation, which simply captures the raw data of each
packet, using flow-based representations is a powerful technique that relies on aggregating
packets with similar features into flows. A flow-based representation does not contain
the entire packets’ data; it only contains a subset that is sufficient to characterize the
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traffic in the datasets. However, the choice of packet features to define a flow-based
representation varies depending on the type and scope of detectable attacks and the
detection system’s objective. The IP address flows are often defined by common features,
such as the source and destination IP addresses, source and destination port numbers,
and protocol. These parameters are selected based on the detection system’s purpose and
the targeted attacks [23].

The major limitation of flow-based representations is that they require the detecting
system to build the flows before performing the task, which adds computational overhead
compared to packet-based representations. Moreover, they are ineffective at detecting
attacks that exploit the data not captured in the flow, such as packet payloads.

Researchers [24–28] evaluate attack-detection algorithms or approaches by using
different datasets, such as CIDDS-001, CAIDA, DEFCON, LBNL, DARPA, KDD cup99,
and NSL-KDD. However, these datasets have two major drawbacks. First, their suitability
in the intrusion detection field has been heavily criticized. Second, none include the HTTP-
Web log dataset [29]. Moreover, some have specific flaws that reduce their effectiveness as
benchmarking datasets. For instance:

• Some datasets, like CAIDA (2011), were fully anonymized, with the payload com-
pletely erased, making them less useful to researchers.

• Some datasets, like KDD 99, are unavailable for other researchers (e.g., KDD 99),
including new DDoS types such as the HTTP flood [30]. The KDD 99 dataset is also
based on DARPA 98 data but suffers from the same flaws [14].

• NSL-KDD is an improved version of KDD 99 that addresses some of its shortcomings.
However, it still has several issues, such as not representing current real networks
well due to a lack of available datasets for network-based IDSs.

On the other hand, NSL-KDD has one advantage: the number of records in the training
and testing datasets is reasonable. This makes conducting the trials on the entire collection
more cost effective than selecting a small part at random. As a result, the evaluation results
of different researchers will be comparable and consistent.

The ISOT dataset [31] is a recent addition to the field of intrusion detection. It was
systematically developed to create profiles of normal traffic and malicious traces and aims
to provide a more realistic dataset for researchers. However, the dataset is limited as it only
includes unique traces of specific botnet attacks.

2.4.2. Log-Based Representation

Log-based representation refers to a sequential record of events that occur in an
operating system, device, or software, including failures, successes, operations, and user
requests. These logs are usually stored in a predetermined location and can be classified as
a web log or system log.

Web-log-based files, such as web server access logs, are text files that record all
activities happening within a web service or server. The information contained in these
logs includes details such as (1) the protocol type used by the users to access the server,
(2) visitor sign ins, (3) the pages that receive the most or least requests, (4) the sites that
refer the visitors to the server, (5) the pages viewed by the visitors, (6) the request time,
(7) the browsers used, and (8) the operating system type. Access logs are useful in security,
especially to detect HTTP-GET flood DDoS attacks.

System-log-based files, such as VMware log files, document a virtual machine’s (VM)
activities by logging its components and any startup messages. They also record expected
and unexpected restarts or shutdowns, system and hardware changes, the processing
status, the errors or warnings generated, cloning, migration, and other critical processes.

There is a shortage of publicly available log-based datasets compared to network-
traffic-based datasets [6]. This insufficiency leads to an ineffective evaluation of host-based
IDSs, which desperately require more datasets [32]. As a result, researchers often rely
on network-traffic-based datasets to evaluate host-based IDSs, which frequently result in
misclassifications, as evidenced by the high rate of false alarms.
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Generating log-based datasets through testbeds can be challenging due to several
factors, such as the infrastructure’s size, configuration, and diversity and the realism
and complexity of the collected data environment. Therefore, conducting attacks in an
environment that closely aligns with the use case and that can produce the desired data is
essential. To achieve this, we prioritize several key considerations that form the foundation
of our dataset generation methodology, as discussed in Section 4.

2.4.3. Hybrid Representation

The hybrid representation combines the characteristics of both network-traffic-based
and log-based representations by merging two or more datasets to evaluate the IDSs. These
datasets may use the same category of representation or a different category. However, this
approach has some disadvantages, such as potential conflicts in the detection systems due
to the heterogeneity of the data types.

Each representation has its advantages and disadvantages. Table 1 highlights their
pros and cons to comprehensively overview the three dataset representations.

A detection system that uses network-traffic-based and hybrid-based representations
can identify various types of attacks on CCEs, including HTTP-GET flood DDoS attacks.
However, these systems can be inefficient and sluggish due to the large traffic volume to be
inspected. On the other hand, log-based representations also comprise information to detect
attacks, especially HTTP-GET flood DDoS attacks on CCEs. Therefore, log-based datasets
can help detect HTTP-GET flood DDoS attacks and generate similar attack indicators
but are faster than network-traffic-based ones. Therefore, a log-based representation is
preferable for detecting this type of attack in the CCE security domain.

Considering the limitations of network-traffic-based and hybrid-based representations
and the capabilities of log-based representation, we decided to use a log-based representa-
tion to create the proposed datasets for HTTP-GET flood DDoS attacks on CCEs.

Table 1. Comparison between network-traffic-based, log-based, and hybrid-based representations.

Representation Advantage Disadvantage

Network-Traffic-
based

- Data for the detection system are readily available,
making preprocessing unnecessary.

- The detection system must inspect every packet received; it requires
preprocessing to produce flows.
- It exposes confidential packet information, and fewer packet details are
available.
- It is impossible to match attack signatures with encrypted payload
cases, making it ineffective for attack detection.
- In the case of massive datasets, representing CCE traffic is difficult.
- It is unable to represent enough relevant (valuable) information for all
attacks.
- Can be extensive in size.

Log-based - Data for the detecting system are readily available,
making preprocessing unnecessary.
- Generally contains more information, which in-
cludes more attack features.
- There are no privacy issues.
- Scalable and adaptable in high-speed CCEs.
- No encrypted data or payload to affect the detec-
tion system’s operation.
- Represents relevant (valuable) information for at-
tacks.

- Can be extensive in size.

Hybrid-based - Includes more attack features. - Conflict in detection systems from two different types of representation.
- Increased computation load in detection systems to process two types
of representation.
- High False Positive rate and low True Negative rate in detection sys-
tems.
- Conflict and complexity in most attacks’ relevant (valuable) informa-
tion.
- Can be extensive in size.
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3. Literature Review of Related Works

Datasets play a crucial role in intrusion detection to test, compare, and evaluate IDSs.
They are also essential in statistical approaches, ML, artificial intelligence (AI), genetic
algorithms, and data mining, which aim to identify the relationships between instances in
an aggregated dataset. For instance, many researchers have created and suggested various
HTTP datasets to aid in the compression, evaluation, and testing of detection systems when
dealing with HTTP-based attacks.

HTTP-GET datasets can be classified as network-traffic-based or log-based datasets.
But, most of them were collected from conventional network environments. Publicly
available HTTP-GET log-based datasets from actual CCEs are rare. As a result, researchers
must rely on publicly benchmarked datasets such as DARPA, NSL-KDD, and KDD to
evaluate the effectiveness of HTTP-GET flood DDoS attack-detection systems. However,
many realistic datasets lack the necessary features to construct an accurate IDS approach,
such as confidential and personal data that are not publicly available. Moreover, current
datasets may not represent contemporary technology.

Researchers use one or more datasets depending on the solution’s demands to evaluate
a detection system’s ability to differentiate normal and abnormal requests. However, most
of the current datasets can only evaluate and test conventional environment solutions
because they do not cover the characteristics of CCEs. Additionally, most solutions that
depend on network-traffic-based datasets cannot detect the HTTP flood DDoS attack traces
buried inside the WS logs.

CCE security researchers often face a major challenge when securing the application
layer: the lack of HTTP-GET flood DDoS attack datasets. This scarcity forces them to
create custom HTTP flood DDoS attack datasets for research purposes. However, these
self-generated custom datasets often fall short of benchmark datasets regarding accuracy,
reliability, and validity, limiting their usefulness for scholarly endeavors. Based on the
datasets used in the previous works, we present the related existing works as the following
categories:

3.1. Existing Works Using Benchmark Log-Based Datasets

In their research paper, [33] attempted to create and assess HTTP flood DDoS attacks
in a CCE environment by designing a testbed structure to cover and evaluate all possible
attack scenarios. They used the OpenStack CCE testbed and the World Cup Football (FIFA
Cup 98) dataset for their experiments.

3.2. Existing Works Using Benchmark Network-Traffic-Based Datasets

In their research paper, the authors of [34] used flow-based data and ML classifiers to
detect HTTP DDoS attacks in the CCE. They tested four tree-based classifiers: AdaBoost,
XGBoost, Random Forest, and Decision Tree, and they used the CIDDS-001 dataset for
training and evaluation. They found that Random Forest was the best classifier with a
99.99% accuracy.

The authors of [35] proposed an approach that, if applied, may mitigate DDoS attacks
in CCEs based on the traffic rate. They adopted the CICDDoS2019 dataset to train ML-
based classifiers (logistic regression, support vector machine (SVM), and Random Forest),
allowing the proposed approach to select the best one.

Another study proposed a method to protect a website’s initial page by identifying a
distinct kind of HTTP-based EDoS attack [36]. The adversary puts an astronomical amount
of requests in the index page to increase the demand for resources, which exploits the
elasticity of the CCE. If the resources are not elastic, it is a DDoS attack instead. The authors
evaluated and parsed human browsing behavior by using the DARPA DDoS dataset to min-
imize this attack and distinguish between normal and abnormal requests. The evaluation
and parsing helped them develop methods from strict to mild index page prevention.

The authors of [37] worked on detecting DDoS attacks in CCEs by using a black hole
optimization algorithm and artificial neural networks (ANNs) for their approach. They
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evaluated their approach on the NSL-KDD dataset, trained their model on 12,500 samples,
and tested it on 2597 samples. They repeated their experiments 10 times and obtained the
best detection accuracy of 96.30%.

The author of [38] presented a method to detect low-rate attacks in CCEs by using the
Hidden Markov Model–Random Forest (HMM-RF). This method uses the HMM to extract
features from the network traffic flow and trains the random classifier with these features.
In addition, the method uses the Renyi entropy to estimate the attack probability and the
HMM to assess the attack severity. Depending on the severity, the method trains the RF
with the bootstrap aggregation technique to identify the attacked traffic flow. The authors
tested their method on the KDD CUP 99 dataset, a standard dataset for network intrusion
detection. Their method performed better than the Adaptive Threshold-Based Algorithm
(ATBA) and Artificial Bee Colony–Artificial Neural Network (ABC-ANN) regarding the
classification accuracy for recall, precision, specificity, accuracy, and F-measure.

The author of [39] presented a method to detect DDoS attacks by using a Radial Basis
Function–Neural Network (RBF-NN) detector. This method applies the Bat algorithm (BA)
to automatically configure the RBF-NN, which can find the optimal network structure and
parameters based on the given goal function. The method tests its performance by using the
KDD CUP 99 dataset, which resembles the DARPA LLS DDoS dataset. The dataset contains
Smurf, HTTP flood, and UDP flooding attacks. The method classifies the web traffic data
as normal or attack traffic. The BAT-RBF achieved a higher classification accuracy than
the RBF and GA-RBF regarding the recall, precision, specificity, accuracy, and F-measure.
The average values showed that the BAT-RBF was 0.6% more accurate than the RBF and
0.55% more accurate than the GA-RBF.

In [40], the author investigated the utilization of TensorFlow, a machine learning
library, to identify HTTP DDoS attacks. Their method involved preprocessing the network
traffic data by using the NFStream tool to convert them into vectors. The machine learning
model trained with TensorFlow achieved a remarkable 96.54% accuracy at detecting attack
transactions. It also successfully detected 92.85% of the attacks in real-life network-traffic
and attack samples. The dataset employed is named the “Attack” dataset, comprising
labeled attack samples, including SYN flood, UDP flood, HTTP, SCAN port, and others.
The model exhibited high precision at 98.108% and an impressive F1 score of 97.997%.
Notably, the model’s accuracy remained consistent across the different data types, showing
only minimal variations compared to the dataset used.

3.3. Existing Works Using Self-Generated Log-Based Datasets

The research in [41] used model-driven engineering methodologies to create testbeds
for the IDS assessment. They proposed a method called a Radial Basis Function–Neural
Network (RBF-NN) detector by using the Bat algorithm (BA) to configure the RBF-NN
automatically. The BA can identify the appropriate network structure and parameters
based on the supplied goal function. The authors used predetermined setup scripts and
Terraform v0.10 software to create the testbed infrastructures. They deployed them as VMs
on a CCE platform in OpenStack v11. They used the KDD CUP 99 dataset to evaluate their
method. The dataset was similar to the DARPA LLS DDoS dataset, which includes Smurf,
HTTP flood, and UDP flooding attacks. The collected web traffic data were categorized as
normal or attack traffic. The BAT-RBF had a higher classification accuracy than the RBF
and GA-RBF regarding the recall, precision, specificity, accuracy, and F-measure.

The authors of [42] created testbeds for the IDS assessment by using model-driven
engineering methodologies. They generated datasets (AIT Log DataSet/Online Available)
that include log data instead of network traffic. This way, they can assess host-based IDSs,
which need log-based datasets. The WSs gather log data that contain daemon logs, syscall
logs collected with the Linux audit daemon, Suricata logs, auth logs, Exim logs, mail logs,
Apache access and error and user logs, and syslogs.
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3.4. Existing Works Using Self-Generated Network-Traffic-Based Datasets

In their research paper, the authors of [43] proposed a method that solves both inside
and outside slow HTTP DDoS attacks in the CCE, depending on the number of connections.
They incorporated the proposed work within the OpenStack IaaS model to protect WSs
from potential attack scenarios. Their self-generated datasets, AIT Log DataSet, are publicly
available online and include log data instead of network traffic, which allows them to
assess host-based IDSs that require log-based datasets. The authors used slowHTTPtest
to generate the dataset to evaluate this work. The dataset includes many attacks, such as
slow-HTTP-read, slow-HTTP-body, and slow-HTTP-header DDoS attacks.

The authors of [44] proposed an approach to detect slow-rate HTTP DDoS attacks in
the CCE, which uses a self-generated network-traffic-based new dataset with an IDS for
evaluation purposes; it uses Tor Hammer as an attacking tool and collects the traffic with
Snort. There are nine features and four classes in the dataset. The dataset was applied
to different ML algorithms, including Random Forest, SVM, and Naive Bayes. The SVM
outperformed Random Forest and Naive Bayes in terms of accuracy and precision. The
overall accuracy of the algorithms was as follows: SVM (99.7%), Naive Bayes (98.0%),
and Random Forest (97.6%). These algorithms’ performance, such as their recall, precision,
accuracy, and so on, is evaluated by using the confusion matrix created by these algorithms.

The authors of [5] proposed a dynamic-entropy-based HTTP flood attack-detection
approach that uses trace logging (a trace log) to keep track of all the network packets from
sender to receiver via CCE-based VM instances and to monitor the VMs’ status in real time;
specifically, the active IPs of the incoming requests are determined by changing the number
of time slots (window size) based on monitoring the sliding window of the dynamic
entropy and traffic load. The proposed approach experiment results were compared
with the current approaches, notably the adaptive negative selection algorithm and static
entropy. It was noticed that the proposed method detects HTTP flood attacks with a high
possibility, improving performance even when spoofing attacks are present and decreasing
false alarms. Furthermore, the approach was compared to the optimized National Security
Agency (NSA) algorithm, which detects the attacks more correctly since the NSA algorithm
misclassifies legitimate users as attackers and employs a lot of features to detect the attack.

In their study [45], the authors proposed a method for the fast detection of HTTP-GET
flood DDoS attacks in a CCE by integrating Hadoop MapReduce. They compared the
execution time (processing time) of their proposed approach with Snort detection by using
the pattern detection of the attack features. The results showed that their approach outper-
formed Snort as its execution time was shorter when congestion increased. The authors
used self-generated network-traffic-based datasets to evaluate their work. They followed
the firewall policy and routed the allowed traffic among the user-request traffic to the
Hadoop master node. After the packet classification, they preprocessed the transmission
traffic. The signature used the Map Function to send the preprocessed packets to the data
node for parallel pattern matching. The packet log data were stored in the Hadoop data
node of the Hadoop distributed file system (HDFS). Finally, the Hadoop master node
conducted an anomaly detection by using the Hadoop MapReduce Function with a time
schedule and the same file size.

In the work of [46], the authors proposed a novel approach to detecting slow HTTP
DDoS attacks in the CCE and notifying the administrator in the event of attacks. The CCE
platform of OpenStack was used to implement the solution. Moreover, the slowHTTPTest
tool was used to launch attacks on the WS (NGINX) to create the dataset required to
evaluate the detection system. The findings of the experiments showed that the attacks can
be detected early on.

In the work of [47], the authors proposed an approach to detect network- and
application-based flooding attacks based on a fuzzy-logic-based protection mechanism.
Moreover, the authors used a self-generated network-traffic-based dataset to evaluate the
work. In the experiment, the algorithm learned by using training data, and then rules
were created based on the potential traffic patterns of the CCE so that the system may
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deduce the traffic class based on the knowledge gained. The authors adopted fuzzy rules
based on predetermined traffic features that differ considerably between an attack and
a normal traffic pattern. Nevertheless, for every data center, the features may be altered
depending on specific requirements, and rules can be defined accordingly. As a result,
defense methods should be updated and adjusted regularly.

In the work of [48], the authors proposed an approach that works similarly to a service
broker within an SOA model. The proposed approach is named filtering tree. It converts the
user request in XML tree form and uses the virtual cloud defenders to protect against these
attacks. The CCE users create their requests in XML, submit them over HTTP, and create
system interfaces by using REST methods such as Microsoft Azure or Amazon EC2. This
study aims to offer security to the Open Application programming interface (API) against
XML-, HTTP-, or REST-based attacks.

In their study [49], the authors proposed an approach to protect the CCE from X-
DoS/H-DoS attacks. Their approach uses Cloud TraceBack (CTB) to trace and detect these
attacks. Additionally, they trained a Cloud Protector by using a back-propagation algorithm
for feed-forward neural networks to detect and filter the attack traffic. The authors used a
real attack traffic dataset generated by the StuPot project 2009 [50] (the page of the dataset
is not available) for training. In their experiment, to generate the dataset, they set a timer
for 1 s and updated the targeted website. They collected the HTTP traffic by using tcpdump
and Wireshark (Tshark).

The authors generated a huge labeled corpus that included evidence of 10 different
attacks against HTTP and QUIC services in their study [51]. They performed a full review of
the security of the HTTP/2 and HTTP/3 protocols, detailing numerous HTTP/2 threats and
their relevance to HTTP/3. Furthermore, they examined the efficiency of various attacks
and created the “H23Q” dataset, which was particularly designed to measure the security of
these protocols. The study also looked at the use of machine learning techniques to analyze
the dataset. The results of the research were provided, demonstrating the performance of
several classifiers in terms of the AUC, precision, recall, F1 score, and accuracy. The Bagging
model performed the best, with an AUC of 77.60% and an F1 score of 68.77%.

3.5. The Existing Works Used Hybrid-Based Datasets

In their study [52], the authors proposed a statistical approach by using the covariance
matrix to detect HTTP flood attacks. Their approach includes a training algorithm to
construct normal network traffic patterns and a testing algorithm to determine the types
of traffic received based on the attack behavior. The authors analyzed their findings by
using a confusion matrix to assess the detection performance and provided results for
external and internal CCEs. They generated their datasets for the assessment, including
normal traffic by allowing ordinary end users to browse the Internet and abnormal traffic
by attacking a virtual WS by using the PageRebooter tool. However, they found that
the MADM performance in a private CCE was lower than when using the KDD dataset.
This difference was due to the KDD dataset being collected under high surveillance and
controlled conditions, while their work was not. According to the AUC and confusion
matrix results, their experiment demonstrated that the MADM performed well in detecting
HTTP flood attacks in the CCE. They also proved that the MADM performance with four
thresholds was superior to the MADM performance with three thresholds.

In their study [53], the authors proposed the SBTA approach to detect DDoS attacks on
CCEs by using SOA to trace back and detect the source of the attacks. They also proposed
the cloud filter approach. Their findings revealed that a protection system combining a
cloud filter and SBTA is efficient in CCEs. The authors used two datasets to evaluate their
work: the first dataset, called LLDoS2.0.2, was from Lincoln Laboratory at MIT in 2000,
and the second dataset was generated in their work. The results showed that combining a
cloud filter and SBTA over a CCE could effectively and efficiently identify and detect attack
messages. Additionally, it reduced the number of messages required to rebuild the path
and compute tasks.
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In their study [54], the authors proposed a method to detect HTTP-GET flood DDoS
attacks on CCEs by using Hadoop MapReduce with a rule engine and an HTTP packet
pattern. Their approach routes authorized the users’ request traffic to enter the Hadoop
master node via a firewall policy. The authors experimented with the execution time
(processing time) to evaluate their method’s performance by using pattern detection on the
attack features. They compared their approach with Snort detection based on the access
log of the WS and HTTP packet patterns to study the web-usage patterns.

In their study [55], the authors proposed a hybrid classification model for the anomaly
detection (HyClass) approach to detect attacks by analyzing CCE network traffic by using
a hybrid anomaly detection technique. HyClass operates in two stages: the first stage uses
the Boruta algorithm for feature selection to improve the accuracy and classification effi-
ciency, while the second stage uses an SVM with the Chaotic Optimization and Differential
evolution algorithm for classification. The authors evaluated their approach’s performance
by using two different datasets: The first dataset, a real-time TU dataset, was captured by
using Dumpcap (Wireshark) from the network traffic of a University and included packets
from 400 hosts. The second dataset was the benchmark KDD’99 dataset. Their findings
showed that their proposed approach was effective and reliable at detecting anomalies
regarding the False Positive rate, accuracy, and detection rate in real-time scenarios.

In their study [56], the authors proposed a flow-confidence-based discrimination
approach to CCE servers hosting multimedia services such as audio and video streaming.
Their approach discriminates between DDoS attacks and flash crowd events and has been
proven successful, efficient, and cost effective in ensuring users’ QoE during flash crowd
events in real-world scenarios. The authors used two benchmark datasets, CAIDA and FIFA
World Cup 98, to evaluate their proposed approach and support their theoretical claims.

In their study [27], the authors developed a deep-learning-based classifier to detect
DDoS attacks in CCEs. Three datasets were used to test the proposed TEHO-DBN classifier:
the KDD cup database, a synthetic database created for DDoS detection, and a server log
information database. The user’s service requests were collected and grouped as part of
the log information. The Bhattacharyya distance measure was used to reduce the training
time of the classifier by selecting some important features from the log file.

In their study [57], the authors proposed a fuzzy bat clustering approach that uses a
deviated anomalous score to detect HTTP flood DDoS attacks. Their approach inspects
attacks by grouping similar input patterns and analyzing them by reading logs to extract the
related features. The authors generated a dataset to evaluate their work by using various
attacking tools conducted through VMs by sending harmful packets to the targeted WS.
They configured Snort in the node controller to monitor the VM network traffic activities.
The network traffic log and access log trace were used to determine the evidence source.
The authors identified the suspect source by locating the event correlation between the
suspicious source list and the VM supplied by a cloud service provider.

In their research paper [58], the authors proposed a hybrid ML-based approach to
detect DDoS attacks in CCEs by using black-hole optimization and extreme ML (ELM)
models. They evaluated their approach’s performance by using various benchmark datasets
and achieved good results: CICDDoS2019 with an accuracy of 99.80%, CICIDS2017 with
an accuracy of 99.50%, ISCX IDS 2012 with an accuracy of 92.19%, and NSL KDD with an
accuracy of 99.23%. The authors also compared their approach’s performance with various
systems based on back-propagation ANNs, ANNs trained with black-hole optimization,
and ELM models.

In their study [59], the authors proposed a voting extreme learning machine (V-ELM)
approach to protect CCE services by detecting DDoS attacks on CCEs. Their approach
monitors incoming and outgoing network traffic to detect floods of fake request packets. A
V-ELM is a type of ANN. The authors evaluated their approach’s performance by using two
benchmark datasets: the ISCX intrusion detection dataset with an accuracy of 92.11% and
the NSL-KDD dataset with an accuracy of 99.18%. They also compared their approach’s
performance with other approaches based on AdaBoost, Random Forest, the extreme
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learning machine, an ANN trained with black-hole optimization, and a back-propagation
ANN. Their proposed approach performed better than these approaches. Additionally,
they analyzed their approach’s performance by using different parameter values, such as
the number of hidden layer neurons in a single ELM and the number of ELMs in a V-ELM.

In their study [42], the authors proposed an approach to detect DDoS attack traffic
in private CCEs by checking against a threshold of requests by using Servlet and XML
Coding. In their experiment, their approach prevented the source of the attack on a
website supported by the Cloud Flare web application firewall within 10 min. They
decreased the time to stop the attack to around 10 s and confirmed their findings’ validity.
The authors evaluated their approach’s performance by launching a DDoS attack against a
web application by using a tool and Java code on Templates. They analyzed and understood
the traffic patterns stored in the Tomcat WS log files with an access matrix. They used
the threshold of the attack traffic in the network that was attempted tp be used on the
SCO website for greater accuracy. They estimated and compared the hit rate threshold
from NASA datasets to identify the attack with their current study. Their results showed
that when the threshold reached the higher traffic limit (value) obtained in the World Cup
98 datasets, they instantly prevented the attack traffic by using XML and Servlet Coding.

4. Dataset Design Principles and Significance

Effectively assessing, comparing, implementing, and deploying new IDSs for HTTP-
GET flood DDoS attacks on CCEs by using existing datasets is challenging. Before deploy-
ing an IDS in a real environment, it should be evaluated and compared with other superior
existing IDSs by using genuine and valid labeled datasets that mimic the real deployment
environment by covering all possible attack types and scenarios. However, the lack of
efficient benchmark HTTP-GET flood DDoS attacks on CCE datasets is a critical problem
for the CCE security community. As a result, the IDSs for HTTP-GET flood DDoS attacks
on CCEs are often tested by using self-prepared (self-generated, not benchmark) datasets
on CCEs or benchmark network-traffic-based datasets (not CCEs) or benchmark log-based
datasets (not CCEs). These datasets’ coverage, accuracy, and validity are not guaranteed
due to their scarcity compared to valid benchmark datasets.

4.1. Dataset Design Principles

Many issues with the current log datasets produced in testbeds arise from short-
comings in the system infrastructures and environments where the data were collected.
Therefore, the testbed design process must adapt to the requirements of the data to be
generated. To address this, we followed design principles that served as the foundation for
our testbed generation technique. We will briefly discuss each of these principles.

• Reproducibility: to accurately reproduce the log dataset, the testing environment must
be able to revert to a previous state.

• Flexibility: Establishing a testbed requires considerable manual effort. As such, it is
cost efficient to utilize a flexible and isolated portion of the environment that permits
iterative development through modifications and enhancements.

• Authenticity: to guarantee a representative assessment of the IDS capacity on the CCE,
realistic log data should be gathered under factual scenarios in CCEs.

• Availability: for the proper benchmarking and evaluation of IDS detection capabilities
using various techniques, it is crucial that any generated datasets be made publicly
accessible.

• Utilizability: merely having access to datasets is insufficient to evaluate IDSs. It
requires ground truth, which involves labeling, numeric representation, and data
normalization.

4.2. The Significance of Datasets

In the field of IDSs, a variety of datasets have been utilized. These IDSs can be classi-
fied into several categories: ML-based, DL-based, data-mining, and rule-based systems.
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For instance, DL-based and ML-based IDSs depend on network traffic data [60], repre-
sented by a set of traffic features, to run their detection models. As such, the datasets
used in the learning or training and testing stages of IDSs must be validated and efficient.
The significance of having datasets for CCE requests can be outlined as follows:

• To illustrate attack behavior: IDSs must comprehend the behavior of illegitimate
requests. This aids in the identification of the features and characteristics that differen-
tiate these requests from legitimate ones.

• To ensure experimental repeatability: Repeating experiments by using the same dataset
is necessary to enhance a specific detection system. This enables the production of
accurate, valid, reliable, and consistent results.

• To validate new IDSs: CCEs are susceptible to various attacks, prompting the creation
of new detection solutions. Each unique IDS, however, must be validated and tested
against a dataset to assess its reliability.

• To compare new IDSs with existing ones: evaluating the efficiency of an IDS and com-
paring it to other IDSs by using datasets is essential to achieve significant improvements.

• To effectively tune parameters and configurations: The performance of most IDSs
is influenced by specific configurations and/or parameters. Conducting various
experiments, such as cross-validations, to determine the optimal parameter values
is crucial.

• To determine the most important feature sets: The validity of the selected feature sets
positively impacts the detection accuracy. Multiple tests using datasets are required to
select the best set of features to represent normal and abnormal requests.

Evaluating IDSs in the context of cloud computing environments is crucial due to the
rising prevalence of cloud-based services and their unique security challenges. Cloud envi-
ronments are complex and dynamic and involve multitenancy, virtualization, and shared
responsibilities. The existing evaluation approaches are inadequate because they often lack
cloud-specific testing scenarios and features and may not scale effectively in dynamic cloud
settings. Additionally, IDSs may be blind to the hypervisor layer, limiting their ability to
detect attacks targeting virtualized infrastructure. To address these shortcomings, there
is a need for a dataset collected from real-world implementations in CCEs that contains
CCE-specific features from multiple sources, incorporates cloud-specific testing scenarios,
and considers specific attacks. These efforts will aid in developing effective IDSs tailored to
cloud computing environments.

5. Requirements for an Effective Dataset

Obtaining an effective dataset for use with IDSs in CCEs is a challenging endeavor
due to the stringent criteria that must be satisfied by any potential dataset. Several key
characteristics have been identified to generate and develop an efficient and comprehen-
sive IDS dataset. In fact, to be deemed effective, a prospective dataset must fulfill five
requirements [61]. These requirements include:

• Realistic dataset: the dataset must be constructed by using a real-life CCE, for instance,
a private CCE.

• Diverse scenarios: a dataset with varied characteristics, including different sizes
and types of attacks, is more reliable, durable, and dependable for comparing and
testing IDSs.

• Accurate and complete labeling: requests must be accurately and completely labeled
as normal or abnormal to properly evaluate the IDSs based on their evaluation metrics,
including False Positive rates and detection rates.

• Balanced and sufficient dataset size: class labeling should not affect the size of normal
and abnormal requests.

• Representative features: The dataset should contain a comprehensive set of well-
defined features to classify attacks. To ensure the proper validation of the IDSs,
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the dataset’s features must be relevant and specifically meaningful. Representative
features help distinguish between normal and abnormal requests.

In addition, with respect to heterogeneity, the dataset should be gathered from multi-
sources that are relevant and impact the environment during the attacks in order to cover
all aspects of the carried-out attacks and to be used to detect the attacks.

6. The Proposed HTTP-GET Log CCE Dataset Methodology

In the field of intrusion detection, IDSs typically analyze network traffic or requests
to detect any suspicious activity. However, the currently available HTTP attack datasets
collected from conventional environments are not suitable to evaluate IDSs’ performance
against HTTP-GET flood DDoS attacks on CCEs, as discussed in Section 2. Therefore,
a substitute dataset that meets the requirements to evaluate IDSs against HTTP-GET
flood DDoS attacks on CCEs is necessary. This dataset should have relevant and high-
quality features and should be suitable for investigating and researching HTTP-GET flood
DDoS attacks on CCEs. For it to be considered a reliable benchmark to evaluate research
that aims to secure the HTTP on CCEs, the dataset must meet the standards outlined in
Sections 3 and 5.

This section discusses the proposed dataset, including its preparation. The proposed
dataset was produced through a three-stage methodology, as illustrated in Figure 4.

Figure 4. Methodology of the proposed dataset.

The HTTP-GET Log CCE dataset used to evaluate our proposed method to detect
DDoS attacks in CCEs comprises three types of logs: the WS access log, CCE-VM activity
log, and VM resource log. We created a WS and hosted it on a private CCE. We then
generated 200,000 requests to access the WS from external and internal sources. Of these
requests, 802 were normal and the rest were abnormal, meaning they were part of an
HTTP-GET flood DDoS attack. We labeled the requests as normal or abnormal based on
their request status, CCE-VM activities, and resource statuses. We also extracted 26 features
from the logs, as shown and described in Table 2. The last column (27th) is the class label.
We aggregated the logs by their timestamp for each request, as shown in stage three of
Figure 4.
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Table 2. Fields and descriptions of the proposed dataset.

Features Features’
Source

Event Records Field Description

Existing Access log (HTTP-GET) requests Client_IP The IP address of requesting host

Client_Identity Determines the user’s identity

User_ID The HTTP authentication determines the username

Date The date when the request was received

Time The time when the request was received

Zone The time zone

Method_type The request method of HTTP used in each request
(GET/POST/etc.)

Request The user’s request

HTTP_Protocol The request protocol used

Status_Code The status of request for user

Size_of_Response The size of the response

Referrer The page that linked to this Uniform Resource Locator
(URL)

User_Agent Type of Internet browser and OS used to access the
website

New CCE log VM Activity VM_CPU The number of CPUs allocated for the VM

VM_RAM The size of RAM allocated for the VM

VM_vMotion The motion (migration) of the VM over the hosts

VM_clone Number of instances of the VM

VM resources log VM central processing unit (CPU) CPU_usr The CPU usage by a user’s processes

CPU_sys The CPU usage by system’s processes

CPU_idl The number of idle processes in the CPU (total usage)

CPU_wai The number of waiting processes in the CPU (total
usage)

CPU_stl The CPU usage by CPU stl

VM random access memory (RAM) RAM_used The total usage of RAM

RAM_free The total nonusage of RAM

RAM_buff Memory used by kernel buffers

RAM_cach Memory used by the page cache and slabs

6.1. Generating HTTP-GET Requests

The protocol of the HTTP is a request-and-response protocol with a client and server
architecture in which search engines, robots, and web browsers behave as HTTP clients
and the WS works as a server. The server receives an HTTP request from an HTTP client
as a request message that includes information such as the request method. The request
method, such as GET or POST, denotes the manner used on the resource defined by the
request Uniform Resource Identifier (URI). The HTTP-GET method is employed to obtain
data through the provided URI of a WS. HTTP-GET requests should solely reclaim data
and have no other influence on them.

We can generate HTTP-GET requests (normal/abnormal) to build the dataset in
various environments, such as traditional, virtual simulation software (CloudSim, Cloud-
Analyst, Greencloud, and iCanCloud) and CCEs. The traditional and virtual environments
are the least complicated, but the simulation software is the simplest and fastest build
environment because it does not require setting up physical or virtual machines. However,
these environments cannot mimic the natural CCE behavior, as the requests may contain an
unrealistic representation of CCEs and biased characteristics that do not reflect real-world
network conditions and traffic patterns.
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Thus, these environments do not appear viable for creating an effective dataset of
HTTP-GET flood DDoS attacks on CCEs. Another option is to build up and install a full-
fledged actual CCE, hosts, and network equipment. This option can provide the highest
level of realism in creating the dataset. However, procuring and managing the entire CCE is
prohibitively expensive. Therefore, the last alternative is a compromise between these two
options, which involves employing an existing CCE while taking utmost care not to disrupt
its production or functionality. Figure 5 shows the topology of the used private CCE.

Figure 5. Private CCE topology to generate HTTP-GET requests.

• Generating Normal HTTP-GET Requests: Generating normal requests can be
achieved through various means. One common approach is to utilize existing commer-
cial tools that manually generate requests. However, such tools cannot fully replicate
natural user behavior, resulting in requests with unrealistic and biased characteristics.
Moreover, they cannot simulate human actions like typing and rerequesting, rendering
them unsuitable for creating effective datasets. An alternative method is to employ
human users to create requests through browsers, which can provide high realism
when generating datasets.
As highlighted in Section 5, achieving realism is crucial to create high-quality datasets.
This entails producing requests that closely resemble real-world behavior. To accom-
plish this, we developed our dataset by using a private CCE environment as the
source of the normal requests. The dataset includes HTTP requests made by two users
employing the most popular browsers (Microsoft Edge, Firefox, and Google Chrome)
from two external computers outside the CCE. The topology of the private CCE used
in this study is illustrated in Figure 5.

• Generating Abnormal HTTP-GET Requests:
To create an effective dataset, including a diverse range of attack and normal request
scenarios is crucial. However, achieving this in a real-world environment can be
challenging due to security concerns and restrictions. To address this, we conducted
HTTP-GET flood DDoS attacks within the same CCE to ensure that the produced
requests contained realistic and biased characteristics specific to the CCE. This is
essential to create a truly realistic dataset that can be used to evaluate and compare
the effectiveness of different research works.
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While HTTP-GET flood DDoS attacks can potentially cause significant harm to a
weakly protected CCE, we conducted these attacks within the same CCE to create
realistic datasets. Figure 5 illustrates the topology of the private CCE used in this study.
Our proposed dataset’s HTTP-GET flood DDoS attacks were intentionally malicious
and designed to cause harm. We launched these requests by using Goldeneye, one of
the most widely used tools for conducting HTTP-GET flood DDoS attacks. The attacks
targeted victims with HTTP-GET flood DDoS requests originating from multiple
attacker sources, simulating a realistic HTTP-GET flood DDoS attack scenario.
Including a diverse range of attack scenarios ensures that all conceivable attack cases
and behaviors are represented and included, thus contributing to accurate detec-
tion models.
Given that the proposed dataset is meant for CCE protection and attack detection on
the application layer, it would be incomplete unless several attacking scenarios were
performed in the CCE. The attacking machines (VMs) used in this study were built
inside and outside the CCE, as shown in Figure 5.
All the available HTTP-GET flood DDoS attacks by Goldeneye were performed in this
dataset by using seven attacking machines, virtual and nonvirtual, both from inside
and outside the CCE.

6.2. Gathering and Storing Logs

This stage involves collecting and storing all the logs from the sources that changed
during the HTTP-GET request generation. These sources include the access log, the VM
activities log, and the VM resources log. These logs have large volumes (vast) and require a
proper solution to handle them. Figure 4 illustrates the method of the proposed dataset.

The Hadoop ecosystem is a common solution for big data [62]. It offers a high-
availability distributed solution for big data challenges. Several platforms use Hadoop to
spread their data. These platforms are Microsoft Azure HD Insights, Apache Hadoop, IBM
BigInsights, Hortonworks, and Cloudera tools [63]. Hadoop has the main components,
such as a software system for distributed storage called HDFS, a data-collecting tool called
Flume, and a MapReduce programming model to process big data.

This solution can manage a large volume and complexity of raw data logs from
different sources. It can take these data logs and put them into HDFS by Flume. Then, it
can process them through MapReduce (the data processor).

• Gathering the log using Flume
In this stage, we used Flume [64,65] to collect and store all the logs from the sources that
changed during the HTTP-GET requests generation. These sources are the access log,
the VM activities log, and the VM resources log. These logs have large volumes (vast)
and require a proper solution to handle them. Using Flume can improve the detection
and prediction of DDoS attacks [63]. Furthermore, Flume can gather and aggregate
large and complex amounts of log data from multiple sources without changing or
affecting the original logs during the transfer from sources to the storage system.

• Logs repository
The HDFS supports fast repository storing and the splitting of vast and complex data
to guarantee the availability of logs data on the Hadoop nodes, which helps with
parallel processing as the system can equip it and allow MapReduce [63,64] to be
feasible for the analysis; additionally, it can filter out the basic features and convert the
raw data logs into a clean dataset that is easily readable without modifying the content.

6.3. Data Preprocessing

The stored data in the HDFS must undergo preprocessing before testing and implemen-
tation with any classifiers. The processing in MapReduce is conducted in parallel, meaning
simultaneously on several distributed Java-based devices, allowing it to process massive
quantities of data in a very short time reliably with a fault tolerance [63,64]. The Hadoop
data processor (MapReduce) [66] will perform the extraction, cleansing, labeling, trans-



Appl. Sci. 2023, 13, 9086 20 of 32

forming, aggregating, and loading data (ECLTAL) processes inside the HDFS. The ECLTAL
process processes and analyzes the data in the following steps:

• 1. Extract: This step involves extracting and initializing the data stored in the HDFS
for processing. The main purpose of this step is to extract only the necessary data
by filtering the significant records from log files and excluding any irrelevant or
redundant features from the HDFS by using as few resources as possible. The desired
data are identified and separated from the other log records during extraction. In this
research, the data were extracted from three sources: access logs, CCE logs, and VM
resources logs. A total of 26 features were extracted from these resources, as shown
in Table 2. These features include both those used in the existing research and new
features proposed based on experimental observations of HTTP-GET flood attacks on
CCEs. It is important to note that these 26 features constitute the proposed dataset and
are considered significant at detecting HTTP-GET flood attacks. The newly proposed
features are specific to CCEs, giving our dataset a unique advantage compared to
existing datasets that lack CCE-specific features. This distinction is crucial as it can
significantly impact the performance of IDSs.

• 2. Cleansing: This process is commonly referred to as data cleaning or data scrubbing,
and its purpose is to prepare the data for direct use in detection systems. In this
research, the collected data from access logs, CCE logs, and VM resources logs undergo
a cleaning process. During this process, erroneous, missing, or inconsistent values are
identified and resolved.

• 3. Labeling: A labeled dataset is a collection of samples marked with one or more
labels. Labeling generally begins with a collection of unlabeled data and tags are
added to each piece. The proposed dataset is extremely useful in evaluating detection
systems primarily relying on labeled data (i.e., requests). In this research, the records
in the proposed dataset were labeled as normal or abnormal. This labeled dataset can
be used to evaluate the performance of supervised machine-learning-based IDSs.

• 4. Transformation: The transformation step applies a rule set before the data trans-
formation. MapReduce is commonly used to transform big data by using parallel
data processing to transform the data format, such as by removing symbols from date
and time values and numerical values and normalizing the numerical features. The
transformation step consists of the following substeps:

– Formatting: The collected data may contain unwanted symbols such as brackets
(e.g., [] () {}), double quotations (e.g., “, ”), or colons (e.g.,:, ;). These symbols
are inconsistent with the purpose of using the dataset effectively. Therefore,
removing useless characters (symbols) is very important as they may skew the
IDSs’ performance.

– Numeric: Numerical data refer to data offered in the format of numbers instead
of in any other form or descriptive writing. In this step, all categorical data were
transformed to numerical data before being used to evaluate the performance of
the IDSs.

– 5.: Feature Scaling: In the process of feature scaling, the features are rescaled
to make them more suitable for training. Scaling is crucial during training as it
ensures that all the features are within the same range. Several scaling strategies,
such as Mean Normalization or Standard Scaling, can be used to achieve this.
In this research, MinMax scaling was chosen for this problem after thorough
testing, as it demonstrated a superior performance. MinMax scaling can be
calculated by using Equation (1):

Value_Normalized =
(Value − Value_Min)

(Value_Max − Value_Min)
(1)

– 6. Aggregation: The aggregation of the data is the process of combining the
three logs (WS access, VM activities, and VM resources) and presenting it in a
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summarized and formatted manner in one file based on the time stamp, such
as a CSV file (rows/columns) as required for the destination usage, to provide
the final dataset for evaluation. The volume and quality of the data gathered
determine the accuracy of the data analysis and the resulting outcomes. Thus,
data aggregation is a critical step in dataset processing.

– 7. Load Data: Loading the dataset as a CSV file is the second last step in the
ECLTAL process. This step loads the processed dataset into a new directory (path)
in HDFS to evaluate the dataset through classification algorithms.

The additional step of data preprocessing is balancing, which involves balancing the
data under two classes of labels: normal and abnormal. A common balancing technique
employed in the WEKA platform is outlined in [67].

In SMOTE, the fewer labeled records are replicated to oversample the data. A classifier
is improved through replication and adding random instances based on the ’well-known’
distribution of the classes in a dataset. It was utilized with the WEKA platform to balance
the proposed dataset, as shown in Figure 6.

Figure 6. Example of WEKA dataset’s SMOTE balancing technique.

6.4. Dataset Evaluation

In this section, for practical purposes, the proposed HTTP-GET Log CCE dataset
is evaluated with nine classification algorithms to prove that using it side by side with
AI detection engines is possible. Because the primary purpose of these experiments is
to demonstrate that the proposed dataset is accurate and credible when used to assess
detection methods for HTTP-GET flood DDoS attacks on CCEs, the classifiers chosen
are simple ones with no enhancement or parameter tuning because the goals of these
experiments are to demonstrate that the dataset is trustworthy and dependable enough
to be employed to assess the detection methods of HTTP-GET flood DDoS attacks on
CCEs. Furthermore, we seek to demonstrate that the proposed features can competently
differentiate normal behaviors and HTTP-GET flood DDoS attack behaviors on CCEs.

The following two subsections present the definition of the performance/evaluation
metrics and classification/evaluation algorithms of the proposed HTTP-GET Log CCE
dataset.

6.4.1. Evaluation Metrics

The proposed dataset was evaluated by using nine evaluation metrics to demon-
strate the Log-based dataset representation’s effectiveness and features. These metrics
are the True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F1 score (F-
Measure), Matthews Correlation Coefficient (MCC), Receiver Operating Characteristics
(ROC), precision–recall (PRC), and detection accuracy (DA).
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The power to successfully classify attack records as an attack from all of the existent
attacks is measured by the DA. Equation (2) [39] can be used to compute the DA:

DA =
TP + TN

TP + TN + FP + FN
∗ 100% (2)

where TP = True Positive, FN = False Negative, FP = False Positive, and
TN = True Negative.

The failure rate of classifying normal requests (instances falsely classified as a given
class) as normal requests from the total number of normal requests is known as the FPR.
Equation (3) can be used to calculate the FPR:

FPR =
FalsePositive

FalsePositive + TrueNegative
∗ 100% (3)

Precision is another evaluation metric that represents the value of correct positive
outcomes divided by the classifier’s predicted number of positive results, computed by
using Equation (4):

Prec =
TruePositive

TruePositive + FalsePositive
(4)

All the positive samples that should have been reported (recall) are calculated by
dividing the number of valid positive results by the total number of relevant samples and
can be computed by using Equation (5):

Rec =
TruePositive

TruePositive + FalseNegative
(5)

The accuracy of a test is verified by the F-Measure. The Harmonic Mean of the
precision and recall is the F-Measure (calculated based on the precision and recall). The
F-Measure has a range of [0, 1]. It indicates how robust the classifier is (it does not ignore
a large number of instances) along with its precision (how many instances it successfully
classifies). High precision but low recall offers an incredibly accurate result but also misses
many difficult-to-classify instances. The higher the F-Measure, the better the model’s
performance. The F-Measure aims to figure out a balance between both precision and recall.
It can be stated mathematically as Equation (6):

F1score =
2 ∗ Prec ∗ Rec

Prec + Rec
(6)

The correlation coefficient for MCC represents a measure of quality between the
dependent classes. Unlike sensitivity (recall), precision, and accuracy, its value ranges
from minus one to one. A value near minus one indicates a weak prediction, a zero value
indicates a fully random prediction, and a value near one indicates a strong and good
performance prediction. It can be stated mathematically as Equation (7):

MCC =
TP ∗ FN − FP ∗ FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

The ROC area measurement is a measure of classifier performance, and several plots
provide visual representations. It is one of the essential values output by WEKA. It gives an
idea of how the classifiers are performing in general. But, interpreting ROC curves requires
particular caution when used with imbalanced datasets.

When evaluating binary classifiers on unbalanced datasets, the PRC plot is more
informative than the ROC plot, which is a graph depicting the tradeoff between the TPR
and FPR. Basically, we calculate the TPR and FPR for each threshold and plot them on
a single chart. Naturally, the higher the TPR and the lower the FPR for each threshold,
the better; therefore, classifiers with more top-left side curves are better.
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The TPR, also known as the sensitivity, measures how accurate a test is. The TPR is
the probability that an actual positive will test positive (instances correctly classified as a
given class).

6.4.2. Analyzing the Performance of ML Models

The evaluation metrics in this research were calculated by using a range of commonly
used ML classifiers. To avoid the need for reimplementation, the classifiers utilized in this
experiment were taken from the widely used WEKA tool [68]. The classifiers chosen were
distinct from each other based on their type, the number of features, and the classification
performance. The selected classifiers were Naive Bayes [69], Decision Tree (J48) [70],
SVM [71], K-nearest neighbors (KNN) [72], neural networks [73], Random Forest [74],
Random Tree [75], Single Conjunctive rules [74], and Naive Bayes Multinomial [75].

The performance of these supervised ML classifiers is compared in this research, which
is known to have excellent accuracy levels with minimal computing costs. These classifiers
are described in detail below.

7. Result Discussion

The purpose of this section is to evaluate the effectiveness of the proposed dataset at
evaluating the performance of the various ML classifiers listed in Section 6.4.2. Further-
more, we aim to benchmark the proposed dataset against existing well-known datasets to
highlight the uniqueness of the proposed dataset. This section comprises the following
subsections.

7.1. Quantitative Comparison

In this section, we assess the performance of various ML classifiers by using the
dataset proposed in our study. The primary objective is to determine how well each
classifier performs at detecting and classifying instances within the dataset and to quantify
their performance metrics. To achieve this, we employed the classifiers listed in Section 6.4.2
with their default parameters. These classifiers were selected for their ability to handle both
binary and multiclass classification tasks effectively.

Tables 3 and 4 present the evaluation metrics and findings obtained by using the most
commonly used classifiers for classification tasks on the proposed dataset. Two approaches
were utilized to test the classifiers: the “supplied test set” and the “cross-validation test”.

The “supplied test set” involves training the classifiers on one dataset (the training
dataset) and then testing them on a separate dataset (the testing dataset). Specifically,
70% of the data are retained for classifier training, and the remaining 30% are used for
testing to calculate the model’s accuracy.

Table 3. Evaluation metrics of executing the classifiers of the proposed dataset (supplied set test).

Classifier TPR % FPR % Prec % Rec % F1 % MCC % ROC % PRC % DA %

Naive Bayes 0.940 0.051 0.946 0.940 0.940 0.886 0.997 0.994 93.9625

Decision Tree (J48) 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

SVM 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

KNN 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

Neural networks 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

Random Forest 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

Random Tree 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 99.9964

Conjunctive rules 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

Naive Bayes Multinomial 0.914 0.082 0.920 0.914 0.914 0.834 0.979 0.981 91.4248
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Table 4. Evaluation metrics of executing the classifiers on the proposed dataset (cross-validation test).

Classifier TPR % FPR % Prec % Rec % F1 % MCC % ROC % PRC % DA %

Naive Bayes 0.939 0.053 0.945 0.939 0.939 0.884 0.997 0.994 93.8915

Decision Tree (J48) 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

SVM 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

KNN 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 99.993

Neural networks 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

Random Forest 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Random Tree 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 99.993

Conjunctive rules 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 100

Naive Bayes Multinomial 0.967 0.029 0.968 0.967 0.967 0.935 0.991 0.992 96.729

On the other hand, the “cross-validation test” (with ten folds) creates multiple samples
from the training dataset. The model is repeatedly run ten times, with one fold saved for
validation and the other nine folds used for model training in each run. The average of
all ten folds yields the cross-validation result. This approach trains the model on various
random data selections, enhancing its reliability and robustness [76].

By employing these evaluation methods, this study aims to comprehensively assess the
performance of the classifiers and determine their effectiveness at handling the proposed
dataset for classification tasks. Using supplied test sets and cross-validation tests ensures a
thorough evaluation of the classifiers’ capabilities and provides valuable insights for model
selections and performance comparisons.

Tables 3 and 4 show that the proposed dataset and features performed efficiently
in all the classifiers tested. Furthermore, the obtained evaluation metrics were strong
and consistent across each testing approach, confirming that the employed features and
representation are appropriate for detecting this attack.

Some classifiers already achieved excellent results; therefore, not all need improve-
ments. However, researchers can try to improve those that did not attain high values by
modifying the features by using feature selection techniques to reduce them in order to
enrich the features, extract extra features, or optimize the classifiers. Furthermore, be-
cause these classifiers were used with their default settings, parameter adjustment/tuning can
enhance the evaluation metrics achieved for the classifiers that did not attain high values.

Based on these findings, it was confirmed that the proposed dataset fulfilled the final
requirement of an effective dataset. Furthermore, by applying any suggested classification
methods in the optimization zone to the dataset and matching the classification abilities
of the approach to actual outcomes, as illustrated in Tables 3 and 4, this dataset can be
employed for a classification evaluation of any proposed method in the optimizing field.
Furthermore, the provided dataset may be adopted to know the differences between normal
requests and HTTP-GET flood DDoS attack distinctions on CCEs to provide additional
detection systems.

7.2. Qualitative Comparison

A network-traffic-based dataset comprising the data of the lower layers of the OSI
reference model does not contain sufficient information for detection algorithms to distin-
guish attack and normal HTTP-GET requests. In addition, the scarcity of publicly available
log-based datasets on CCEs motivates us to generate one that contains HTTP-GET flood
DDoS attacks and normal HTTP-GET requests on CCEs.

Dataset availability is a major issue for ML/DL intrusion detection researchers due to
legal and privacy concerns. Existing HTTP datasets in different environments may fulfill
the need of a certain group of researchers but often fail to meet the aims of others, and many
are not publicly accessible.
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Even if available, publicly accessible datasets are often altered to protect users’
anonymity, limiting complete data access. Therefore, this research aims to develop an alter-
native HTTP-based reference dataset that meets the requirements for detecting HTTP GET-
based attacks on CCEs and overcomes the shortcomings of existing benchmark datasets.
The proposed dataset was evaluated and found to be reliable enough for online access by
other researchers.

This section compares the proposed dataset to existing HTTP datasets based on various
criteria to highlight the uniqueness of our dataset. These criteria are:

• Availability of two separate dataset versions: Having two versions of the dataset, one
for testing and the other for training, is necessary to evaluate and test the detection
systems. This approach allows for the simulation of real-world implementation by
training the system on one dataset and testing it on another.

• Labeled dataset: Labeling a dataset is crucial to validate the creation and improvement
in detection systems. Each record in the dataset must be assigned a deterministic
class label that indicates its source (normal or abnormal). An unlabeled dataset is
unsuitable for evaluating detection systems’ accuracy.

• Availability of CCE configuration information: The CCE configuration includes in-
formation on the infrastructure, servers, and devices required to create the CCE and
generate requests. This information is vital for CCE security researchers to understand
the nature of the requests generated on CCEs and other relevant data to understand
the dataset better.

• Online accessibility: The publicly available dataset allows researchers to evaluate
and compare their work fairly with other studies using the same dataset. Therefore,
the proposed dataset is freely available on the Internet [77].

• Variety of attack scenarios: Evaluating a detection system by using a dataset com-
prising various attacks ensures that the system has been exposed to diverse attack
scenarios. The metrics used to measure attacks, such as the number of requests sent,
frequency, destination, source, and time, can differ between attacks.

Table 5 summarizes the qualitative comparisons of the proposed dataset with the
previously published datasets, addressing the issues and difficulties of the latter.

Table 5. Qualitative comparison between proposed dataset and existing datasets.

Dataset Class Label Attack Type Attack Scenario Environment
Type Availability Data Format Representation

(Source)

Sask-HTTP
(Saskatchewan
HTTP) [78]

unlabeled HTTP requests Nondiverse Non-CCE Available with
restricted access Common Log log-based

NASA-
HTTP [79] unlabeled HTTP requests

(flash crowd) Nondiverse Non-CCE Available with
restricted access Common Log log-based

ClarkNet-
HTTP [80] unlabeled HTTP requests Nondiverse Non-CCE Available with

restricted access Common Log log-based

Calgary-
HTTP [81] unlabeled HTTP requests Nondiverse Non-CCE Available with

restricted access Common Log log-based

SDSC-HTTP [82] unlabeled HTTP requests Nondiverse Non-CCE Available with
restricted access Common Log log-based

EPA-HTTP [83] unlabeled HTTP GET,
POST, HEAD Nondiverse Non-CCE Available with

restricted access Common Log log-based

CDX 2009 [84] unlabeled HTTP GET Nondiverse Non-CCE Available with
restricted access Common Log log-based

FIFA World Cup
98 [85] unlabeled HTTP requests

(flash crowd) Nondiverse Non-CCE Available with
restricted access Common Log log-based

DARPA [86] labeled

DOS, user to root
(U2R), remote to
local (R2L),
probing attack

diverse Non-CCE Unavailable tcpdump traffic-based
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Table 5. Cont.

Dataset Class Label Attack Type Attack Scenario Environment
Type Availability Data Format Representation

(Source)

CSIC 2010 HTTP
DATASET [87] labeled

SQL injection,
buffer overflow,
information
gathering, files
disclosure, CRLF
injection, HTTP
(web
application), etc.

diverse Non-CCE
Available with
no restricted
access

packets traffic-based

CIDDS-001 and
CIDDS-002 [88] labeled

DoS, HTTP WS,
Brute Force, Port
Scans. Transport
Protocol
(e.g., ICMP, TCP,
or UDP)

Nondiverse
Non-CCE and
CCE (virtual
environment)

Available with
no restricted
access

flow-based traffic-based

CICIDS2017 [89] labeled

Dos, DDoS,
HTTP, HTTPS,
FTP, SSH, email
protocols

diverse Non-CCE
Available with
no restricted
access

flow-based traffic-based

CICDDoS2019 [90] labeled DNS, TFTP,
WebDDoS, etc. diverse Non-CCE Unavailable flow-based traffic-based

CSE-CIC-
IDS2018 [91] labeled

Dos, DDoS,
Brute Force (FTP,
SSH), DDoS +
Port Scan (UDP,
TCP,
HTTP/HTTPS),
DoS attack,
Infiltration
(Nmap,
portscan), SMTP,
POP3, etc.

diverse CCE
Available with
no restricted
access

flow-based traffic-based

KDD cup 99 [92] labeled DoS, ICMP, TCP,
UDP, HTTP diverse Non-CCE Available with

restricted access flow-based traffic-based

NSL-KDD [93] labeled DoS, ICMP, TCP,
UDP, HTTP diverse Non-CCE

Available with
no restricted
access

flow-based traffic-based

AIT Log
Dataset [41] labeled

Webmail (nmap
scan,
smtp-user-enum,
webshell, nikto
scan, etc.)

diverse CCE
Available with
no restricted
access

combined log log-based

Harvard
Dataverse,
V1 [94]

labeled
HTTP
(application
server)

diverse CCE Unavailable combined log log-based

UNB ISCX
2012 [14] labeled

HTTP, SMTP,
SSH, IMAP,
POP3, FTP, etc.

diverse Non-CCE Available with
restricted access flow-based traffic-based

Kyoto [95] labeled
HTTP, HTTPs,
FTP, SSH, mail
traffic data, etc.

diverse Non-CCE Available packets traffic-based

ECML-KDD [96] labeled

HTTP, Cross-Site
Scripting, SQL,
XPATgives our
dataset

nondiverse Non-CCE restricted access packets traffic-based

Alkassasbeh et al.
2016 [30] labeled

HTTP flood,
SIDDOS, UDP
flood, and Smurf

nondiverse Non-CCE restricted access packets traffic-based

Our dataset labeled
HTTP
(WS-HTTP flood
DDoS attack)

diverse CCE
Available with
no restricted
access

combined log log-based

Table 5 shows that publicly accessible datasets are often generated in simulated or
virtual environments rather than real CCEs. However, these environments cannot accu-
rately imitate actual CCE behaviors, resulting in biased characteristics that do not have
the features of CCEs and rendering them ineffective at detecting attacks. Additionally, the
datasets collected in a CCE give our dataset the necessary features to improve detection.
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A labeled dataset incorporates the evaluation of detection systems. However, most
public dataset are not labeled, making them unusable for assessing these systems. Another
issue is their representation. Most publicly accessible datasets were not collected from
log files, making them unable to properly represent HTTP-GET flood attack behaviors.
The proposed dataset is different from the existing dataset in the following ways:

• Real-World Implementation in CCEs: Unlike many datasets generated in simulated or
virtual environments, the proposed dataset is implemented in a real CCE environment.
This real-world implementation ensures that the dataset reflects the complexities and
nuances present in actual CCE scenarios, providing a more accurate representation of
the challenges faced by modern Intrusion Detection Systems.

• Focus on Specific Attack Type: The dataset is specifically tailored to focus on HTTP-
GET flooding distributed denial-of-service (DDoS) attacks. While some existing
datasets may cover a wide range of attack types, the proposed dataset’s dedicated fo-
cus allows for in-depth analysis and specialized detection techniques for this prevalent
and critical threat.

• CCE-Specific Features from Multiple Sources: The proposed dataset is enriched with
CCE-specific features collected from three distinct sources: access logs, CCE logs,
and VM resources. Our dataset of diverse data sources provides our data with
unique advantage over existing datasets that lack CCE-specific features. Incorporating
information from various sources within the CCE environment makes the dataset more
comprehensive and representative of real-world network scenarios. This distinction is
crucial because the availability of CCE-specific features allows IDSs to leverage context-
aware information and tailor their detection mechanisms to the specific characteristics
of CCEs. As a result, the proposed dataset empowers researchers to design IDSs that
are better equipped to detect and mitigate threats in CCEs effectively.

Finally, we suggest the following mitigation plan to prevent HTTP-GET flooding
attacks on CCEs:

• Integrating a trustworthy DDoS protection service that specializes in mitigating HTTP
GET deluge attacks is crucial. This service can detect and block malicious traffic before
it reaches the target system, ensuring it is accessible to legitimate users.

• Implementing rate-limiting and throttling mechanisms on the targeted system controls
the number of GET requests from specified IP addresses or users within a given
time. This mitigates the effects of deluge attacks by preventing a single source from
saturating the system with excessive requests.

• It is essential to deploy a web application firewall (WAF) specifically configured to
detect and thwart malicious HTTP GET inundation attempts. The WAF can analyze
incoming traffic, recognize suspicious patterns, and implement predefined rules to
differentiate between legitimate requests and attack traffic, thereby increasing the
system’s resistance to deluge attacks.

8. Conclusions and Future Work

The HTTP-GET message is vital for any WS to work correctly. However, it is vulnerable
to DoS and DDoS attacks, and HTTP GET-based attacks are among the most dangerous
and devastating. Many proposed detection systems have detected DDoS attacks based on
HTTP-GET. But, more often than not, the evaluation and comparison of these systems rely
on self-generated datasets, and most existing datasets represent traditional environments,
which are ineffective for CCEs. Furthermore, nonqualified features from non-CCEs are
used to describe these datasets, resulting in misclassification problems for classifiers.

Meanwhile, CCE-based datasets with nonsecurity objectives usually have limited
attack scenarios, are unavailable for others to use, or contain unlabeled requests. As a
result, they cannot be used to create, train, or/and test detection systems in CCEs for HTTP
GET-based DDoS attack scenarios.

The proposed dataset fulfilled all the requirements for an adequate dataset since it was
created from real-world requests on CCEs, which is crucial since the nature and environ-
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ment of the CCE are different from that of non-CCEs. It also includes all possible scenarios
of HTTP-GET DDoS attacks and properly and wholly labeled requests, represented by
using representative features, and a balanced ratio of normal and attack requests. Further-
more, the employed representation and features were evaluated by using several classifiers
(with their default settings) to achieve an acceptable and reliable detection accuracy and
False Positive rates. Furthermore, the proposed datasets outperformed the existing datasets
qualitatively (according to the criteria) in several metrics.

Although the proposed dataset is currently limited to IPv4-based HTTP-GET flood
DDoS attacks on CCEs, future work will include other HTTP-based attacks, including
HTTP-POST-based ones and IPv6-based attack requests. In addition, future work on the
proposed dataset should keep updating and expanding it by using various tools to increase
the number of attacks engaging in abnormal activity and the ratio of malicious requests.
In addition, more clients (normal requests) will perform routine requests to avoid using
balancing techniques in the future, such as SMOTE. These activities add more realistic
dataset requests and are necessary for labeling and validating them.
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