
Citation: Yi, J.; Liu, X. Deep

Reinforcement Learning for

Intelligent Penetration Testing Path

Design. Appl. Sci. 2023, 13, 9467.

https://doi.org/10.3390/

app13169467

Academic Editors: Yutaka Ishibashi

and Aleksander Mendyk

Received: 9 July 2023

Revised: 10 August 2023

Accepted: 19 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Deep Reinforcement Learning for Intelligent Penetration
Testing Path Design
Junkai Yi 1 and Xiaoyan Liu 2,*

1 School of Automation, Key Laboratory of Modern Measurement and Control, Technology Ministry of
Education, Beijing Information Science and Technology University, Beijing 100192, China; yijk@bistu.edu.cn

2 School of Automation, Beijing Information Science and Technology University, Beijing 100192, China
* Correspondence: 2021020435@bistu.edu.cn

Abstract: Penetration testing is an important method to evaluate the security degree of a network
system. The importance of penetration testing attack path planning lies in its ability to simulate
attacker behavior, identify vulnerabilities, reduce potential losses, and continuously improve security
strategies. By systematically simulating various attack scenarios, it enables proactive risk assessment
and the development of robust security measures. To address the problems of inaccurate path
prediction and difficult convergence in the training process of attack path planning, an algorithm
which combines attack graph tools (i.e., MulVAL, multi-stage vulnerability analysis language) and
the double deep Q network is proposed. This algorithm first constructs an attack tree, searches
paths in the attack graph, and then builds a transfer matrix based on depth-first search to obtain all
reachable paths in the target system. Finally, the optimal path for target system attack path planning
is obtained by using the deep double Q network (DDQN) algorithm. The MulVAL double deep
Q network(MDDQN) algorithm is tested in different scale penetration testing environments. The
experimental results show that, compared with the traditional deep Q network (DQN) algorithm, the
MDDQN algorithm is able to reach convergence faster and more stably and improve the efficiency of
attack path planning.

Keywords: deep reinforcement learning; penetration testing; attack graph; improved DQN algorithm;
attack path planning

1. Introduction

With the rapid development of the Internet and information technology, traditional
security defense methods have been unable to cope with increasingly complex network
security threats. Penetration testing [1] is an important method to assess the security degree
of network systems. It simulates invasive behavior from the perspective of the attacker,
finds the attack path hidden in the system. and then evaluates the security performance
of the system. However, manual penetration testing requires strong professional skills.
In recent years, automated penetration testing has become one of the “hotspots” in the
network security field. As the key step in automated penetration testing, attack path
planning is of great significance. Penetration testing path design refers to the process of
strategically mapping out potential routes an attacker might take to exploit vulnerabilities
within a target system. This involves analyzing the system’s architecture, identifying weak
points, and determining the sequence of steps an attacker could follow to compromise its
security. The goal is to simulate real-world attack scenarios, assess potential risks, and
enhance the system’s defenses by proactively addressing these vulnerabilities.

Almazrouei et al. [2] used an attack graph model to find attack paths. This model is
widely used in assessing network vulnerabilities. However, because of the state explosion
problem, it is more suitable for small network penetration testing scenarios. To conduct pen-
etration testing in large-scale network environments, a penetration scenario is transformed

Appl. Sci. 2023, 13, 9467. https://doi.org/10.3390/app13169467 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169467
https://doi.org/10.3390/app13169467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3629-1957
https://doi.org/10.3390/app13169467
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169467?type=check_update&version=1

Appl. Sci. 2023, 13, 9467 2 of 15

into the planning domain definition language (PDDL), and classical planning algorithms
are used to discover the attack paths. The penetration testing network environment is mod-
eled by description files of the network configuration and vulnerability information [3–5]. The
basic idea of this kind of method is to transform the penetration testing problem into PDDL,
and then to obtain the attack path by using an artificial intelligence planning algorithm.

To find the best attack path in the penetration testing of uncertain state space, the
probability is incorporated into the classical planning algorithm, and a partially observable
Markov decision process (POMDP) is used to model the attack path planning problem.
This is because the action uncertainty should be considered in the attack path planning
problem [6,7]. The POMDP model has achieved success in academic applications and
solved some problems caused by the uncertainty state space of penetration testing, but there
are still some difficulties in achieving accurate solutions. There are significant limitations
to the scale of the problem that can be solved using POMDP [8], which makes it difficult to
apply to real penetration testing situations.

The Markov decision process (MDP) [9–11] treats penetration testing as a state tran-
sition, reflecting the uncertainty of penetration testing. Some reinforcement learning
algorithms are modeled by an MDP and are trained by interacting with the environment.
Then, the policy for attack path planning is generated and the goal of maximizing long-term
reward can be achieved. At the same time, the MDP is more generalizable than the POMDP
model because of its lower computational complexity. Gangupantulu et al. [12] presented
methods for constructing attack graphs using notions from IPB on a cyber terrain, introduc-
ing the cyber terrain by modifying the state transition probabilities and reward function.
The methodology proposed maintains an automated, scale-oriented approach to construct-
ing MDPs, while introducing notions of a cyber terrain that help ground reinforcement
learning agent behavior to reality.

The traditional deep Q network (DQN) algorithm is commonly used in reinforcement
learning. It was the first mature algorithm to combine deep learning and reinforcement
learning [13]. The deep Q network algorithm has demonstrated better performance than
the previous algorithm in many experiments [14,15]. The value of Q is easily overestimated,
which leads to suboptimal policy updates and divergent behavior. Wang et al. [16]
improved the deep Q network algorithm by adopting a dueling network mechanism
and using the classical Q learning algorithm to learn the conservative Q function. In this
way, the training efficiency was improved. Tran et al. [17] proposed the HA-DRL algorithm,
which uses a hierarchical deep reinforcement learning architecture. It uses an algebraic
action decomposition strategy to solve the problem of the large discrete action space of
penetration testing, finding a stable optimal attack strategy more quickly.

In recent years, with the continuous development of deep reinforcement learning [18],
more and more researchers have applied deep reinforcement learning to penetration testing
and achieved good results. Yang et al. [19] introduced a coverage-based masking mechanism
that reduced attention on previously selected actions to help the agent adapt to future explo-
ration. Tran et al. [20] employed an algebraic action decomposition strategy. The method
proposed was able to find the optimal attack policy in scenarios with large action spaces faster
and more stably than a conventional deep Q learning agent. Cody et al. [21] built on the
previous crown jewels (CJ) identification that focused on the target goal of computing optimal
paths that adversaries may traverse toward compromising CJs or hosts within their proximity.
Ghanem et al. [22] proposed an approach called the intelligent automated penetration testing
framework (IAPTF), utilizing model-based RL to automate sequential decision making. The
IAPTF with hierarchical network modeling outperformed previous approaches as well as human
performance in terms of time, the number of tested vectors, and accuracy, with the advantages
increasing with network size. The Summary of typical algorithms is shown in Table 1.

In summary, the main contributions of this paper are as follows:

• An MDDQN algorithm for improving DQN is proposed. The MDDQN algorithm
integrates attack graphs with the double deep Q network (DDQN) algorithm to
address the problem of intelligent penetration testing path design.

Appl. Sci. 2023, 13, 9467 3 of 15

• The MDDQN algorithm partly solves the sparse reward problem that prevails in
reinforcement learning algorithms. It provides more positive rewards to the DDQN
algorithm by using prior knowledge provided by the attack graph.

Table 1. Summary of typical algorithms.

Authors Model Method Used

Zhang et al. [6] POMDP Improved deep recurrent Q network
Yang et al. [8] POMDP AAM-extended POMDP approach

Cody [10] POMDP A layered reference model with RL and attack graph
Wang et al.[16] MDP DUSC-DQN
Tran et al. [20] MDP Deep cascaded reinforcement learning agents
Hu et al. [23] MDP Deep Q network with attack graph

The rest of this paper is organized as follows: Section 2 introduces the research
background of deep reinforcement learning and improved deep Q network algorithms;
Section 3 proposes an attack path planning method that combines the attack graph with
the double deep Q network algorithm; Section 4 discusses the experimental results and
analysis; Section 5 presents the conclusions of the experiment and discusses future work.

2. Related Work
2.1. Deep Reinforcement Learning

As an artificial intelligence method, deep reinforcement learning combines deep
learning [24,25] and reinforcement learning [26,27]. The agent has strong perception ability
in deep learning and strong decision-making in reinforcement learning. Deep reinforcement
learning complements the advantages of both and the basic principle of deep reinforcement
learning is shown in Figure 1.

ActionState
Environment

Reward

Action a

Deep Neural network

Agent
Policy πPolicy π

State s

Figure 1. Basic principle of deep reinforcement learning.

Deep reinforcement learning leverages deep neural networks as function approx-
imators to represent the agent’s policy or value function. These neural networks can
learn complex patterns and representations, allowing agents to handle high-dimensional
and continuous state spaces. Compared with traditional reinforcement learning, deep
reinforcement learning greatly improves the efficiency of agent training.

This advancement has enabled deep reinforcement learning to excel in domains
such as mechanical control, network security, autonomous driving, healthcare, finance,
and others [28]. It has demonstrated remarkable success in training robots to perform
intricate tasks, optimizing financial portfolios, and addressing other complex challenges
across different fields. Deep reinforcement learning is still developing at high speed, with
researchers continuously proposing algorithms with better training effects and applying
them to an increasingly wide range of fields [29].

Appl. Sci. 2023, 13, 9467 4 of 15

2.2. Improved Deep Q Network Algorithm

DQN [30–32] is the first mature algorithm that combines deep learning and reinforce-
ment learning, and is an extension of the Q-learning algorithm. The Q-learning algorithm
initializes the Q-table with a limited number of states and actions and continuously updates
them, but it is prone to the problem of state explosion.

The DQN algorithm adopts the experience replay method and updated method with
network delay to solve the problems of learning instability and excessive sample correlation
in the Q-learning algorithm.

The experience replay method stores the past training data. When the parameters are
updated, a part of the data is exacted from the memory in order to solve the problem of the
high correlation between data.

The updated method with network delay creates the target Q network. During
the update process, only the parameter of the current Q network is updated, and the θ
parameter of the target Q network remains unchanged. After a certain number of iterations,
the updated current Q network is copied to the target Q network.

The target value is relatively fixed for a period of time when the target Q network
does not change. Therefore, the introduction of the target Q network increases the stability
of the DQN algorithm learning. In each episode of DQN algorithm training, the network
parameters will be updated through gradient descent backpropagation to minimize the
loss function.

The DQN algorithm uses the Q network approximation function to solve the con-
tinuous state space problem. However, it still has the problem of overestimating the Q
value. To improve the calculation method of the target and deal with this problem, the
DDQN is proposed. The DDQN algorithm is an improvement of the DQN algorithm. The
structure of the DDQN algorithm is similar to the DQN algorithm, but the target function
is improved, as shown in Equations (1) and (2).

YDQN
t = Rt+1 + γ max

a
Q(St+1, a; θ−t) (1)

YDDQN
t = Rt+1 + γQ(St+1, arg max

a
Q(St+1, a; θt), θ−t) (2)

where Rt+1 denotes the reward for the next state, γ represents the discount factor, θ−t
denotes the neural network parameters in the target Q network, and θt represents the
parameters of the current Q network.

The optimal action selection of the objective function in the DDQN algorithm is
based on the Q network parameters that are currently being updated instead of selecting
the maximum value from the target Q network. Therefore, this algorithm solves the
overestimation problem of the DQN algorithm to a certain extent, making the Q value
closer to the true value.

In recent years, more and more improved DQN algorithms have been proposed.
Haarnoja et al. [33] proposed the soft actor-critic (SAC) algorithm. It handles continuous
action spaces and incorporates an entropy regularization term to encourage exploration.
Hessel et al. [34] proposed the Rainbow algorithm, which combines several DQN exten-
sions into a unified framework. It incorporates improvements such as double Q learning,
prioritized experience replay, dueling architectures, distributional reinforcement learning,
and noisy networks.

3. Proposed Method
3.1. Penetration Testing Network Model

In order to use deep reinforcement learning in penetration testing, the network model
for penetration testing needs to be modeled as an MDP. The MDP model is generally
described in the form of quintuple <S, A, P, R, γ> and policy π.

• S represents the set of network environment states, that is, the information obtained
by the agent from the environment, including all host information, such as host

Appl. Sci. 2023, 13, 9467 5 of 15

identification, host privileges, vulnerability information, running services, and the
asset values of hosts.

• A represents the set of actions, that is, the set of operations that the agent performs on
the host, including file access, vulnerability exploitation, and privilege escalation to
the host.

• P denotes the set of transition probabilities between the states and actions. P(s’| s, a)
denotes the probability that the state transfers to s’ when the agent is in the state s and
takes actions a.

• R denotes the reward function. R(s’| s, a) denotes the reward for the state transfers to
s’ when the agent is in the state s and takes action a, and R(s) represents the reward
value obtained by the agent after reaching the state s.

• γ ∈[0,1] is the discount factor, which reflects how much the agent emphasizes long-
term returns. The larger the discount factor, the more important the agent will be for
future long-term returns.

In this process, the agent selects actions based on the policy π. As shown in Equation (3),
the quality of the policy depends on the cumulative rewards obtained after long-term execution.
The goal of the agent is to find an optimal strategy to maximize the cumulative rewards.

Gt = Rt+1 + γRt+2 + . . . =
∞

∑
k=0

rkRt+k+1 (3)

By applying MDP principles, such as state representation, action space, rewards,
and iterative algorithms, MDP-based penetration testing models provide a systematic
framework for modeling and optimizing attacker’s decisions in penetration testing.

3.2. MDDQN Algorithm

MulVAL (multi-stage vulnerability analysis language) [35] is an open source attack
graph generation tool for generating the actual attack tree corresponding to a given network
topology. It is designed to analyze the security of large-scale networks by identifying
vulnerabilities and potential attack paths. MulVAL operates by using the Datalog language
to describe the network topology and vulnerabilities. It allows for the definition of hosts,
services, vulnerabilities, and the relationships among them. By specifying the network
configuration and associated vulnerabilities, MulVAL can generate an attack graph that
can reflect the network topology and vulnerability exploitation of the target system.

We convert the information of the target system into Datalog clauses as follows:

vulExists(webServer, ‘CAN − 2019− 17571’, httpd) (4)

Namely, a vulnerability with CVE ID CAN-2019-17571 was identified on the machine
webserver. We convert the effect of the vulnerability into Datalog clauses such as

vulProperty(‘CAN − 2019− 17571’, remoteExploit, privilegeEscalation). (5)

The vulnerability enables a remote attacker to execute arbitrary code with all
the privileges.

In the attack graph generated by MulVAL, the root node represents the final target of
the attack. Each child node represents an attack behavior or a sub-target.

The flowchart of the MDDQN algorithm is shown in Figure 2. The MDDQN algorithm
first generates the MulVAL attack graph based on the known target system environment
information, including the target system host information and vulnerability information.
Then, it obtains all exploitable paths in the target system and builds the transfer matrix by
depth-first search of the attack graph.

Appl. Sci. 2023, 13, 9467 6 of 15

Matrix

Environment Attack graph

Transfer matrixCurrent network

Target network Loss function

Replay memory

MulVAL

DFS

1
(, , ,)

t t t t
s a r s

+

t
a

t
s

s

'S (', ';)Q s a −

(,
;

)

t
t

t

Q
s a

Figure 2. Flowchart of MDDQN.

The transfer matrix Pnn is shown in Equation (6), where, if state i to state j is not
reachable, then aij = −1; if state i to state j is reachable, then the value of that is shown in
Equation (12).

Pnn=

a11 a12 . . . a1n
a21 a22 . . . a2n
. aij . . .
an1 an2 . . . ann

 (6)

When dealing with multi-subnet networks, MulVAL often generates attack graphs
with higher complexity. Because the neural networks have good processing capabilities for
large-scale data, the MDDQN algorithm combines neural networks with MulVAL, which
can better deal with the potential state explosion problem in attack path planning. The
DDQN algorithm has blind exploration behavior at the early stage of training, and the
attack graph can provide a priori information for the DDQN algorithm to improve the
training efficiency.

In the training process of the DDQN algorithm, it firstly initializes the parameters of
the neural network, the current Q network and the target Q network parameters, and uses
the ε-strategy to select an action. Then, it executes the action and observes the reward, the next
state, and whether it is the end state. Next, it stores the (s, a, r, s’) quads into the memory pool.

Agent exploration is performed with probability ε at a time, and the application is
performed with 1 − ε. ε decreases throughout the training. At the beginning, the training
agent focuses on exploration, while later in training it focuses on application.

ε = max{εmin, 1− 1− εmin ∗ step
total step

} (7)

The current Q network parameters update, randomly drawing small batches of sam-
ples from the memory pool. The Q value can be calculated according to Equation (8) and
the loss function. Then, the agent updates the current Q-network parameters by using
gradient descent backpropagation of the neural network.

yj =

{
rj I f s′ is terminal
rj + γQ(s′, max

a
(s′; θ); θ−) Otherwise. (8)

where rj denotes the reward of the current state. γ represents the discount factor. s′ denotes
the next state, and θ denotes the neural network parameters of the current Q network. θ−

represents the neural network parameters of the target Q network.
The transfer matrix is input into the DDQN algorithm and the agent starts training to

obtain the best attack path by the deep neural network, ε-strategy, network delay parameter
update, experience replay and loss function calculation. As shown in Equation (9), the loss

Appl. Sci. 2023, 13, 9467 7 of 15

function is the mean square error (MSE) of the difference between the current Q network
value and the target Q network maximum value.

L(θi) = MSE(YDDQN
t −Q(St, At; θ)) (9)

The agent updates the parameters of the target Q network after each certain number of
training steps. Until the algorithm reaches the maximum number of training steps or invades
the sensitive host, the agent reaches the end state. The Q network is updated as follows:

Q(St, At, θ)← Q(St, At, θ) + α[Rt+1 + γmaxαQ̂(St+1, αt, θ)−Q(St, At, θ)] (10)

where α is the learning rate.
In this paper, the method of generating the transfer matrix is improved from Hu et al. [23].

That is, all nodes in the attack graph are mapped into a matrix that includes the common
vulnerability scoring system version 3 (CVSS 3) [36] values of the vulnerabilities. It also
includes other operations, such as accessing predefined scores for files.

For a clearer understanding of the MulVAL double deep Q network(MDDQN) algo-
rithm, pseudocode is added, as shown in Algorithm 1.

Algorithm 1 MDDQN algorithm

1: Obtain target system topology information;
2: Set sensitive host value;
3: Use MulVAL to create attack tree;
4: Search attack graph paths using depth first algorithm;
5: Establish transfer matrix; /*Equation (6)*/
6: Neutral networks initialization;
7: for episode = 1 to maxepisode do
8: for t = 1 to T do
9: Use ε-greedy to select action a according to Q value /*Equation (7)*/

10: Execute action a, receive next state s’, reward r, and whether done
11: Add transition tuple (s,a,r,s’) to D
12: s = s’
13: if |D| > batchsize then
14: Sample and construct target Q value /*Equation (8)*/
15: Do a gradient descent step with loss function /*Equation (9)*/
16: Replace target parameters θ− ← θ every N steps /*Equation (10)*/
17: end for
18: end for

If the corresponding host h to the state s is not a sensitive host, the host value is 0 and
the immediate reward Reward(s,a) obtained by action a is negative. If the state correspond-
ing to s’ is a sensitive host, the immediate reward result is shown in Equation (11).

Reward(s, a) = RewardInit − Costvul (11)

RewardInit = Scorevul + Valueh (12)

where RewardInit represents the predefined scores of the vulnerability exploitation and
privilege escalation in the transfer matrix, h represents all hosts invaded by the agent, and
Costvul denotes the action cost of the vulnerability exploited by the agent.

The action cost is set to 6, 4, and 2 based on the high, medium, and low access
complexity of the vulnerability common vulnerability s system. As shown in Equation (12),
Scorevul is the CVSS 3 value of the vulnerability exploited by the agent, and Valueh denotes
the asset value of host h. Based on these reward value settings, the goal of agent training is
to attack the host with the most valuable host by using fewer operations.

Appl. Sci. 2023, 13, 9467 8 of 15

4. Experiments

The experiments undertaken used Pytorch as the code structure of the algorithm. The
hardware configuration included Intel i7-11800H CPU, 16G RAM, and Kali Linux as the
operating system.

The experiments tested the effectiveness of the algorithm by building different scale
penetration testing experimental scenarios. Firstly, different algorithms were used in
the penetration testing experimental scenarios to compare the convergence speed at a
certain number of training episodes. Then, in order to test the scalability of the algorithm,
the MDDQN algorithm was used to train the agent in different scale penetration testing
experimental scenarios.

4.1. Experiment Setup

The attack graph generated by Mulval is shown in Figure 3. The network shown in
Figure 4 is scenario 1 of the penetration testing, which includes 3 subnets and 8 hosts. The
subnets are separated by firewalls. The firewall only allows traffic that has been set in
advance, and the host can communicate within the same subnet. The specific configuration
of each host is shown in Table 2. The attacker performs vulnerability exploitation and privi-
lege escalation operations based on the existing vulnerabilities and the running processes
of the host.

In experimental scenario 1, for each host, the agent can perform vulnerability exploita-
tion and privilege escalation operations. The vulnerabilities selected in the experiments are
those frequently exploited by attackers during general penetration testing. For example, the
agent can use the CVE-2021-3824 vulnerability for SQL injection and the CVE-2022-21510
vulnerability can be used to escalate privilege. The vulnerability information of the hosts
is shown in Table 2. Each host defines the host value, the specific vulnerabilities, and the
services and processes running on that host.

Table 2. Host configuration list.

Number Host Host Value Vulnerability Product Protocol Port

(1,0) VPNServer 0 CVE-2021-3824 OpenVPN SSL/HTTP 1194
(1,1) CitrixServer 0 CVE-2017-6360 — HTTP 8088
(2,0) WebServer 0 CVE-2019-17571 httpd TCP/UDP/HTTP 80
(2,1) FileServer 0 CVE-2021-35223 — FTP 21
(2,2) Workstation 0 CVE-2022-24541 — FTP/NFS/HTTP 8080
(3,0) CommServer 0 CVE-2021-27085 IE HTTP 9090
(3,1) DatabaseServer 200 CVE-2022-21510 mounted SSH/HTTP 1433
(3,2) Operatingstation 0 — — HTTP 8088

In this paper, the proposed algorithm is tested and compared with other algorithms
using three experimental scenarios. The number of subnets, hosts, and host vulnerabilities
in each network environment is shown in Table 3 and the complexity of attack path planning
gradually increases.

The MulVAL attack graph uses the Datalog language as the input text language.
Therefore, in this paper, the penetration testing environment is described using the Datalog
language. To verify the effectiveness of the algorithm, this paper analyzes the change in
total reward with the number of training steps during the operation of the algorithm.

Appl. Sci. 2023, 13, 9467 9 of 15

7:inCompetent

(victim_2):1

6:hacl(citrixServer,

internet,httpProtocol,

httpPort):1

4:RULE 22 (Browsing

a malicious website):0

3:accessMaliciousInput(citrix

Server,victim_2,ie):0

8:hasAccount(

victim_2,citrix

Server,user):1

9:vulExists(citrixSer

ver,’CVE-2017-

6360’,ie,remoteClie

nt,privEscalation):1

2:RULE 3 (remote exploit for a client

program):0

1:execCode(citrixServer,user):0

15:inCompete

nt(victim_1):1
5:attackerLoca

ted(internet):1

14:hacl(commSer

ver,internet,httpPr

otocol,httpPort):1

13:RULE 22 (Browsing a

malicious website):0

12:accessMaliciousInput(co

mmServer,victim_1,windows

_2000):0

16:hasAccount(v

ictim_1,commSe

rver,user):1

17:vulExists(commS

erver,’CVE-2021-

27085’,windows_20

00,remoteClient,priv

Escalation):1

11:RULE 3 (remote exploit

for a client program):0

10:execCode(commServer,user):0

22:hacl(commSe

rver,DataServer,

httpProtocol,http

Port):1

21:RULE 5 (multi-hop access):0

20:netAccess(DataServer,htt

pProtocol,httpPort):0

23:networkServiceI

nfo(DataServer,mou

ntd,httpProtocol,htt

pPort,root):1

24:vulExists(DataS

erver,’CVE-2022-

21510’,mountd,rem

oteExploit,privEscal

ation):1

19:RULE 2 (remote exploit of a server

program):0

18:execCode(DataServer,root):0

30:inCompete

nt(victim_5):1

29:hacl(vpnServe

r,internet,httpProt

ocol,httpPort):1

28:RULE 22 (Browsing a malicious

website):0

27:accessMaliciousInput(vpnSe

rver,victim_5,openvpn):0

31:hasAccount

(victim_5,vpn

Server,user):1

32:vulExists(vpnSer

ver,’CVE-2021-

3824’,openvpn,rem

oteClient,privEscala

tion):1

26:RULE 3 (remote exploit for a

client program):0

25:execCode(vpnServer,user):0

Figure 3. Attack graph.

Appl. Sci. 2023, 13, 9467 10 of 15

（2，0） （2，1） （2，2）（1，0） （1，1）

（3，0） （3，1） （3，2）

Figure 4. Penetration testing network environment in scenario 1.

Table 3. Experiment scenario list.

Scenario Number of
Subnets

Number of Hosts
per Subnet

Number of
Vulnerabilities Accuracy Values

Average Number
of Steps

(MDDQN)

Scenario 1 3 [2,3,3] 7 190 3.78 × 105

Scenario 2 4 [2,4,3,4] 10 188 4.09 × 105

Scenario 3 6 [2,4,2,4,2,3] 14 188 5.17 × 105

4.2. Experimental Results and Analysis

The MDDQN algorithm proposed in this paper is compared with the DQN algorithm,
the DDQN algorithm and the DuelingDQN algorithm. The experimental results are shown
in Figure 5, which show as the number of training episodes grows, the changes in the
rewards obtained by the agent for each algorithm in scenario 1. The hyperparameter setting
is shown in Table 4.

Table 4. Hyperparameter list.

Hyperparameter Value

Max steps 1,000,000
Max episode steps 2000

Learning rate 0.001
Batch size 32

Discount factor 0.9
Replay memory size 10,000

Hidden layer size 64
Target network update frequency 100

In scenario 1, four algorithms were tested, as shown in Figure 5. In scenario 1, all
four algorithms reached convergence within a limited number of steps. Among them, the
MDDQN algorithm converged the fastest, reaching convergence earlier than the other
algorithms. Both the DQN algorithm and the DDQN algorithm showed large oscillations
during training. The DDQN algorithm alleviated the problem of overestimation to a certain

Appl. Sci. 2023, 13, 9467 11 of 15

extent relative to the DQN algorithm. Since the MDDQN algorithm has a priori knowledge
provided for it by the attack graph, the DuelingDQN algorithm has a prioritized playback
mechanism in it. Therefore, the MDDQN algorithm and DuelingDQN algorithm training
process is more stable.

(a) MDDQN algorithm (b) DQN algorithm

(c) DDQN algorithm (d) DuelingDQN algorithm

Figure 5. Algorithm experimental results in scenario 1.

To verify that the MDDQN algorithm has scalability, the algorithm was tested accord-
ing to the list of experimental scenarios in Table 3. The experimental results are shown in
Figures 6 and 7. In scenario 2, the maximum number of training steps in each episode was
set to 2000 and the max steps was set to 2,000,000. In scenario 3, the maximum number of
training steps in each episode was set to 5000 and the max steps was set to 2,000,000. The
other hyperparameters were consistent with those listed in Table 3.

In scenario 2, as shown in Figure 6, the DQN algorithm failed to reach convergence
within a limited step size. Due to the increased complexity of the experimental scenarios,
both the DDQN algorithm and the DuelingDQN algorithm showed different degrees
of oscillations during training.The DuelingDQN algorithm, due to the existence of the
preferential return mechanism, obtained a higher reward value than the DDQN algorithm
overall in training.The MDDQN algorithm, based on the priori knowledge provided by the
attack graph, provides more positive incentives to the training, which enabled it to reach
the convergence state quickly.

As shown in Figure 8, the fewer the number of steps per episode that the agent took to
invade sensitive hosts, the closer the intelligent body was to the converged state. The four
algorithms had a similar number of training steps per round at the beginning of training.
As the intelligences continued to train iteratively, the MDDQN algorithm was the first to
reach convergence.

As the complexity of the experimental scenario increased further in scenario 3 shown
in Figure 7, the advantage of the MDDQN algorithm became more significant, with a more
stable training process and the highest convergence efficiency.

Appl. Sci. 2023, 13, 9467 12 of 15

(a) MDDQN algorithm (b) DQN algorithm

(c) DDQN algorithm (d) DuelingDQN algorithm

Figure 6. Algorithm experimental results in scenario 2.

(a) MDDQN algorithm (b) DQN algorithm

(c) DDQN algorithm (d) DuelingDQN algorithm

Figure 7. Algorithm experimental results in scenario 3.

Appl. Sci. 2023, 13, 9467 13 of 15

Figure 8. Mean episode steps versus episode.

In the MDDQN algorithm, the introduction of the attack graph improves the explo-
ration efficiency of the intelligence, which helps the intelligence to learn the best strategy
quickly in the large-scale state space. Also, the introduction of the DDQN algorithm makes
the calculation of the Q value more accurate and improves the convergence speed and
stability of the algorithm.

The MDDQN algorithm proposed in this paper solves the problem of sparse rewards
in traditional DQN algorithms, that is, positive rewards only exist in a very small number
of sensitive hosts in the whole network, and the vast majority of the agent’s exploration
often fails to obtain positive rewards. The transfer matrix generated from the attack graph
results can give more positive guidance in the early stage of agent training, which improves
the training speed of the agent. The introduction of the DDQN algorithm makes the Q value
closer to the real value, and improves the convergence speed and the stability of the algorithm.

5. Conclusions and Future Work

In this paper, an MDDQN algorithm is proposed based on research relating to penetra-
tion testing attack path planning. The MulVAL attack graph is combined with the DDQN
algorithm to provide more positive rewards to the DDQN algorithm by using the a priori
knowledge provided by the attack graph. This solves, to some extent, the sparse reward
problem prevalent in reinforcement learning algorithms. Then the MDDQN algorithm was
subject to experimental testing for attack path planning. The experimental results showed
that the MDDQN algorithm improved the convergence speed of the algorithm and the
attack path planning efficiency was significantly improved. In order to verify the scalability
of the algorithm in different scenarios, three sets of scenario experiments were set up. The
experimental results showed that the advantages of the MDDQN algorithm were more
obvious as the complexity of the experimental scenarios increased. Thus, compared with
the other algorithms, the experimental results fully verify the superiority of the MDDQN
algorithm in this paper. The MDDQN algorithm also suffers from certain limitations, such
as an inability to autonomously scan the constructs and access network information, as
well as a certain degree of overestimation.

In future studies, we intend to consider the problem of sparse rewards in more complex
penetration testing environments and to increase the convergence speed of training. In
order to improve the training efficiency of the agent, in future work, the setting method of
the reward function, the calculation method of the Q value function, and the methods to
guide the agent in the early stage of training will be changed.

Appl. Sci. 2023, 13, 9467 14 of 15

Author Contributions: Conceptualization, X.L. and J.Y.; methodology, X.L. and J.Y.; software, X.L.
and J.Y.; validation, X.L. and J.Y.; formal analysis, X.L. and J.Y.; investigation, J.Y.; resources, J.Y.; data
curation, X.L. and J.Y.; writing—original draft preparation, X.L.; writing—review and editing, J.Y.;
visualization, X.L. and J.Y.; supervision, J.Y.; project administration, J.Y.; funding acquisition, J.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McKinnel, D.R.; Dargahi, T.; Dehghantanha, A.; Choo, K.K.R. A systematic literature review and meta-analysis on artificial

intelligence in penetration testing and vulnerability assessment. Comput. Electr. Eng. 2019, 75, 175–188. [CrossRef]
2. Almazrouei, O.; Magalingam, P. The Internet of Things Network Penetration Testing Model Using Attack Graph Analysis. In

Proceedings of the 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara,
Turkey, 20–22 October 2022; pp. 360–368.

3. Wang, Z.; Zhang, Y.; Liu, Z.; Wei, X.; Chen, Y.; Wang, B. An automatic planning-based attack path discovery approach from IT to
OT networks. Secur. Commun. Netw. 2021, 2021, 1444182. [CrossRef]

4. Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; Traverso, P. Online Learning of Action Models for PDDL Planning. In
Proceedings of the IJCAI, Virtual, 19–26 August 2021; pp. 4112–4118.

5. Liu, M.; Zhao, C.; Xia, J.; Deng, R.; Cheng, P.; Chen, J. PDDL: Proactive Distributed Detection and Localization Against Stealthy
Deception Attacks in DC Microgrids. IEEE Trans. Smart Grid 2022, 14, 714–731. [CrossRef]

6. Zhang, Y.; Liu, J.; Zhou, S.; Hou, D.; Zhong, X.; Lu, C. Improved Deep Recurrent Q-Network of POMDPs for Automated
Penetration Testing. Appl. Sci. 2022, 12, 10339. [CrossRef]

7. Ghanem, M.C.; Chen, T.M. Reinforcement learning for efficient network penetration testing. Information 2019, 11, 6. [CrossRef]
8. Yang, S.; Mao, X.; Liu, W. Towards an extended pomdp planning approach with adjoint action model for robotic task. In

Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14
October 2020; pp. 1412–1419.

9. Li, Q.L.; Ma, J.Y.; Fan, R.N.; Xia, L. An overview for Markov decision processes in queues and networks. In Stochastic Models in
Reliability, Network Security and System Safety: Essays Dedicated to Professor Jinhua Cao on the Occasion of His 80th Birthday; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 44–71.

10. Cody, T. A layered reference model for penetration testing with reinforcement learning and attack graphs. In Proceedings of the
2022 IEEE 29th Annual Software Technology Conference (STC), Gaithersburg, MD, USA, 3–6 October 2022; pp. 41–50.

11. Van Hoang, L.; Nhu, N.X.; Nghia, T.T.; Quyen, N.H.; Pham, V.H.; Duy, P.T.; et al. Leveraging Deep Reinforcement Learning
for Automating Penetration Testing in Reconnaissance and Exploitation Phase. In Proceedings of the 2022 RIVF International
Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 20–22 December 2022; pp. 41–46.

12. Gangupantulu, R.; Cody, T.; Park, P.; Rahman, A.; Eisenbeiser, L.; Radke, D.; Clark, R.; Redino, C. Using cyber terrain in
reinforcement learning for penetration testing. In Proceedings of the 2022 IEEE International Conference on Omni-layer
Intelligent Systems (COINS), Barcelona, Spain, 1–3 August 2022; pp. 1–8.

13. Hafiz, A. A Survey of Deep Q-Networks used for Reinforcement Learning: State of the Art. In Intelligent Communication
Technologies and Virtual Mobile Networks: Proceedings of ICICV 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 393–402.

14. Chowdhary, A.; Huang, D.; Mahendran, J.S.; Romo, D.; Deng, Y.; Sabur, A. Autonomous security analysis and penetration testing.
In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 17–19
December 2020; pp. 508–515.

15. Chaudhary, S.; O’Brien, A.; Xu, S. Automated post-breach penetration testing through reinforcement learning. In Proceedings of
the 2020 IEEE Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July 2020; pp. 1–2.

16. Wang, P.; Liu, J.; Zhong, X.; Yang, G.; Zhou, S.; Zhang, Y. DUSC-DQN: An Improved Deep Q-Network for Intelligent Penetration
Testing Path Design. In Proceedings of the 2022 7th International Conference on Computer and Communication Systems (ICCCS),
Wuhan, China, 22–25 April 2022; pp. 476–480.

17. Tran, K.; Akella, A.; Standen, M.; Kim, J.; Bowman, D.; Richer, T.; Lin, C.T. Deep hierarchical reinforcement agents for automated
penetration testing. arXiv 2021, arXiv:2109.06449.

18. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning
invcommunications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174. [CrossRef]

19. Yang, Y.; Liu, X. Behaviour-diverse automatic penetration testing: A curiosity-driven multi-objective deep Reinforcement
Learning approach. arXiv 2022, arXiv:2202.10630.

http://doi.org/10.1016/j.compeleceng.2019.02.022
http://dx.doi.org/10.1155/2021/1444182
http://dx.doi.org/10.1109/TSG.2022.3188489
http://dx.doi.org/10.3390/app122010339
http://dx.doi.org/10.3390/info11010006
http://dx.doi.org/10.1109/COMST.2019.2916583

Appl. Sci. 2023, 13, 9467 15 of 15

20. Tran, K.; Standen, M.; Kim, J.; Bowman, D.; Richer, T.; Akella, A.; Lin, C.T. Cascaded reinforcement learning agents for large
action spaces in autonomous penetration testing. Appl. Sci. 2022, 12, 11265. [CrossRef]

21. Cody, T.; Rahman, A.; Redino, C.; Huang, L.; Clark, R.; Kakkar, A.; Kushwaha, D.; Park, P.; Beling, P.; et al. Discovering exfiltration
paths using reinforcement learning with attack graphs. In Proceedings of the 2022 IEEE Conference on Dependable and Secure
Computing (DSC), Edinburgh, UK, 22–24 June 2022; pp. 1–8.

22. Ghanem, M.C.; Chen, T.M.; Nepomuceno, E.G. Hierarchical reinforcement learning for efficient and effective automated
penetration testing of large networks. J. Intell. Inf. Syst. 2023, 60, 281–303. [CrossRef]

23. Hu, Z.; Beuran, R.; Tan, Y. Automated penetration testing using deep reinforcement learning. In Proceedings of the 2020 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 7–11 September 2020; pp. 2–10.

24. Mathew, A.; Amudha, P.; Sivakumari, S. Deep learning techniques: an overview. In Advanced Machine Learning Technologies and
Applications: Proceedings of AMLTA 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 599–608.

25. Hooshmand, M.K.; Hosahalli, D. Network anomaly detection using deep learning techniques. CAAI Trans. Intell. Technol. 2022,
7, 228–243. [CrossRef]

26. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline reinforcement learning: Tutorial, review, and perspectives on open problems.
arXiv 2020, arXiv:2005.01643.

27. Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement learning, fast and slow. Trends
Cogn. Sci. 2019, 23, 408–422. [CrossRef] [PubMed]

28. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. Deep reinforcement learning: A brief survey. IEEE Signal
Process. Mag. 2017, 34, 26–38. [CrossRef]

29. Du, W.; Ding, S. A survey on multi-agent deep reinforcement learning: From the perspective of challenges and applications.
Artif. Intell. Rev. 2021, 54, 3215–3238. [CrossRef]

30. Jang, B.; Kim, M.; Harerimana, G.; Kim, J.W. Q-learning algorithms: A comprehensive classification and applications. IEEE Access
2019, 7, 133653–133667. [CrossRef]

31. Guo, S.; Zhang, X.; Du, Y.; Zheng, Y.; Cao, Z. Path planning of coastal ships based on optimized DQN reward function. J. Mar. Sci.
Eng. 2021, 9, 210. [CrossRef]

32. Li, J.; Chen, Y.; Zhao, X.; Huang, J. An improved DQN path planning algorithm. J. Supercomput. 2022, 78, 616–639. [CrossRef]
33. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic

algorithms and applications. arXiv, 2018, arXiv:1812.05905.
34. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:

Combining improvements in deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence, New
Orleans, LA, USA, 2–7 February 2018; Volume 32.

35. Tayouri, D.; Baum, N.; Shabtai, A.; Puzis, R. A Survey of MulVAL Extensions and Their Attack Scenarios Coverage. IEEE Access
2023, 11, 27974–27991. [CrossRef]

36. Nowak, M.; Walkowski, M.; Sujecki, S. Machine learning algorithms for conversion of CVSS base score from 2.0 to 3.x.
In Proceedings of the Computational Science–ICCS 2021: 21st International Conference, Krakow, Poland, 16–18 June 2021;
Proceedings, Part III; Springer: Berlin/Heidelberg, Germany, 2021; pp. 255–269.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app122111265
http://dx.doi.org/10.1007/s10844-022-00738-0
http://dx.doi.org/10.1049/cit2.12078
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://www.ncbi.nlm.nih.gov/pubmed/31003893
http://dx.doi.org/10.1109/MSP.2017.2743240
http://dx.doi.org/10.1007/s10462-020-09938-y
http://dx.doi.org/10.1109/ACCESS.2019.2941229
http://dx.doi.org/10.3390/jmse9020210
http://dx.doi.org/10.1007/s11227-021-03878-2
http://dx.doi.org/10.1109/ACCESS.2023.3257721

	Introduction
	Related Work
	Deep Reinforcement Learning
	Improved Deep Q Network Algorithm

	Proposed Method
	Penetration Testing Network Model
	MDDQN Algorithm

	Experiments
	Experiment Setup
	Experimental Results and Analysis

	Conclusions and Future Work
	References

