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Abstract: The paper introduces a novel framework for detecting adversarial attacks on machine
learning models that classify tabular data. Its purpose is to provide a robust method for the monitoring
and continuous auditing of machine learning models for the purpose of detecting malicious data
alterations. The core of the framework is based on building machine learning classifiers for the
detection of attacks and its type that operate on diagnostic attributes. These diagnostic attributes
are obtained not from the original model, but from the surrogate model that has been created by
observation of the original model inputs and outputs. The paper presents building blocks for the
framework and tests its power for the detection and isolation of attacks in selected scenarios utilizing
known attacks and public machine learning data sets. The obtained results pave the road for further
experiments and the goal of developing classifiers that can be integrated into real-world scenarios,
bolstering the robustness of machine learning applications.

Keywords: adversarial attacks; explainable artificial intelligence; surrogate models; diagnostic
attributes; trustworthy AI

1. Introduction

The rise of widespread usage of machine learning (ML) has changed many areas of our
lives by allowing the automation of processes based on real-time analysis of vast amounts
of data [1]. But, as the use of ML grows, so do concerns about its safety and trustwor-
thiness. Historically, the approach to trustworthy AI has been characterized by efforts to
promote transparency and interpretability of ML models, which involve understanding the
decision-making processes of ML models, enabling humans to comprehend and trust their
outputs [2]. Concurrently, studies have underscored the importance of robustness against
adversarial attacks (AA) on ML models. In these scenarios, malevolent actors introduce
intentional perturbations, aimed at causing unintended behavior of ML models [3,4]. As a
response to these threats, a whole new field of adversarial attack detection and prevention
has arisen [5–7].

Work Motivation

The motivation for our work is to verify the practical usefulness of a new method
for detecting adversarial attacks on ML models, thus increasing the robustness of ML
applications. The specific method used came from the realization that:

• There are no well-established AA detection methods that attempt to analyze machine
learning models during their operations that can work in a black-box scenario.

• Rough sets theory–based methods [8,9] can be used to approximate the decision
boundaries of a classifier model, thus allowing for the reconstruction of a model with
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no direct access, creating a surrogate model that can be then analyzed with full access
to it.

• Most AA detection techniques focus on image processing models [10], with tabular
data techniques receiving attention only in recent years [11].

Our end goal is to create a robust framework that can be used in real-world applications
for the continuous monitoring of machine learning models, thus increasing the safety and
trustworthiness of machine learning applications in everyday scenarios.

Within this work, we assume a black-box scenario, which we define as a lack of access
to internal knowledge of the machine learning model operations, neither its architecture
nor its internal states. Instead, interested parties can only observe the inputs and outputs
of machine learning model operations and need to drive their conclusions on the machine
learning model characteristics from these observations. While this scenario is often assumed
for the attacking party, defense mechanisms often assume full knowledge of the observed
model, which is not true in many real-world scenarios.

2. Related Work
2.1. Adversarial Attacks

Since the beginning of the adversarial machine learning (AML) research field [12,13],
many attempts have been made to create taxonomies of attacks [10,14]. On the basic plane,
adversarial machine learning attacks can be categorized broadly into several types based
on various criteria such as the attacker’s knowledge, the attacker’s capabilities, and the
attack’s target.

The most commonly used types include the following. (1) White-Box vs. Black-Box
Attacks: In a white-box attack, the adversary has complete knowledge of the model,
including its architecture and parameters. This allows for the creation of sophisticated
and highly effective adversarial examples. In contrast, a black-box attack assumes limited
knowledge of the model, with the adversary potentially only having access to input-output
pairs. The transferability of adversarial examples is often exploited in black-box attacks [4].
(2) Evasion vs. Poisoning Attacks: Evasion attacks occur at the test phase where adversarial
examples are crafted to mislead the model’s prediction. This is often achieved by adding
carefully designed noise to the input [13]. In poisoning attacks, the training phase is
targeted where the adversary manipulates the training data to compromise the learning
process itself, leading to incorrect models being learned [15].

(3) Targeted vs. Non-Targeted Attacks: In a targeted attack, the goal of the adversary
is to cause a specific misclassification, e.g., making a model classify a stop sign as a speed
limit sign. Non-targeted attacks aim to cause any misclassification, without a specific target
in mind [5]. (4) Exploratory vs. Causative Attacks: This classification overlaps somehow
with the Evasion vs. Poisoning dichotomy, but it was historically the first classification type.
In exploratory attacks, the adversary exploits a model’s weaknesses after being trained. In
contrast, causative attacks involve influencing the learning process to introduce specific
vulnerabilities that can be exploited later [16].

Each type of attack requires different detection and defense strategies, emphasizing
the importance of understanding the specific adversarial landscape when building robust
machine learning models. In this work, we focus on detecting exploratory (evasion) attacks
in black-box scenarios, targeting models processing tabular data [17–19].

2.2. Adversarial Defenses

Defenses against adversarial attacks can be divided into two groups: detection and
preventive methods.

The main detection methods reported in the literature include:

• Statistical Tests: These involve conducting statistical analyses on model inputs to
identify irregularities or anomalies indicative of adversarial manipulation. For in-
stance, a technique based on the L1-norm to detect adversarial attacks was proposed
by Grosse et al. [20,21].
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• Reconstruction-based Methods: These techniques rely on reconstructing the input
and comparing it with the original input to identify adversarial perturbations. One
approach is to use autoencoder-based methods for input reconstruction [22]. This
technique can be part of a larger detection framework, such as [23].

• Feature Squeezing: This technique can be used both for the detection of adversarial
examples and for increasing the innate robustness of machine learning models. Since
it reduces the search space available to an adversary by compressing the amount of
expressiveness in the input, it makes all adversarial modifications more apparent
thanks to the simplification of model inputs [24].

• Classifier-based Methods: These approaches involve training a separate classifier to
discern between adversarial and legitimate inputs, such as Metzen et al.’s method us-
ing a trained auxiliary neural network [21]. Another example is a MagNet framework,
which consists of both detector and reformer networks. Detector networks are used to
classify examples as either normal or adversarial, by approximating the manifold of
normal examples. The reformer network is then used to move adversarial examples
towards the manifold of normal examples—resulting in the correct classification of
adversarial examples with small perturbation [23].

Another stream of work is related to creating methods of implementing innate robust-
ness against adversarial machine learning attacks into machine learning models themselves.

These methods include:

• Adversarial Training: This technique aims to improve the model’s resilience against
adversarial attacks by explicitly including adversarial examples in the training process.
The underlying idea is to expose the model to these specially crafted deceptive inputs
during training, forcing the model to learn from these examples and consequently
enhancing its robustness. Goodfellow et al. proposed the concept in their pioneering
work, thus adding a new dimension to the understanding of model generalization
and resilience [12].

• Defensive Distillation: This technique involves training the model to provide softer
output distributions rather than discrete class labels, thereby rendering the model’s
decision boundaries smoother and less prone to adversarial perturbations. The distil-
lation process increases the model’s resilience against adversarial attacks by reducing
the effectiveness of small perturbations on the input. The technique was described in
depth by Papernot et al. [25].

• Feature Squeezing: This technique aims to mitigate the risk of adversarial attacks by
reducing the complexity of model inputs, effectively limiting the scope for adversarial
manipulation. By squeezing or reducing the input data’s expressiveness, the technique
narrows down the available search space that an adversary could exploit [24].

• Certified Defenses: These methods provide mathematical guarantees of a model’s
robustness against adversarial attacks. Rather than solely relying on empirical assess-
ments of model performance, these defenses offer a theoretical underpinning to ensure
robustness, thus contributing to a more rigorous and reliable model defense. The core
concept is to mathematically certify a region around each data point within which
the model’s prediction remains consistent, hence making it robust against adversarial
perturbations [26].

We strive to enhance this list by presenting a new method useful in black-box scenarios
on tabular data.

3. Methods

In this section, we presented the workflow of the whole analysis, the definition of
analyzed adversarial attacks, and the detection algorithm. Figure 1 shows a diagram with
the overall analysis workflow.
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Figure 1. Diagram of the analysis workflow.

We started by training the machine learning model and obtaining predictions for the
new data set using this model. Based on provided data and the training data set, approximator
learning is conducted, which ends with diagnostic attributes calculations. Simultaneously, an
adversarial attack on the data can be executed, which results in obtaining perturbed data
set with model predictions. Utilization of trained approximator model allows us to calculate
diagnostic attributes for new (perturbed) incoming data. The application of this workflow
for many data sources and different attacks results in the acquisition of such information
(original diagnostic attributes and perturbed diagnostic attributes), which, after aggregation, are
used for training models for the detection and isolation of adversarial attacks.

3.1. Attacks Detected

We have tested the method against three different types of adversarial attacks: Hop-
SkipJump, PermuteAttack, and ZOO. These attacks have been chosen based on the follow-
ing common characteristics:

• Academic renown of the original publication and subsequent publications exploring
each specific attack;

• Suitability to operate on tabular data;
• Attempt to hide their operations—perturbances introduced are minimally required

for a successful attack;
• Having an available implementation code base.

The HopSkipJump attack, also known as the Decision-Based Boundary attack, is
an adversarial attack that manipulates both the local and global aspects of the decision
boundary of the model under attack, thus causing misclassification while minimizing the
perturbation on the original input [17].

It is an iterative, decision-based attack, meaning that it only requires access to the
model’s output decisions (e.g., classification labels) rather than full access to the model’s
internal workings or gradients; it can function in a black-box environment where access to
the model specifics is limited.

The attack algorithm consists of three main steps:

• Initialization (Hop): A starting point for the adversarial example is identified, which
lies on the opposite side of the decision boundary compared to the target input.

• Binary Search (Skip): A binary search strategy is implemented to bring the adversarial
example closer to the decision boundary without crossing it.

• Gradient Estimation (Jump): By making small perturbations to the adversarial example
and observing the model’s outputs, an approximation of the gradient at the decision
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boundary is estimated. This gradient information is then utilized to make a controlled
jump that slightly crosses the decision boundary, making the adversarial example
more effective.

The PermuteAttack, described in [18], is an adversarial example generation method
capable of handling tabular data including discrete and categorical variables. The method
utilizes a gradient-free optimization approach founded on genetic algorithms, which
applies permutations to a random selection of features while ensuring the resultant values
adhere to acceptable data set ranges. As a result, the output contains counterfactual data
points that, though altered from the original data points, can circumvent certain anomaly
detection methods. The resulting adversarial examples can serve as analytical tools for
assessing the robustness of the attacked model.

The Zeroth Order Optimization (ZOO) adversarial attack, introduced in [19], is a black-
box attack method that utilizes zeroth-order (derivative-free) optimization to construct
adversarial examples. The ZOO attack is designed to be applicable even when the attacker
only has access to the model’s output (like probabilities of classes) and does not know
about the model’s architecture or parameters.

In the ZOO attack, the attacker starts with a legitimate sample and incrementally
perturbs it by approximating the gradients of the loss function. These approximations are
obtained through numerical methods such as finite difference methods, and they do not
require access to the actual gradients of the loss function.

The attacker then uses the estimated gradients to iteratively modify the input, typically
via a method similar to the Fast Gradient Sign Method (FGSM), a popular attack method
in white-box settings. This process continues until the modified input misleads the model
into making an incorrect prediction.

This attack method demonstrated that efficient and effective black-box attacks are
possible, even without direct access to gradient information. As a result, it underscored
the importance of considering black-box attack scenarios when developing defenses for
machine learning models.

3.2. Approximator Learning

The paper [27] describes the detailed workflow associated with model approximation
and diagnostic attributes; in this section we just briefly call the most important assumptions.
The main idea underlying this approach is to create a surrogate model [28,29] based on
predictions of the origin model M(x). We expect that a surrogate model will mimic the
behavior of the original model M, which we do not have access to. This assumption is
due to the business environment, in which access to the original model is difficult, while
our method requires only access to the training data. In addition, an approach based
solely on predictions is model-agnostic and universal. The quality of a surrogate model is
monitored by the Cohen kappa score calculated between the original predictions and the
approximated predictions, and it should be above 0.9 for good properties. To approximate
these predictions, we use the rough sets theory [30] and create a surrogate model using
an ensemble of approximate reducts AR [31]. An approximate reduct is an irreducible
subset of attributes that is sufficient to express almost the same information about the
decisions as the whole attribute set. In this context, we distinguish two data sets: diagnosed
(new) D = (XD, dD), which is used to create a surrogate model, and training R = (XR, dR),
which is used to train the original model. In our case, the decision values for which we
construct the approximate reducts correspond to predictions of the diagnosed model, i.e.,
M(XD), not the actual ground truth target values. The result of the above-mentioned
steps is the trained approximator model M, composed of a set of approximate reducts
R = {AR1, . . . , ARi, . . . , ARk} and approximated prediction for instances of data M(x).
The construction of the approximator depends on the selection of two hyper-parameters:
an ε representing the approximation threshold for reducts, and a number of reducts in the
ensemble. Since the aim of the procedure is to find the appropriate approximation of the
model’s predictions, we use the grid search to tune the hyper-parameter settings. We also
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assume that there is access to the decision attribute (target) in the data set, which will be
denoted as d. For d(x), we will denote its value for an instance x. Moreover, qM(x) is the
estimation of decision class probabilities made by the diagnosed model M and qM(x) is the
approximation of decision class probability predictions.

The next step is defining the neighborhood N(x) for each observation in the diagnosed
data set. We want to identify instances that are similar with regard to predictions made
by M, and we define a notion of neighborhood based on the prediction process of the
model approximator M. In particular, the neighborhood NAR(x) for a diagnosed instance
x with regard to a single reduct AR ∈ R is defined as a subset of instances from XR that
belong to the same indiscernibility class, i.e., [x]AR. The final neighborhood is the sum of
neighborhoods computed for all reducts in the ensemble. Thus, for each instance in the
diagnosed data set, we have information about similar instances in the training data set.
Then, it is possible to compare the distribution of targets, predictions, and approximate
predictions between given observations in the diagnosed data set and similar observations
from the training data set, which were chosen for the neighborhood. Such a defined
neighborhood for a given observation from a diagnosed data set in extreme cases can
contain all observations from the training data set or none of them. The neighborhood is
the basis for calculating diagnostic attributes, which are listed below:

• Target consistency with approximations in the neighborhood—measures the con-
sistency of the target of the diagnosed instance with the approximations from the
neighborhood of this instance. It expresses how often values from M(N(x)) are the
same as dx.

• Prediction consistency with targets in the neighborhood—measures the consistency of
the prediction of the diagnosed instance with the targets from the neighborhood of
this instance. It expresses how often values from dN(x) are the same as M(x).

• Target consistency with targets in the neighborhood—measures the consistency of
the target of the diagnosed instance with the targets from the neighborhood of this
instance. It expresses how often values from dN(x) agree with the class of x, i.e., dx.

• Targets and approximations inconsistency in the neighborhood—measures the incon-
sistency of targets and approximations in the neighborhood of the diagnosed instance.
This attribute is calculated as 1

|N(x)| ∑x′∈N(x)

[
1− qdx′

(x′)
]
, where dx′ is the ground

truth target class of x′, and qdx′
is the approximation of its probability.

• Targets diversity in the neighborhood—measures the diversity of targets in the neigh-
borhood of the diagnosed instance in comparison to the diversity of targets calculated
on the whole diagnosed data set. It is calculated as h(p, p(N(x))), where p is the prior
probability distribution of decision classes and p(N(x)) is the distribution of decision
classes in the neighborhood of x.

• Approximations diversity in the neighborhood—measures the diversity of approxima-
tions in the neighborhood of the diagnosed instance in comparison to the diversity of
approximations calculated on the whole diagnosed data set. It refers to h(p, q(N(x))),
where q(N(x)) is the distribution of the approximated predictions in N(x).

• Uncertainty—we define a normalized entropy of a classification distribution q(x) as

Hnorm(q(x)) = −∑l
i=1 qi(x) log(qi(x))

log(l) , where l is a number of classes. In a case when
the prior is not uniform, we need to transform it by scaling the simplex space. Let
us take the distribution norm of q(x) with respect to p as |q(x)|p = ∑ qi(x)

pi
. It

measures the distribution q(x) with the units of the prior distribution. Let us define
a p-simplex off-centering as [OCp(qi(x))]i =

qi(x)
pi |q(x)|p

. Then we obtain the prior-off-

centered normalized entropy OCEp(q(x)) = H(OCp(q(x))), which, for the sake of
simplicity, we will denote as Unc(x), which is the prediction uncertainty of model M
calculated for a diagnosed instance x.

• Neighborhood size—the number of instances in the neighborhood of the diagnosed
instance.
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Diagnostic attributes are a standardized format of comparing and diagnosing diverse
data sets regardless of the number of classes or attributes.

4. Experiments

This section presents the results of the conducted study, in which we applied the
workflow presented in Figure 1 to a variety of real data sets. Firstly, three different model
architectures were fitted to each data set, and then three different adversarial attacks
were conducted. Based on the obtained predictions, we prepared surrogate models and
calculated the diagnostics attributes. In the next step, they were used to prepare two
kinds of classifiers: for attack detection, where we wanted to predict the occurrence of
an adversarial attack without distinguishing its type, and for attack isolation, where we
wanted to predict also the type of the conducted adversarial attack.

4.1. Data Preparation

We obtained 22 data sets with classification tasks from OpenML. The list of data sets
with basic characteristics is presented in Table 1.

Table 1. Basic characteristics of data sets used in experiments.

Data Set Name Number of Instances Number of Attributes Number of Classes

Bioresponse 3751 1776 2
churn 5000 20 2
cmc 2000 47 10
cnae-9 1080 856 9
dna 3186 180 3
har 10,299 561 6
madelon 2600 500 2
mfeat-factors 2000 47 10
mfeat-fourier 2000 76 10
mfeat-karhunen 2000 47 10
mfeat-zernike 2000 47 10
nomao 34,465 118 2
optdigits 2000 47 10
pendigits 10,992 16 10
phoneme 5404 5 2
qsar-biodeg 1055 41 2
satimage 6430 36 6
semeion 1593 256 10
spambase 2000 47 10
wall-robot-navigation 5456 24 4
wdbc 569 30 2
wilt 4839 5 2

Each data set was divided into training and diagnostic parts, with the diagnosis data
set including at least 100 observations. We fit a logistic regression model, a support vector
machine, and XGBoost to each data set. Following that, three adversarial attacks were
launched against the diagnosed part of each data set. All calculations were conducted
in Python using the Adversarial Robustness Toolbox package [32] and Permute Attack
repository [18].

In the next step, we calculated diagnostic attributes for each data set and attack based
on proper surrogate models. To create the surrogate models, we utilized an ensemble of
2500 approximate reducts with ε equal to 0.05. Figure 2 shows the distribution of obtained
Cohen kappa scores between the original prediction and the approximated predictions
made by the surrogate model; for every data set and model type, the quality condition of
the surrogate model was met. All scores are above 0.9 and the median of these values is
equal to 1.
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LogReg

SVM

XGBoost

0.94 0.96 0.98 1.00
Cohen kappa score

Figure 2. The Cohen kappa score for each model and data set. Different colors for models were
applied to distinguish close data points.

The result of approximator learning is that the data set contains values of eight
diagnostic attributes for each instance of the diagnosis data set and attack. To provide
suitable data for training a classifier, we aggregated these attributes within cross-sections
defined by data set, model, and attack. For each diagnostic attribute, a set of descriptive
statistics was calculated: mean, minimum, maximum, lower quartile, median, upper
quartile, and range. For those aggregates, we also added some data set characteristics such
as the number of observations, the number of classes in the classification problem, and
the balanced accuracy calculated based on predictions and targets. There were a total of
59 features analyzed. Table 2 presents the first 15 rows and 7 columns of the aggregated data
set utilized for attack detection and isolation models estimation. For the attack detection
problem, column attack was replaced by a binary variable equal to 0 for org value, meaning
lack of attack, and 1 otherwise.

Table 2. Example of aggregated data utilized for attack detection and isolation models estimation.

Data Set Model Attack Bacc n_obs Neigh_Size_Mean Neigh_Size_q0 · · ·
Bioresponse lin hsj 0.26 751.00 178.06 67.00 · · ·
Bioresponse lin org 0.74 751.00 264.75 122.00 · · ·
Bioresponse lin per 0.36 751.00 263.78 122.00 · · ·
Bioresponse lin zoo 0.00 751.00 261.08 120.00 · · ·
Bioresponse svm hsj 0.50 751.00 277.85 66.00 · · ·
Bioresponse svm org 0.77 751.00 408.08 208.00 · · ·
Bioresponse svm per 0.52 751.00 402.40 207.00 · · ·
Bioresponse svm zoo 0.02 751.00 358.64 95.00 · · ·
Bioresponse xgb hsj 0.22 751.00 178.99 77.00 · · ·
Bioresponse xgb org 0.78 751.00 290.35 150.00 · · ·
Bioresponse xgb per 0.31 751.00 285.49 151.00 · · ·
Bioresponse xgb zoo 0.64 751.00 290.25 148.00 · · ·
churn lin hsj 0.42 1000.00 9.57 2.00 · · ·
churn lin org 0.58 1000.00 58.20 5.00 · · ·
churn lin per 0.42 1000.00 25.49 4.00 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
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4.2. Scenarios

For assessment of the effectiveness of diagnostic attributes in attack detection and
isolation, we designed a set of experiments described in Table 3.

Table 3. Considered scenarios.

Scenario Name Description Application

10-fold cross-validation Cross-validation stratified by variable of inter-
est

detection, isolation

one-data-set-out One data set is treated as a test data set and the
rest of data is a training data set

detection, isolation

one-model-out Data for one model type is treated as a test data
set and the rest of data is a training data set

detection, isolation

one-attack-out Data for one attack type is treated as a test data
set and the rest of data is a training data set

detection

The first column of Table 3 contains the scenario name, the second provides a short
description of the main idea behind the given scenario, and the third column presents
information when the scenario is applicable. Each scenario except the last will be realized
for both types of task—detection of attack and isolation of attack type. The last scenario is
applicable only for detection because we aim to teach a model to recognize attacks, whose
characteristics were not included in the training data. In each scenario, we trained random
forest and XGBoost models with hyper-parameters optimization.

4.3. Attack Detection

In the first experiment, we aimed to train classifiers that distinguish only two classes—
no attack versus any attack. Table 4 presents the results of the trained models.

Table 4. Balanced accuracy with its standard deviation for each scenario in attack detection.

Scenario Name RF XGB

10-fold cross-validation 0.9107 (0.1050) 0.9557 (0.0679)
one-attack-out 0.9495 (0.0437) 0.9596 (0.0350)
one-data-set-out 0.9015 (0.1599) 0.9520 (0.1167)
one-model-out 0.9364 (0.0441) 0.9164 (0.0621)

Regardless of model architecture, it is possible to identify an attack using diagnostic
attributes. The highest balanced accuracy is obtained for a one-attack-out scenario in both
classifiers. It shows that we are able to recognize the fact of attack even for previously
unseen attacks. The lowest performance is observed for a one-data-set-out scenario with a
random forest classifier; for a new data set, it was more difficult to identify the attack than
e.g., a new model type.

For each scenario and classifier, we extracted feature importance and created the
ranking of these variables—higher rank means higher importance. We calculated the
correlation coefficients between these ranks and scenarios. The results show that the
order of features is highly correlated within classifier groups. For example, the correlation
between the feature importance ranks between 10-fold cross-validation and one-data-set-
out scenarios for the random forest classifier is equal to 0.97. The correlation coefficient for
XGB and RF is rather small, varying from 0.19 to 0.30. It shows that completely different
variables are significant in attack identification for analyzed classifiers. Figure 3 shows the
top 20 most important variables for each classifier.
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Figure 3. Mean rank of feature importance across classifiers for attack detection.

The main role in both cases has a balanced accuracy calculated on the test data set. The
second and third places contain an uncertainty diagnostic attribute for the random forest
classifier, while for XGBoost there is the neighborhood size diagnostic attribute. The most
frequent variable in the top 20 for RF is prediction consistency with targets in neighborhood,
while for XGB it is neighborhood size. It shows that each diagnostic attribute contains valuable
information that helps distinguish the occurrence of an attack in data.

4.4. Attack Isolation

In another experiment, we trained random forest and XGBoost classifiers to distinguish
attack types. The decision variable has four classes—no attack, the HopSkipJump attack,
the PermuteAttack, and the ZOO attack. Table 5 shows the results of each scenario.

Table 5. Balanced accuracy with its standard deviation for each scenario in attack isolation.

Scenario Name RF XGB

10-fold cross-validation 0.6560 (0.1542) 0.7625 (0.0961)
one-data-set-out 0.7443 (0.2213) 0.8030 (0.1512)
one-model-out 0.7102 (0.1476) 0.7216 (0.1379)

We can see that attack isolation has poorer performance than attack detection. Using
the XGBoost model architecture, we obtain higher balanced accuracy values than for
random forest. The highest values are observed for the one-data-set-out scenario. This
suggests that distinguishing the attack type for the new data set is easier than for the new
model type.
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The analysis of feature importance ranks shows that, similar to those obtained for
attack detection, they are highly correlated within the classifier type. The correlation
coefficient between scenarios for the same classifier varies from 0.67 to 0.99. However,
correlation values between the results of scenarios realized using RF and XGB are slightly
higher than those presented in the previous section and are in the range of 0.41–0.51.
Figure 4 presents the mean rank for the top 20 features used in analyzed classifiers.
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Figure 4. Mean rank of feature importance across classifiers for attack isolation.

In the case of attack detection as well, the most important feature is balanced accuracy,
calculated on the attacked data set. In subsequent places, we can observe variables con-
nected with uncertainty measures. In the presented top 20 most influential features, the
random forest classifier uses statistics calculated based on five diagnostic attributes, while
the XGBoost classifier uses eight diagnostic attributes.

5. Conclusions and Future Works

In this paper, we tested two ML models’ architecture to build classifiers for adversarial
attack detection and isolation. We designed a set of scenarios that utilize a leave-one-out
and cross-validation methodology to investigate whether it is possible to distinguish the
occurrence of the attack and the attack type based on diagnostic attributes.

The results show that the method works and is suitable for attack detection—it is
possible to build a classifier, operating on diagnostic attributes, that can detect adversarial
attacks with a balanced accuracy greater than 0.9. This method works also for detecting
attacks that were not included in the training data set.

For attack isolation, we obtained poorer performance of classifiers—the balanced
accuracy varied from 0.66 to 0.80. The conducted research indicated the most important
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features used by trained classifiers: the balanced accuracy of the diagnosed data set,
uncertainty, and neighborhood size.

Future works can be divided into three distinctive work streams:

• Increasing the quality of classifiers, by training them on larger representations of known at-
tack methods and data sets. New data sets and new adversarial examples will become avail-
able as a direct result of implementation activities performed by the QED Software com-
pany and will focus on real-life examples of attacks and data in attack-prone environments.

• Testing different hierarchical approaches to the classifier construction—chaining attack
detection classifiers with attack identification ones.

• Combining the resulting classifiers with external input sources explaining changes
in data characteristics. This includes methods for concept drift detection, anomaly
detection, and expert reasoning.
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