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Abstract: Information in non‑standard address texts in Chinese is usually presented with rough con‑
tent, complex and diverse presentation forms, and inconsistent hierarchical granularity, causing low
accuracy in Chinese address parsing. Therefore, we propose a method for parsing non‑standard ad‑
dress text in Chinese that integrates the Chinese ToponymNamed Entity Recognition (CHTopoNER)
model and a dynamic finite state machine (FSM). First, named entity recognition is performed by the
CHTopoNER model. Sets of dynamic FSMs are then constructed based on the address hierarchical
characteristics to sort and combine the Chinese address elements, thereby achieving address pars‑
ing on the Chinese internet. This method showed excellent accuracy in parsing both standard and
non‑standard placename addresses. In particular, this method performed better in address pars‑
ing for disordered or missing hierarchical elements than traditional methods using an FSM. Specif‑
ically, this method achieved accuracies of 96.6% and 96.8% for standard and non‑standard place‑
names, respectively. These accuracies increased by 8.0% and 57.1%, respectively, compared with
the integrated CHTopoNER model and traditional FSM, and by 7.4% and 19.8%, respectively, com‑
pared with the integrated CHTopoNER model and bidirectional FSM. After analysis, the address‑
parsing method showed good scalability and adaptability, which could be applied to various types
of address‑parsing tasks.

Keywords: Chinese address parsing; CHTopoNER model; finite state machine; dynamic finite state
machine; Chinese internet text

1. Introduction
With the rapid development of computer technology, services based on location data

(such as express and food delivery) are becoming increasingly important [1]. Address
matching is an integral part of these services. Problems, such as word segmentation, ambi‑
guity, and unregistered words in Chinese, pose more demanding requirements and signif‑
icant challenges to Chinese address parsing. Owing to its importance in address‑matching
accuracy, address parsing is a key part of the process of address matching [2]. However,
addressing information usually includes difficulties, such as disordered structure, high
degree of information fragmentation, complex and diverse presentation forms, and diver‑
sified information hierarchical granularity, in daily Chinese texts on the internet [3–5]. This
increases the difficulty of parsing addresses in the text. Therefore, address parsing is the
first issue to be considered when studying high‑accuracy address matching.

Some studies have demonstrated results in Chinese address parsing. For example,
Wu et al. [6] proposed a Chinese address parsingmethod based on the BERT‑BiLSTM‑CRF
deep learning model. This method uses the BERT [7] pretrained language model to obtain
character vectors rich in semantic information, thereby improving the ability to extract el‑
ements from complex addresses. By targeting the differences in local and racial cultures
and the urban development in various regions in China, Ma et al. [8] expanded and refined
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the classification of Chinese address elements considering their characteristics. They also
summarized the common vocabulary of spatial relationships in the addresses and the com‑
bination patterns among Chinese address elements. Cheng et al. [9] built a labeling system
forword segmentation of Chinese addresses using Bidirectional Long Short‑TermMemory
(BiLSTM) to extract contextual features. The optimal label sequence was determined by in‑
tegrating conditional random fields, thereby improving address entity recognition.

In the field of Chinese address parsing, some significant research achievements have
beenmade; nevertheless, several issues remain to be addressed. Specifically, the following
challenges persist:
1. The existing methods for Chinese address element recognition segregate at the char‑

acter level, without considering traditional Chinese word segmentation techniques
commonly used in natural language processing. Consequently, the acquired seman‑
tic representations are at the character level and fail to capture theword‑level features
inherent in the Chinese language.

2. Previous studies on Chinese address element recognition rarely consider the integra‑
tion of local and global features during feature extraction. Hence, during feature
extraction, problems such as missing global or local semantic information arise.

3. Furthermore, after the address parsing process, the traditional finite state machines
heavily rely on pre‑recorded keywords of address elements or require threshold set‑
tings when ordering and combining these elements. While finite state machines
(FSMs) and bidirectional FSMs perform well in handling standardized addresses,
they struggle to effectively process address information descriptions present in web
texts, characterized by hierarchical element disorder and omissions.
The innovations introduced in this paper to address the aforementioned issues are

summarized as follows:
1. This study proposes the CHTopoNER model for identifying hierarchical address el‑

ements in online text. The innovation of this model is derived from the improved
SoftLexicon approach and the integration of BiLSTM and Iterated Dilated Convolu‑
tional Neural Network (IDCNN) models to form a Two Channel Neural Network
(TCNN) layer. Specifically, the enhanced SoftLexicon approach is utilized to acquire
word‑level semantic information while avoiding potential out‑of‑vocabulary issues,
resulting inmore accurate identification of Chinese toponyms’word boundaries. The
TCNN layer comprehensively considers both character‑ and word‑level local seman‑
tic features as well as global semantic features from the input text, thus minimizing
the loss of semantic information and effectively addressing the ambiguity of Chinese
address entity elements.

2. This study introduces a dynamic FSM. In comparison to the traditional FSM, the
dynamic FSM is capable of adjusting its state set based on the types of address el‑
ements. This adaptation avoids the limitations of depending heavily on the collected
keywords of address elements and the threshold settings inherent to the FSM. Conse‑
quently, it can more effectively handle address information descriptions in network
text that exhibit issues such as hierarchical element disorder and omission.
The remainder of this paper is organized as follows. Section 2 presents the related

work on address parsing and the application of FSM in address parsing. Section 3 presents
the detailed deep learning architecturemethod using a dynamic FSMand the experimental
data discussed in this study, and Section 4 presents and analyzes the experimental results.
Finally, Section 5 summarizes the study and discusses future research directions.

2. Related Work
Address parsing is the process of decomposing address strings into address elements

and determining their types [10]. This constitutes a pivotal undertakingwithin the domain
of natural language processing [11]. To proficiently address this challenge, researchers
have proposed diverse methodologies and techniques. In this section, we shall present a
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comprehensive overview of pertinent research in the context of Chinese address parsing,
encompassingmethodologies rooted in dictionaries, rules, statistics, anddeep learning. As
FSMs can be harnessed to systematically arrange and amalgamate address components,
they lay the cornerstone for ensuing endeavors in high‑precision address matching. Ac‑
cordingly, this section will also delve into the utilization of FSMs in the context of address‑
parsing tasks.

2.1. Relevant Research on Chinese Address Parsing
2.1.1. Dictionary‑Based Address Parsing

The dictionary‑based approach for addressing parsing stands as one of the earliest
instances of applying mechanical text segmentation techniques to this task. This method‑
ology involves breaking down addresses through string matching. Generally, the process
initiates by first splitting the address text into individual characters and then sequentially
comparing these characters with the placenames listed in an address dictionary. Should
a match be identified, the term is retained; conversely, the method attempts to establish a
match by either adding or removing a single character until only one character remains. If
the string still resists segmentation, it is treated as an out‑of‑vocabulary term [12]. The
development of the dictionary predominantly relies on a substantial repository of pre‑
existing toponym data, and the parsing procedure deliberately sidesteps the integration
of address rule knowledge or statistical insights [13]. Currently, there is an ongoing refine‑
ment of the dictionary‑based address‑parsing technique. As an illustration, Ye et al. [14]
augmented this approach by forming sets of potential placenames based on shared char‑
acter features among toponyms and constructing a single‑character index to elevate query
efficiency and parsing precision. In another vein, Li et al. [15] adopted a forward adaptive
lengthmatching algorithm grounded in address indicator words to curtail redundant data
input and heighten parsing efficiency.

The efficacy of these dictionary‑based methods heavily hinges on the comprehensive‑
ness of the dictionary, leaving them incapable of recognizing out‑of‑vocabulary
terms within addresses. In the face of the incessant emergence of novel toponyms and
addresses, traditional toponym dictionaries grapple with staying aligned with the evolv‑
ing landscape [16].

2.1.2. Rule‑Based Address Parsing
Chinese addresses possess specific rules and distinctive features. By systematically

summarizing the attributes and regulations governing Chinese addresses, it becomes fea‑
sible to devise address‑parsing techniques founded on the characteristics of address com‑
ponents and address structures. This approach facilitates the achievement of a structured
address‑parsing outcome [17,18]. Zhang et al. [19] undertook the task of consolidating
the traits of address elements and dissecting the parsing regulations that govern these
attributes. Consequently, they devised a rule‑based address‑parsing algorithm that inte‑
grates feature characters and regulations. Tan et al. [20] introduced innovativemechanisms
encompassing rule trees and ambiguity storage, thereby achieving a rule‑based approach
for address segmentation and matching. This method tangibly enhanced the efficacy of
matching addresses that are afflicted by omissions and ambiguities.

In practical scenarios, rule‑basedmethodologies face challenges akin to those encoun‑
tered by dictionary‑based approaches. Both methodologies are susceptible to complica‑
tions arising from incomplete dictionaries or deficient address element repositories. Con‑
sequently, an established approach is to amalgamate these two strategies [21,22]. Neverthe‑
less, diverse geographical regions exhibit significant disparities in address nomenclature
and usage conventions, rendering the generalized application of dictionaries and regula‑
tions across various locales a formidable task.
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2.1.3. Statistical‑Based Address Parsing
The fundamental concept of statistical segmentation is primarily derived from the un‑

derstanding of the Chinese language. It suggests that characters combine to form words,
and the greater the frequency of adjacent characters appearing in the same order, the higher
the likelihood of constituting a word [23]. The statistical‑based approach to address pars‑
ing treats the address string as an observational sequence and address component type
annotations as sequences of states. Through the training of an address‑parsing model
on annotated address datasets, this method automatically annotates untagged addresses,
achieving the division and identification of address elements [24]. Presently, the prevailing
statistical models for Chinese address segmentation are predominantly founded on tradi‑
tional probability statistics, such as Hidden Markov Models (HMMs), Maximum Entropy
Markov Models (MEMMs), and Conditional Random Fields (CRFs) [25,26].

Song [10] employed theHMM to annotate address components and incorporated con‑
straints between the address components using the Viterbi algorithm, proposing a Chinese
address‑matching method grounded in natural language comprehension. Zhu et al. [27]
synthesized the composition and features of Chinese addresses by segmenting address
components and assembling them into an output sequence with feature annotations. They
trained a CRF‑based model for Chinese address parsing. Tang et al. [28] applied CRF
to Chinese address parsing, establishing a fuzzy matching method for local address in‑
formation and a standardization approach for placenames, thus bolstering parsing preci‑
sion. Wei et al. [29] devised composite geographical name features based on geographi‑
cal name element attributes, part‑of‑speech attributes, and syntactic attributes, utilizing a
CRF model for recognition, which enhanced the accuracy and recall for recognizing Chi‑
nese geographical names. Yuan [30] amalgamated statistical techniques with rules, devis‑
ing and implementing a Chinese address segmentation system grounded in both statistics
and rules. This system employs rule algorithms to remove ambiguities and validate the
deduced results, thereby elevating accuracy considerably.

This approach shares core principles with statistical‑based Chinese word segmenta‑
tion. Its central attribute includes its autonomy from dictionaries but reliance on corpora.
Nevertheless, its efficacy is curbed by the configuration of attributes, often leading to over‑
fitting when attributes are overly abundant. Furthermore, relying on probability condi‑
tions alone presents challenges in serving as the foundation for address parsing [31].

2.1.4. Deep Learning‑Based Address Parsing
The sequence‑labelingmodel is a typically useddeep learningChinese address‑parsing

method, where the address text is regarded as a sequencewhose characters at each position
are labeled using the address components to which they correspond.

Many Chinese address‑parsing methods based on deep learning have been proposed.
Certain research results have been obtained using these methods [32,33]. For example,
Zhang et al. [34] proposed a Chinese address‑parsingmethod using the RoBERTa‑BiLSTM‑
CRF deep learning model to alleviate the heavy reliance on word segmentation dictionar‑
ies and the inability to effectively recognize address elements and their types when using
existing address‑matching methods. Parsed addresses were standardized, and their com‑
position was analyzed to improve the address‑matching results. Zhang [35] improved the
accuracy of Chinese address parsing by constructing an address‑parsing model based on
BERT‑BiLSTM‑CRF. Liu et al. [36] proposed a Chinese address‑parsing method that inte‑
grated neural networks and spatial relationships by targeting the word segmentation and
randomness, diversity, and ambiguity of Chinese address elements. The address model
that adopted spatial relationships could inherit the address elements of the hierarchical
relationship model and accurately locate the address according to the spatial relationships
among its elements. Cheng et al. [9] devised a labeling system for segmenting Chinese
addresses. They utilized BiLSTM networks to capture contextual features and integrated
CRF to ascertain the optimal labeling sequence. This approach led to an improved identi‑
fication of placename entities.
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Although Chinese address‑parsing methods based on deep learning have achieved
good results, most deep learningmodels often ignore the fusion of local and global features
during feature extraction fromaddress elements. This results in the loss of semantic feature
information, thereby reducing the accuracy of address element recognition. Finally, the
error is propagated in the next processing link of address parsing. Therefore, in this study,
a method for fusing local and global features was introduced into the deep learning model
to improve the accuracy of Chinese address parsing.

2.2. Sorting and Combination of Chinese Addresses Based on FSM
FSMs [37] are models for directed graphs used to study the computation processes of

finite states. They consist of a finite state set, input set, and state transition rule set. The
finite state set describes the system state, the input set represents the input information
of the system, and the state transition rule set describes the transition conditions between
states. The FSM is widely used in fields such as computer science, linguistics, logic, and
mathematics. Owing to its good flexibility and scalability, the FSM can adapt to different
types and forms of address elements and quickly process large amounts of text data be‑
cause they only require a small amount of calculation. Therefore, FSMs are widely used
for parsing Chinese address elements.

Currently, many Chinese address‑sorting and combination methods based on the
FSM have been implemented. Certain results have been obtained using these methods.
For example, because elements in address descriptions that comply with regular patterns
may appear disordered, incomplete, or inconsistent with cognitive habits, Gu [38] used a
method based on pattern matching integrated with address element vocabulary to estab‑
lish a rule set for address description patterns. Integrated with the bidirectional FSM, the
recognized address information was sorted and combined according to the hierarchical el‑
ements; therefore, the obtained address was standardized. Luo et al. [39] proposed a new
method based on an address hierarchy classification driven by FSM. First, this method
removed redundant noise words, such as punctuation marks, notes, and localizers, from
the original address. Subsequently, a general word segmentation software was used to
preliminarily segment the words. Then, an algorithm based on feature word recognition
using a classification model driven by an FSM for address hierarchy classification, recog‑
nition, labeling, and standardized coding was developed. This method could effectively
solve the difficult problem of Chinese address standardization. Wang et al. [40] proposed
the T‑FAmodel, which uses natural language processing to address administrative regions
based on the Trie model and the finite state automaton model to extract elements of non‑
standard addresses. This method performed better at processing addresses in batches.
Tan [41] adopted a unique strategy that deviates from the conventional method of assign‑
ing individual characters as weights to arcs within an FSM; on the contrary, their method
utilizes administrative unit names from addresses as the arc weights. This innovative ap‑
proach not only diminished the space complexity of the algorithm’s implementation but
also enhanced its execution speed. As a result, it successfully facilitated the recognition of
Chinese addresses.

Although the methods of sorting and combining Chinese addresses based on FSM
have achieved certain results, they cannot process scenarios where the address elements
are completely disordered or missing. In addition, traditional FSM relies heavily on the in‑
cluded vocabulary or requires a threshold setting, which reduces its generalizability for ad‑
dress sorting and combination. Therefore, this study proposes a dynamic FSM algorithm
to improve element sorting and the combination of non‑standard addresses in Chinese.

Considering the classification system of address elements and the characteristics of
Chinese address descriptions, the method of combining address elements becomes more
complexwith the gradual refinement of the granular address descriptions, and the order of
elementsmay be omitted or reversed. Therefore, after the address elements are recognized
using the deep learning model, the dynamic FSM is further needed to sort and parse the
address elements to address the disorder and missing hierarchical elements in the descrip‑
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tion of address information in the text. Consequently, addresses with correct hierarchical
structures can be obtained for subsequent high‑accuracy address matching. Considering
the relevant research status, this study proposes amethod to parse Chinese address text on
the internet by integrating the CHTopoNER model and dynamic FSM to effectively solve
the abovementioned problems.

3. Data and Methodology
3.1. Data

In this study,weused text from theZhengzhouEpidemiological SurveyData (COVID‑
19 ESD) released on social media. A total of 77,451 pieces of data were available. The
dataset was divided into training and test sets at a ratio of 4:1. To label these data by refer‑
ring to the Chinese national rules for the geocode of addresses and the standard specifica‑
tion on industrial address classification and considering the universality, uniformity, and
extensibility of the address, this study used BMES labeling [42] to categorize the Chinese
address elements into the provincial, municipal, county (district), and town (township) ad‑
ministrative divisions, villages, roads, local regions, doorplates, building addresses, and
unit numbers. The specific classifications are listed in Table 1.

Table 1. Labeling system of Chinese address elements.

Label Meaning Example

XZQHS Provincial administrative divisions 河南省 (in English: Henan Province)
XZQHCS Municipal administrative divisions 郑州市 (in English: Zhengzhou City)
XZQHQX County (district) administrative divisions 中牟县 (in English: Zhongmu County)
XZQHZ Town (township) administrative divisions 白沙镇 (in English: Baisha Town)
XZQHC Village 高庄村 (in English: Gaozhuang Village)
JD1 Road 1 商都路 (in English: Shangdu Road)
JD2 Road 2 万山公里 (in English: Wansan Highway)
JXK Intersection 交叉路 (in English: Intersection)
DIR Direction 西北方向 (in English: Northwest)
DIS Distance 50 m (in English: 50 m)
BES Blur shift 附近 (in English: Nearby)
MP1 Local area 1 489号 (in English: No. 489)
MP2 Local area 2 博士嘉园 (in English: Boshi Jiayuan)
MP3 Local area 3 25幢 (in English: Building 25)
POI1 Point of interest 1 白沙商贸城 (in English: Baisha Trade City)
POI2 Point of interest 2 茶百道 (in English: Chabaidao)

Moreover, to validate the model’s ability to generalize, this study introduced two dis‑
tinct datasets, namely People’s Daily Annotated Corpus (PFR) and Microsoft Research
Asia (MSRA), in addition to the COVID‑19 ESD dataset created for this research. These
datasets differ in that the PFR andMSRAdatasets consist of a sole entity type that is labeled
as “LOC”, referring to geographical placenames. The partitioning of training and testing
sets for both the PFR andMSRA datasets adhered to a 4:1 ratio. The PFR dataset, extracted
from the January 1998 edition of the People’s Daily newspaper’s annotated corpus (https://
www.heywhale.com/mw/dataset/5ce7983cd10470002b334de3/content (accessed on 15 Jan‑
uary 2023)), encompasses over six million bytes of text. It has found extensive use in inter‑
national competitions focused on named entity recognition tasks for geographical places
and personal names. Owing to its proven reliability and gradual adoption, it has evolved
into the most widely utilized standard corpus in this domain. The MSRA corpus [43]
(https://tianchi.aliyun.com/dataset/144307 (accessed on 15 January 2023)), originating from
MSRA, comprises approximately 45,000 sentences, with more than 30,000 instances of ge‑
ographical placenames. This corpus serves as a significant dataset extensively employed
in named entity recognition tasks.

https://www.heywhale.com/mw/dataset/5ce7983cd10470002b334de3/content
https://www.heywhale.com/mw/dataset/5ce7983cd10470002b334de3/content
https://tianchi.aliyun.com/dataset/144307
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3.2. Methodology
The proposed method for parsing Chinese address text on the internet integrated the

CHTopoNERmodel and dynamic FSM. First, the CHTopoNERmodel was used for named
entity recognition (NER) of the multi‑hierarchical address elements in texts from the inter‑
net. Subsequently, the hierarchical elements of each address were obtained. Furthermore,
according to the hierarchical features of each address, sets of dynamic FSMs were created
to parse Chinese address texts on the internet through state transitions. This method is
shown in Figure 1.
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CHTopoNER model and dynamic finite state machine (DFSM).

3.2.1. CHTopoNER Model
TheCHTopoNERmodel includes aChinese‑roberta‑wwm‑ext layer [44], an improved

SoftLexicon layer, and a TCNN‑CRF layer composed of an IDCNN [45], a BiLSTM [46], and
a CRF layer [47]. The model is shown in Figure 2.

First, the Chinese text data were input. The model first converted the input text into
character vectors using the Chinese‑roberta‑wwm‑ext layer. Subsequently, improved Soft‑
Lexicon was used to obtain word‑level semantic information. Next, the character‑ and
word‑level vectors were concatenated to fuse the semantic information on both levels.
In addition, the model extracted and concatenated the semantic features of the vectors
through a TCNN layer to obtain the forward and backward contextual dependency rela‑
tionships of each character and word in the Chinese text, thereby exploring their potential
semantic associations. Finally, the output of the TCNN layer was mapped to a predefined
category space through a fully connected layer. The CRF layer was ultimately used to
model and decode the label sequences because of its ability to consider the dependencies
among labels, thereby improving the accuracy of sequence labeling.

To avoid the out‑of‑vocabulary problem, possibly caused by SoftLexicon, the
improved SoftLexicon improves the embedding weights of the corresponding words from
the number of words matched in the training and verification sets into the calculated
weights from the corresponding embedding obtainedduringpre‑trainingusingGLoVe [48].



Appl. Sci. 2023, 13, 9855 8 of 21Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 2. CHTopoNER model. 

First, the Chinese text data were input. The model first converted the input text into 
character vectors using the Chinese-roberta-wwm-ext layer. Subsequently, improved 
SoftLexicon was used to obtain word-level semantic information. Next, the character- and 
word-level vectors were concatenated to fuse the semantic information on both levels. In 
addition, the model extracted and concatenated the semantic features of the vectors 
through a TCNN layer to obtain the forward and backward contextual dependency 
relationships of each character and word in the Chinese text, thereby exploring their 
potential semantic associations. Finally, the output of the TCNN layer was mapped to a 
predefined category space through a fully connected layer. The CRF layer was ultimately 
used to model and decode the label sequences because of its ability to consider the 
dependencies among labels, thereby improving the accuracy of sequence labeling. 

To avoid the out-of-vocabulary problem, possibly caused by SoftLexicon, the 
improved SoftLexicon improves the embedding weights of the corresponding words from 
the number of words matched in the training and verification sets into the calculated 
weights from the corresponding embedding obtained during pre-training using GLoVe 
[48]. 

Compared with BiLSTM, which can only retain contextual information but cannot 
efficiently process long sequences, the IDCNN uses a separable convolutional approach 
to reduce the number of model parameters, thereby reducing the computational 
complexity and adapting it for processing long sequences. Therefore, the CHTopoNER 
model integrates BiLSTM and IDCNN to form a TCNN network layer. The respective 
advantages of BiLSTM and IDCNN were fully exploited while avoiding their 
disadvantages. In the TCNN model, BiLSTM is primarily used to capture the contextual 

Figure 2. CHTopoNER model.

Compared with BiLSTM, which can only retain contextual information but cannot ef‑
ficiently process long sequences, the IDCNN uses a separable convolutional approach to
reduce the number of model parameters, thereby reducing the computational complexity
and adapting it for processing long sequences. Therefore, the CHTopoNER model inte‑
grates BiLSTM and IDCNN to form a TCNN network layer. The respective advantages
of BiLSTM and IDCNN were fully exploited while avoiding their disadvantages. In the
TCNN model, BiLSTM is primarily used to capture the contextual information of the se‑
quence, whereas IDCNN is used to extract its local features. This integration method can
be used for the accurate recognition of Chinese address elements.

3.2.2. Dynamic FSM
The dynamic FSM adds a global set to the quintuple FSM and attributes the following

elements to the original quintuple: the ith FSM set, the ith entity label set of the hierar‑
chical elements of the input address, the ith state transition function, and the ith initial
state set and final state set. Notably, the generation process of the dynamic FSM is to gen‑
erate a corresponding set of FSMs based on the elemental level features of each address,
which achieves the dynamization of FSM. Unlike the quintuple FSM, the dynamic FSM is
a sextuple. The ith dynamic FSMMi is shown in Equation (1).

M = (W, Qi, Σi, δi, qi0, Fi) (1)
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whereW is an already defined global FSM set, Qi is the ith state set, ∑i is the entity label
set of the input address‑level elements, δi is the state transition function, and Fi and qi are
the ith initial and final state sets, respectively.

Dynamic FSM is an algorithm that dynamically generates amodel of a directed graph.
It can ameliorate the excessive reliance of FSM on keywords in the address‑level elements
and avoid the uncertain threshold setting of the bidirectional FSM. Where the transition
relationship between each state s and the next state s′ is added as a key–value pair into
the state transition function δi, with s being the key and s′ being the value. Here, the set is
used to store values because state smay havemultiple successor states. The state transition
function is constructed using range(len(sorted_E2)‑1) in the loop to traverse every position
of state s. Each time, the two adjacent positions are taken out as one state and the next
state. Finally, the state transition function δi is added to the sextuple of the dynamic FSM
E3, which is returned. Algorithm 1 is as follows:

Algorithm 1: Dynamic FSM algorithm.

Input: entity labels E1 of address elements, global FSM set W
Output: dynamic FSM E3

function generateDynamicFSM(E1,W):
  // initialize the sextuple of dynamic FSM E3
  Qi = {}
  Σi = set of all entity labels in E1
  δi = {} // state transition function, initialized as an empty set
  qi = {} // initial state set, initialized as an empty set
  Fi = {} // final state set, initialized as an empty set
  E3 = (W, Qi, Σi, δi, qi, Fi)
  
  // on each path P inW, do
  for each Pi inW:
    // obtain the entity labels E2 of the address elements of the path P
    E2 = entity labels in path Pi
    // determine whether every element in E1 is contained in E2
    if all entity labels in E1 are in E2:
      // select this path P for the sorting and organizing the entity labels
      // traverse E1 in E2 and record the positions of the entity elements of E1 with
respect to E2
      indices = []
      for each e in E1:
        index = index of e in E2
        append index to indices
      // sort the entity elements of E1 according to the index in indices
      sorted_E1 = [E1[i] for i in sorted(indices)]
      // sort the entity elements of E2 according to the index in indices
      sorted_E2 = [E2[i] for i in sorted(indices)]
      // add the sorted entity elements to the state set Qi as new states
      qi = (sorted_E2, P)
      add qi to Qi
  
      // update the state transition function δ

      for i in range(len(sorted_E2)−1):
        s = (sorted_E2[i], sorted_E2[i + 1])
        s_next = (sorted_E2[i + 1],)
        if s not in δ:
          δi [s] = set()
        δi [s].add(s_next)
   
  return E3
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In this study, the Jin Rong Yue Hui Cheng Convenience Store (the northeast corner of
the intersection between Yongzhou Road and Xunhang Road) was taken as an example to
visualize the generation of dynamic FSM, as shown in Figure 3.
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There aremissing address elements in the Jin RongYueHui ChengConvenience Store
(northeast corner of the intersection between Yongzhou Road and Xunhang Road), and the
structure is disordered. As shown in Figure 3, the entity labels of the address elements (E1
for short) were obtained first, including POI1, JD1, JD2, JXK, and DIR. Subsequently, the
entity labels of the obtained address elements were organized by considering the global
FSM set (W). The specific steps are as follows:
(1) Traverse path P inW to obtain the entity label of the address element (P[i]) of each path.
(2) Determine whether each element in E1 is contained in P[i]. If yes, the path was se‑

lected as E2.
(3) Traverse from E1 to E2. If the label element in E1 was consistent with that in E2, the

index of the element was recorded.
(4) Finally, the indices were sorted from small to large to obtain a new dynamic FSM

(E3; blue represents the initial state of the dynamic FSM, and pink represents the
final state).
Finally, the text of the address information was obtained based on the text index cor‑

responding to each entity label of the address element.
When implementing the dynamic FSM, there is no need to include keywords or set

thresholds. However, by setting all entity label types of address elements as a global FSM
set, the corresponding dynamic FSM set could be obtained based on the entity label of
the ith address element in the text from the internet. This method is suitable for parsing
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standard and non‑standard addresses, which cannot be accomplished using FSM and bidi‑
rectional FSM.

Owing to the limited types of entity labels of address elements and good compati‑
bility with uncommon keywords of address elements or ambiguously oriented keywords,
the dynamic FSM abandons the collection of keywords and adopts the collection of entity
labels of address elements, forming the global FSM set. Consequently, the dynamic FSM
could largely solve the problem of an incomplete collection of keywords.

In addition, because of the uncertainty of the threshold setting of the bidirectional
FSM, the dynamic FSM designed in this study discarded the threshold setting and sorted
all types of entity labels in an address according to the global FSM set, even when the
address was missing or disordered. Therefore, an FSM set corresponding to this address
was obtained.

4. Evaluation Metrics and Experimental Results
In this study, we compared the CHTopoNER model with current advanced deep

learning models using specified evaluation metrics to explore its advantages in address‑
ing element recognition tasks in Chinese texts from the internet. We integrated the CHTo‑
poNERmodel with FSM, bidirectional FSM, and dynamic FSM to parse addresses to verify
the effectiveness of dynamic FSM parsing texts from the internet.

4.1. Evaluation Metrics
This study employs the evaluation metrics proposed during the MUC assessment

conference for named entity recognition (NER). Specifically, the initial evaluation met‑
rics for NER—namely F1 score, precision (P), and recall (R)—introduced by MUC‑2 [49],
are utilized to assess the efficacy of the model in extracting Chinese geographical place‑
name entities.

4.2. Experimental Setup and Parameters
The parameter settings are as follows: batch size is set to 32, number of training epochs

is 100, optimizer is Adam, loss function is CRF Loss, base learning rate is 5× 10−6, dropout
rate is 0.5, and the maximum length of input text is 50. To prevent overfitting during
the training process, enhance training efficiency, and avoid excessive training, we imple‑
mented the EarlyStop mechanism with an early_stop_ratio set to 20.

The software and hardware facilities mainly used in this study are listed in Table 2.

Table 2. Software and hardware used in our investigation.

Component Details

Central Processing Unit (CPU) Intel(R) Core(TM) i9‑12900H
Graphics Card (GPU) NVIDIA GeForce RTX 3080 Ti
Operating System Ubuntu 18.04
Programming Language Python 3.7
Deep Learning Framework TensorFlow1.14.0

4.3. Experimental Results and Analysis
4.3.1. Experimental Results

To verify the effectiveness of themethod proposed in this study, the BiLSTM‑CRF [50],
IDCNN‑CRF [51], BiLSTM‑attention‑CRF [52], BERT‑BiLSTM‑CRF [53], and CHTopoNER
models were applied to the chosen dataset. Furthermore, FSM, bidirectional FSM, and
dynamic FSM were added to the experiments based on the CHTopoNER model.

Experimental results of geographical placename recognition using different models
on the PFR dataset are presented in Table 3.
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Table 3. Results of the PFR dataset across different models.

Precision Recall F1

BiLSTM‑CRF
(baseline) 0.912 0.774 0.837

IDCNN‑CRF1 0.992 0.773 0.869

IDCNN‑CRF2 0.994 0.790 0.883

BiLSTM‑Attention‑
CRF 0.938 0.740 0.827

BERT‑BiLSTM‑CRF 0.996 0.891 0.940

CHTopoNER 0.997 0.953 0.975

Results of the geographical placename recognition experiments on the MSRA dataset
for different models are shown in Table 4.

Table 4. Results of the MSRA dataset across different models.

Precision Recall F1

BiLSTM‑CRF (baseline) 0.990 0.890 0.864

IDCNN‑CRF1 0.994 0.889 0.864

IDCNN‑CRF2 0.995 0.916 0.875

BiLSTM‑Attention‑CRF 0.989 0.840 0.840

BERT‑BiLSTM‑CRF 0.989 0.895 0.940

CHTopoNER 0.999 0.965 0.981

Table 5 lists the experimental results of address element recognition by different mod‑
els on the text data of the Zhengzhou COVID ESD (2020–2022) released on social media.

Table 5. Address element recognition by differentmodels in theCOVID‑19 ESD socialmedia dataset.

Precision Recall F1

BiLSTM‑CRF (baseline) 0.961 0.710 0.817

IDCNN‑CRF1 0.976 0.736 0.839

IDCNN‑CRF2 0.988 0.729 0.839

BiLSTM‑Attention‑CRF 0.936 0.703 0.809

BERT‑BiLSTM‑CRF 0.989 0.735 0.843

CHTopoNER 0.991 0.743 0.849

Experimental results of different types of geographical placename entities and loca‑
tion orientation entities extracted by the CHTopoNERmodel on the COVID‑19 ESD social
media dataset are presented in Figure 4.

The experimental results after adding the FSM, bidirectional FSM, and dynamic FSM
to the CHTopoNER model are listed in Tables 6–10.
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Table 6. Accuracies of the CHTopoNERmodels with added FSM, bidirectional FSM, and Algorithm
1 (dynamic FSM) to standard address data.

Model Accuracy

CHTopoNER + FSM 0.777
CHTopoNER + bidirectional FSM 0.781

CHTopoNER + Algorithm 1 (dynamic FSM) 0.839

Table 7. Accuracies of the CHTopoNERmodels with added FSM, bidirectional FSM, and Algorithm
1 (dynamic FSM) to non‑standard address data.

Model Accuracy

CHTopoNER + FSM 0.532
CHTopoNER + bidirectional FSM 0.698

CHTopoNER + Algorithm 1 (dynamic FSM) 0.836
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Table 8. Specific experimental results of the CHTopoNERmodelwith added FSM, bidirectional FSM,
and Algorithm 1 (dynamic FSM) to standard address data.

Model Example Processing of Address
Elements

CHTopoNER + FSM

Xinyuan Modern Cheng (Cheng has the
same meaning as city but uses a different
Chinese character. In this study, Cheng is
used to differentiate from city), No. 17

Qingfeng Street, Erqi District,
Zhengzhou City

Zhengzhou City (XZQHCS)/Erqi District
(XZQHQX)/Qingfeng Street (JD1)/No.17

(MP1)/Xinyuan Modern Cheng

CHTopoNER + bidirectional FSM Xinyuan Modern Cheng, No. 17 Qingfeng
Street, Erqi District, Zhengzhou City

Zhengzhou City (XZQHCS)/Erqi District
(XZQHQX)/Qingfeng Street (JD1)/No.17
(MP1)/Xinyuan Modern Cheng (MP2)

CHTopoNER + Algorithm 1
(dynamic FSM)

Xinyuan Modern Cheng, No. 17 Qingfeng
Street, Erqi District, Zhengzhou City

Zhengzhou City (XZQHCS)/Erqi District
(XZQHQX)/Qingfeng Street (JD1)/No.17
(MP1)/Xinyuan Modern Cheng (MP2)

Table 9. Specific experimental results of the CHTopoNERmodelwith added FSM, bidirectional FSM,
and Algorithm 1 (dynamic FSM) to non‑standard address data.

Model Example Processing of Address
Elements

CHTopoNER + FSM No. 132 Wangwu Road,
Zheng Shang Ming Zuan Invalid address

CHTopoNER + bidirectional FSM No. 132 Wangwu Road,
Zheng Shang Ming Zuan

Wangwu Road, Zheng Shang Ming Zuan
(JD1)/No. 132 (MP1)

CHTopoNER + Algorithm 1
(dynamic FSM)

No. 132 Wangwu Road,
Zheng Shang Ming Zuan

Wangwu Road (JD1)/No. 132 (MP1)/Zheng
Shang Ming Zuan (MP2)

Table 10. Specific experimental results of the CHTopoNERmodel with the addition of FSM, bidirec‑
tional FSM, and Algorithm 1 (dynamic FSM), respectively, on non‑standard address data.

Model Example Processing of Address
Elements

CHTopoNER + FSM
Jin Rong Yue Hui Cheng Convenience Store

(northeast corner of the intersection of
Yongzhou Road and Xunhang Road)

Invalid address

CHTopoNER + bidirectional FSM
Jin Rong Yue Hui Cheng Convenience Store

(northeast corner of the intersection of
Yongzhou Road and Xunhang Road)

Invalid address

CHTopoNER + Algorithm 1
(dynamic FSM)

Jin Rong Yue Hui Cheng Convenience
Store (northeast corner of the intersection
of Yongzhou Road and Xunhang Road)

Yongzhou Road (JD1)/Xunhang Road
(JD2)/Intersection (JXK)/Northeast Corner

(DIR)/Jin Rong Yue Hui Cheng
Convenience Store (POI1)

4.3.2. Analysis of Experimental Results
Table 3 reveals that on the PFR dataset, our proposed CHTopoNER model performs

the best across all three evaluation metrics: Precision (P), Recall (R), and F1 score (F1).
Compared to the baseline model BiLSTM‑CRF, the CHTopoNER model exhibits improve‑
ments of 8.5% in P, 17.9% in R, and 12.4% in F1 values. Compared to the state‑of‑the‑art
BERT‑BiLSTM‑CRF model, the CHTopoNER model achieves improvements of 0.1% in P,
6.2% in R, and 2.1% in F1 values. Similarly, from Table 4, on the MSRA dataset, our pro‑
posed CHTopoNER model demonstrates superior performance in all the three evaluation
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metrics (P, R, and F1). In comparison with the baseline model BiLSTM‑CRF, the CHTo‑
poNERmodel exhibits improvements of 0.9% in P, 7.5% in R, and 10.2% in F1 values. Com‑
pared to the state‑of‑the‑art BERT‑BiLSTM‑CRF model, the CHTopoNER model achieves
improvements of 1.0% in P, 7.0% in R, and 2.6% in F1 values. The CHTopoNERmodel pro‑
posed here exhibited the best evaluation metrics in the COVID‑19 ESD dataset: P, R, and
F1 (Table 2). Compared with the baseline model BiLSTM‑CRF, P, R, and F1 improved by
3.1%, 4.6%, and 3.9%, respectively. Comparedwith the state‑of‑the‑art BERT‑BiLSTM‑CRF
model, the three evaluation metrics improved by 0.2%, 1.1%, and 0.7%, respectively.

To further compare and analyze the experimental results of our CHTopoNER model
with other models on the PFR, MSRA, and COVID‑19 ESD datasets, we present the exper‑
imental outcomes graphically in Figure 5.
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Figure 5 shows that the proposed CHTopoNERmodel, compared to the othermodels,
demonstrates superior experimental performance across the three distinct datasets. This
can be attributed to the utilization of the Chinese‑roberta‑wwm‑ext pretraining with a
Chinese full‑word masking strategy and the improved SoftLexicon approach to capture
character‑level and word‑level information from input texts. Furthermore, the integration
of the TCNN layer in semantic feature extraction enables the consideration of both local
and global semantic information, thus minimizing the loss of semantic features. However,
the performance of the CHTopoNER model on the COVID‑19 ESD dataset is slightly infe‑
rior to that on the PFR andMSRAdatasets. This discrepancy arises from the fact that while
the PFR andMSRAdatasets focus on recognizing a single entity type, namely geographical
places, the COVID‑19 ESD dataset involves the recognition of 16 different types of address
element entities. Typically, the presence ofmultiple entity typesmay increase data sparsity
and context ambiguity, rendering it challenging for the model to capture subtle features of
each entity type and accurately determine the correct entity category. Consequently, the
precision of the CHTopoNER model’s experimental results on the COVID‑19 ESD dataset
is marginally lower.

The F1 values of different types of address element entities are shown in Figure 4.
Among them, the JD1 type exhibits the highest F1 value, while the POI2 type has the
lowest F1 value. This discrepancy can be attributed to the higher frequency and distinct
features of JD1 entities in the text, such as terms like “XX Road” or “XX Avenue”. Con‑
versely, the lower F1 value for the POI2 type stems from the less prominent textual features
associated with this type and its infrequent appearance in the text, with examples like
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“Cha Bai Dao” or “Wen Xuan Art Studio”. As the dataset is based on epidemic‑related
text data from Zhengzhou city, administrative regions, such as provinces, cities, towns,
and villages, have relatively low occurrences. Consequently, the recognition performance
of the corresponding entity labels “XZQHS”, “XZQHCS”, “XZQHZ”, and “XZQHX” is
comparatively lower.

The parsingmethod for non‑standard address text in Chinese exhibited an accuracy of
83.9% for standard placenames and 83.6% for non‑standard placenames by integrating the
CHTopoNER model with dynamic FSM (Tables 6 and 7). Compared with the approach
integrating the CHTopoNER model with traditional FSM, the improvements were 8.0%
and 57.1%, respectively; compared with the approach integrating the CHTopoNERmodel
with bidirectional FSM, the improvementswere 7.4% and 19.8%, respectively. Notably, the
CHTopoNER model could only recognize entity labels starting with B or I but not those
starting with E. Therefore, it was impossible to obtain a complete entity label starting with
B and ending with E, so the dynamic FSM failed to correctly sort and combine all address
elements recognized by the CHTopoNER model.

Dynamic FSMwas better than FSM and bidirectional FSM in parsing and sorting both
standard and non‑standard placenames (Tables 8–10). This is because FSM relies on the
included keywords (such as province, city, county (district), and road), whereas text from
the internet often includes incomplete descriptions of keywords and other information due
to its non‑standardized description.

For standard addresses, the corresponding address element cannot be recognized if
a keyword is not included in the FSM. For example, for Xinyuan Modern Cheng, No. 17
Qingfeng Street, Erqi District, Zhengzhou City, the keyword city was included in the state
set of the FSM (Figure 6A). Therefore, the address elements of Zhengzhou were obtained.
Subsequently, the next state was triggered. If the next state is District (County), Street
can be triggered next, and so on. However, the keyword Cheng was not included during
this process. Therefore, the FSM could only obtain the address elements on three levels:
Zhengzhou City/Erqi District/Qingfeng Street. When processing standard addresses, the
bidirectional FSM set (Figure 6B) was similar to the FSM set. For the dynamic FSM set, the
entity label types of the address elements were obtained first. Subsequently, a new FSM
set was obtained according to the initially defined general state set (Figure 6C). Finally, the
text corresponding to the address element was parsed and sorted using the new FSM set.

For non‑standard addresses, such as No. 132 Wangwu Road, Zheng Shang Ming
Zuan, with missing address element levels and a disordered structure, the initial state
of the FSM state set (Figure 7A) was City. However, because City is not present in No.
132 Wangwu Road, Zheng Shang Ming Zuan, the next state could be triggered. Therefore,
when the FSMprocessedNo. 132WangwuRoad, Zheng ShangMingZuan, itwas regarded
as an invalid address. In contrast, when the bidirectional FSM (Figure 7B) processed this
address, the forward trigger could not happen due to the lack of the initial trigger key‑
words in this address. However, reverse triggering was enacted as the number was in the
end state of the bidirectional FSM; therefore, No. 132 was obtained. Subsequently, the
next state—Road—was triggered, thereby obtaining Wangwu Road, Zheng Shang Ming
Zuan (JD1)/No. 132 (MP1). The working process of the dynamic finite state set was as
follows. First, the entity label types of the address elements in “No. 132 Wangwu Road,
Zheng Shang Ming Zuan” were obtained, including MP2, JD1, and MP1. Next, according
to the initially defined general state set, a new finite state set was obtained (Figure 7C).
Finally, according to the entity label indices of the address elements, the corresponding
address text of the new finite state set Wangwu Road (JD1)/No. 132 (MP1)/Zheng Shang
Ming Zuan (MP2) was obtained.
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When parsing non‑standard addresses or when the hierarchy of address elements is
missing, the structure of address elements is disordered, and the address element contains
ambiguous locator words, such as distance. For example, in “Jin Rong Yue Hui Cheng
Convenience Store (the northeast corner of the intersection between Yongzhou Road and
Xunhang Road)”, the initial state of the FSM state set (Figure 8A) is “City”. However, be‑
cause “City” is not present in “Jin Rong Yue Hui Cheng Convenience Store (the northeast
corner of the intersection between Yongzhou Road and Xunhang Road)”, the next state
could not be triggered. As a result, when the FSMprocessed “Jin RongYueHuiChengCon‑
venience Store (the northeast corner of the intersection between Yongzhou Road and Xun‑
hang Road)”, it was regarded as an invalid address. However, when the bidirectional FSM
(Figure 8B) processed the address “Jin Rong Yue Hui Cheng Convenience Store (the north‑
east corner of the intersection betweenYongzhouRoad andXunhangRoad)”, state changes
were not triggered in either direction owing to the lack of bidirectional initial trigger key‑
words. As a result, “Jin Rong Yue Hui Cheng Convenience Store (the northeast corner of
the intersection between Yongzhou Road and Xunhang Road)” was regarded as an invalid
address. The working process of the dynamic finite state set is as follows. First, the types
of entity labels of address elements from “Jin Rong YueHui Cheng Convenience Store (the
northeast corner of the intersection between Yongzhou Road and Xunhang Road)” were
obtained, including “POI1”, “JD1”, “ JD2”, “JXK”, and “DIR”. Subsequently, a new finite
state set was obtained according to the global FSM set (Figure 8C). Finally, according to the
indices of entity labels of address elements, the corresponding address text of the newfinite
state setwas obtained as follows: “YongzhouRoad (JD1)/XunhangRoad (JD2)/Intersection
(JXK)/Northeast Corner (DIR)/Jin Rong Yue Hui Cheng Convenience Store (POI1)”.
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After the analysis, we concluded that the parsing results obtained using the three
types of FSM were not significantly different for standard addresses. However, when the
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hierarchical elements were disordered or missing in the address information in text from
the internet, theCHTopoNERmodel anddynamic FSMshowed improved address parsing.

5. Conclusions
This study integrated the CHTopoNER model and dynamic FSM to parse non‑

standard text addresses in Chinese and achieved good experimental results. The accuracy
ratewas 96.6% for standard placenames and 96.8% for non‑standard placenames, which in‑
creased by 82.6% and 38.7%, respectively, compared to the integrated traditional and bidi‑
rectional FSMs. Integration with FSM supplemented the deficiencies of the CHTopoNER
model, thereby improving the accuracy and robustness of address element parsing.

In the future, more natural language processing techniques integrated with the FSM
can be explored to improve the accuracy and efficiency of Chinese address parsing. For
example, deep learningmethods can be integratedwith FSM to improve their ability to rec‑
ognize and sort address elements. In addition, knowledge graphs [54] can be applied to
address parsing to improve semantic understanding and address combinations. Moreover,
integrating multimodal information into address parsing could be considered. For exam‑
ple, image recognition techniques [55] can be integrated to extract address information
from pictures, which can be considered together with text information, thereby improving
the accuracy and robustness of address parsing. The application and promotion of these
new ideas and methods are expected in Chinese address parsing.
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